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Normal Stresses in an Ifnitite Elastic Body with a Locally
Curved and Hollow Nanofiber

K. S. Alan1

Abstract: In the framework of the piecewise homogeneous body model with the
use of the three-dimensional geometrically nonlinear exact equations of the theory
of elasticity, the method developed for the determination of the stress distribution
in the nanocomposites with unidirectional locally curved and hollow nanofibers is
used to investigate the normal stresses acting along the nanofibers. Furthermore, it
is assumed that the body is loaded at infinity by uniformly distributed normal forces
which act along the nanofibers and the crosssection of the nanofibers and normal
to its axial line, is a circle of constant radius along the entire nanofiber length.
For the solution of considered boundary value problem, an approximate analitical
method is developed by using the boundary form perturbation method. The nu-
merical results related to stress distribution in considered body and the influence of
geometrical nonlinearity to this distribution are presented and interpreted.

Keywords: Nanocomposites, nanofiber, stress distribution, geometrik nonlin-
earty, local curvature.

1 Introduction

As it had been noted in Tarnopolsky, Yu, Jigun and Polyakov (1987), Guz (1990),
Kelly (1998), Akbarov and Guz (2000), Guz (2003), one of the basic reasons
through which the strength of the unidirectional fibrous composites under load-
ing along the fibers is determined principally, is the curvature of the fibers. Ac-
cording to the curving form, these curvatures can be classified as periodically or
locally. The effective practical applications of the unidirectional fibrous composite
materials, under service conditions, require intensive, systematic investigations to
determine the stress deformed state in these materials, taking the curving of rein-
forcing fibers into account. For this purpose, in Akbarov and Guz (1985) within
the framework of the piecewise homogeneous body model by the use of the three-
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dimensional exact equations of the theory of elasticity, the method for investigation
of the mentioned stress state in the unidirectional composites was presented. This
method is employed in a case where the curving of the fibers is periodic. The
reviews of the results obtained by this method are detailed in Akbarov and Guz
(2002).

Note that the method used in Akbarov and Guz (1985) is presented for the case
where the concentration of the fibers in the composite is small enough to neglect
the interactions between them. In Kosker and Akbarov (2003), the method used
in Akbarov and Guz (1985) has been developed for two neighbouring periodically
curved fibers and some corresponding numerical results have also been presented.
In Akbarov and Kosker (2003), the method in Akbarov and Guz (1985), Akbarov
and Guz (2002), Kosker and Akbarov (2003) has been developed for the geomet-
rical nonlinear statement and numerical results for one and two neighbouring peri-
odically curved fibers have been given.

That is all as far as the above mentioned periodical curving case is concerned.
There are also few investigations, such as Djafarova (1992), Djafarova (1994), Dja-
farova (1995), which regard the local curving case. But these investigations have
been carried out in the case where the concentration of the fibers is small enough
to ignore any interaction between the fibers. Moreover, it is by the use of the linear
theory of elasticity that these investigations have been carried out. According to
the well-known mechanical considerations and to the results obtained in Akbarov
and Kosker (2003) taking the geometrical nonlinearity into account influences sig-
nificantly the values of the self-balanced stresses caused by fibers’ curving.

In Kosker and Simsek (2006), Kosker and Simsek (2007), the normal stresses are
analysed. The Method in Akbarov, Kosker and Simsek (2005) has been developed
in Kosker and Simsek (2006) in such way as to obtain normal stress values up to the
second approximation in the fiber matrix interface. In Kosker and Simsek (2007),
the method has been developed for the determination of the stress distribution in the
unidirectional fibrous composites with locally curved fibers is used to investigate
normal stresses acting along the fibers for the case where there exists the bond
covering cylinder with constant thickness between fiber and matrix materials are
considered.

Alan and Akbarov (2010) developed the method for the determination of the stress
distribution in the composites with unidirectional locally curved covered fibers is
used for investigation of the shear stresses acting along the fibers.

The changeover from the microlevel to the nanolevel in the science of materials
broke new ground in the mechanics of materials and structures. This was preceded
by important events in the physics and chemistry of nanoformations, which were
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partially described in Guz (2006) and in Guz, Rushchitsky, Guz (2007), a basic ap-
proach to study the mechanical properties of nanocomposite materials with poly-
mer matrix was proposed and the deformation of nanocomposites and structural
members made of them. In Alan and Akbarov (2011) the normal stresses acting
along the nanofiber in the nanocomposites with unidirectional locally curved cov-
ered nanofibers are considered.

Nanofibers are defined as fibers with diameters on the order of 100 nanometers.
In this study, within the framework of the piecewise homogeneous body model,
with the use of the three dimensional geometrically nonlinear exact equations of
the theory of elasticity, the method developed for the determination of the stress
distribution in the nanocomposites with unidirectional locally curved and hol-
low nanofibers is used for investigation of the normal stresses acting along the
nanofibers. The case is considered where a single locally curved and hollow
nanofiber of infinite length is located in an infinite elastic body with a low concen-
tration of nanofibers. The interaction between the nanofibers is neglected. Futher-
more, it is assumed that the body is loaded at infinity by uniformly distributed
normal forces which act along the nanofibers and the crosssection of the nanofibers
and normal to its axial line, is a circle of constant radius along the entire fiber
length. The numerous numerical results related to stress distribution in considered
body and influence of geometrical nonlinearty to this distrubition are obtained and
interpreted.

2 Formulation of The problem

We consider an infinite body containing a single locally curved and hollow
nanofiber with an initial local imperfection, which is illustrated schematically in
Fig.1. The values related to the nanofiber are denoted by superscript (2) and those
related to the matrix by superscript (1). With the middle line of the nanofiber,
we associate Lagrangian rectilinear Ox1x2x3 and cylindrical Orθz system of coor-
dinates (Fig.1). We assume that the material of the nanofiber and the matrix are
homogeneous, isotropic and linear elastic. The body is compressed or stretched
at infinity by uniformly distributed normal forces with intensity p acting along the
Ox3 axis and the crosssection of the nanofiber normal to its axial line are formed
by two circles of constant radius R1 and R2 along the entire length. Under this sit-
uation which has no motion, for the nanofiber and matrix , in the framework of the
piecewise homojeneous body model with use of the three-dimensional geometri-
cally nonlinear exact equations of the theory of elasticity of continium mechanics,
we write the equilibrum equations ;

∇i

[
σ
(k)in

(
g j

n +∇nu(k) j
)]

= 0, k = 1,2 (1)
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Figure 1: The geometry of material structure and chosen coordinates.

The strain-displacement relations as follows:

2ε
(k)
jm = ∇ ju

(k)
m +∇mu(k)j +∇ ju(k)n∇mu(k)n , (2)

In Eqs.(1) and (2), the conventional tensor notation is used. σ
(k)
(in) denote the k. con-

stant of the physical components of the stress tensors and ε
(k)
jm denote the k. constant

of the physical componenets of the strain tensors. For the detailed explanation and
formulation of the equations (1), (2), and any undefined terminology and notation
,we refer to Akbarov and Guz (2000).

The constitutive equations (Hooke’s Law) are as follows:

σ
(k)
(in) = λ

(k)e(k)δ n
i +2µ

(k)
ε
(k)
(in), e(k) = ε

(k)
(11)+ ε

(k)
(22)+ ε

(k)
(33) (3)

Where λ and µ the material constants.

Also, perfect contact conditions are assumed at the interfaces S1and S2:

σ
(1)in

(
g j

n +∇nu(1) j
)∣∣∣

s1

n j = 0

σ
(1)in

(
g j

n +∇nu(1) j
)∣∣∣

s2
n j = σ

(2)in
(

g j
n +∇nu(1) j

)∣∣∣
s2

n j, u(1) j
∣∣∣
s2
= u(2) j

∣∣∣
s2

(4)
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where n j are the covariant components of the unit normal vector to the surfaces S1
and S2 . We assume that the matreials of the matrix and nanofiber are comparatively
rigid and therefore the nonlinear terms can be neglected in the equations obtained
for the zeroth approximation and the term (g j

n +∇nu(k) j,0) can be replaced by the
Kronecer symbol δ

j
n in the first and subsequent approximatons.

For the analyzed case, the conditions are also assumed.

σ
(1)
zz −→

r→∞
p, σ

(1)
i j −→r→∞

0 (i j) 6= zz, (5)

It is known that

σ(i j) = σ
i jH iH j = σ

i j 1
H iH j

,ε(i j) = εi j
1

HiH j
= ε

i jHiH j ,u(i) = uiHi = ui
1
Hi

, (6)

where (i j) = rr,θθ ,zz,rθ ,rz,zθ , (i) = r,θ ,z. Hi are the Lamé coefficients, and n j

are the covariant components of the unit normal to the surfaces S1 and S2. σ and
ε denote the covariant and contravariant components of the stress tensor and the
strain tensor in the sylindrical system , respectively. ui and ui are the covariant and
contravariant components of the displacement vector (u) in the sylindrical system.
In (6) formulas are given the relationships between the physical componenets of
the tensor and vectors. The physical components of this stress and strain tensor in
the sylindirical system are expressed according to the covariant and contravariant
components of this stress and the strain tensors.

Hr = r, Hθ = 1; Hz = 1

u(r) = ur = ur, uθ = ruθ =
1
r

uθ ; u(z) = uz = uz;

σ(rr) = σrr = σ
rr; σ(rθ) =

1
r

σrθ = rσ
rθ ; σ(rz) = σrz = σ

rz

σ(θr) =
1
r

σθr = rσ
rθ ; σθθ =

1
r2 σθθ = r2

σ
θθ ; σ(θz) =

1
r

σθz = rσ
θz,

σ(zr) = σzr = σ
zr; σ(zθ) =

1
r

σzθ = rσ
zθ ; σ(zz) = σzz = σ

zz (7)

We define the initial imperfection form of the nanofiber by the equation of its axial
line .

x1=Aexp
(
−
(x3

L

)2
)

cos
(
m

x3

L

)
=εLexp

(
−
(x3

L

)2
)

cos
(
m

x3

L

)
=εδ (x3); ε =

A
L

(8)

Where A and L are geometrical parameter which are shown in Fig.1. ε is small
parameter that speciefies the curvature amplitude. Assuming that A is smalller than
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L , we intruduce a small parameter ε =A
L (0≤ ε < 1). The function δ

j
n is the local

curving form of the nanofiber.

First, using Eq.(8) and the condition for the crosssection of the nanofiber, we derive
the following equation of the interface S and the components of their normal vectors
in the cylindrical system of coordinates Orθz.

r(θ , t3) =
εδ (t3)

(
1+ ε2(δ ′(t3))2

)
cosθ

1+ ε2(δ ′(t3))2 cos2 θ
+{

ε2(δ (t3))2
(
1+ ε2(δ ′(t3))2

)2 cosθ

(1+ ε2(δ ′(t3))2 cos2 θ)2 +R2− (ε2(δ (t3))2 (1+ ε
2(δ ′(t3))2)} 1

2

z(θ , t3) = t3− εδ
′(t3)(r(θ , t3)− εδ (t3)) , δ

′(t3) =
dδ (t3)

dt3
(9)

where t3 is a parameter and t3 ∈ (−∞,+∞). Using the well-known operations of
differential geometry, the components nr, nθ and nz of the unit normal vector n to
the surfaces S1 and S2 are obtained as follows:

nr = r(θ , t3)
∂ z(θ , t3)

∂ t3
[A(θ ,z)]−1 ,

nθ =

[
∂ z(θ , t3)

∂θ

∂ r(θ , t3)
∂ t3

− ∂ r(θ , t3)
∂θ

∂ z(θ , t3)
∂ t3

]
[A(θ ,z)]−1 ,

nz =−r(θ , t3)
∂ r(θ , t3)

∂ t3
[A(θ , t3)]

−1

where

[A(θ ,t3)]=

[(
r(θ ,t3)

∂z(θ ,t3)
∂ t3

)2

+

(
∂z(θ ,t3)

∂θ

∂ r(θ ,t3)
∂ t3

− ∂z(θ ,t3)
∂ t3

∂ r(θ ,t3)
∂θ

)2

+

(
r(θ ,t3)

∂z(θ ,t3)
∂ t3

)2
]1/2 (10)

3 Solution Method

The considered problem is the boundary-value problem for the nonlinear partial
differantial equations. For the analysis of the this problem, the boundary form
perturbation method given in Akbarov and Guz (2000) are used. According to this
method, the unknown values are presented as series in the small parameter ε:

σ
(k)
rr =

∞

∑
q=0

ε
q
σ
(k),q
rr , . . . ,ε

(k)
rr =

∞

∑
q=0

ε
q
ε
(k),q
rr , . . . ,u(k)r =

∞

∑
q=0

ε
qu(k),qr (11)
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We expand the expression (9)-(10) as series in ε; the quantities r, z, nr, nθ and nz

are also presented in series forms:

r = R+
∞

∑
k=1

ε
kark(θ , t3), z = t3 +

∞

∑
k=1

ε
kazk(θ , t3),

nr = 1+
∞

∑
k=1

ε
kbrk(θ , t3), nθ =

∞

∑
k=1

ε
kbθk(θ , t3), nz =

∞

∑
k=1

ε
kbzk(θ , t3) (12)

The expressions for the coefficients of the εk in (12) can be determined by employ-
ing some routine operations, whose details are left out here.

Substituting the expression (11) in Eq.(2) and Eq.(3) and grouping terms with iden-
tical powers, we obtain a complete system of equations for each approximation. In
this case, Eq.(1) and (2) hold for the zeroth approximation, and the equations de-
rived for the first and subsequent approximations contain the values of the previous
approximations.

Now we consider the contact conditions for each approximation, which are derived
from Eqs. (4). For this purpose, we substitute the expressions (11) and (12) into Eq.
(4) and expand the quantities σ

(k),q
rr ,. . . . . . .,u(k),qr involved in eqs.(11) into Taylor

series in vicinity of a point (R,θ ,t3).

Then, grouping the terms with identical powers of the parameter ε and taking into
account the foregoing assumptions, we derive the contact conditions for each ap-
proximation:

for the zeroth approximation

σ
(2),0
(i j)

∣∣∣
rq=R1

= σ
(1),0
(i j)

∣∣∣
rq=R1

, u(2),0(i)

∣∣∣
rq=R1

= u(1),0(i)

∣∣∣
rq=R1

,

σ
(2),0
(i j)

∣∣∣
rq=R2

=σ
(1),0
(i j)

∣∣∣
rq=R2

, u(2),0(i)

∣∣∣
rq=R2

=u(1),0(i)

∣∣∣
rq=R2

; (i j) = rr,rθ ,rz,(i) = r,θ ,z

(13)

for the first approximation

[
σ(i)r

]2,1
1,1+f1

[
∂σ(i)r

∂ r

]2,0

1,0
+ϕ1

[
∂σ(i)r

∂ z

]2,0

1,0
+γr
[
σ(i)r

]2,0
1,0+γθ

[
σ(i)θ

]2,0
1,0+γz

[
σ(i)z

]2,0
1,0 = 0

[
u(i)
]2,1

1,1 + f1

[
∂u(i)
∂ r

]2,0

1,0
+ϕ1

[
∂u(i)
∂ z

]2,0

1,0
= 0 (14)
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In Eqs. (13) and (14) the following notation is used:

[X]2,q1,q = X(1),q (R,θ , t3)−X(1),q (R,θ , t3) , q = 0,1,

f1 = δ (t3)cosθ , ϕ1 =−R
dδ (t3)

dt3
cosθ , γr =

(
δ (t3)

R
− d2δ (t3)

dt2
3

R
)

cosθ ,

γθ =
δ (t3)

R
sinθ , γz =−

dδ (t3)
dt3

cosθ , δ (t3) = exp(
−x3

L
)2 cos(m

−x3

L
) (15)

The zeroth approximation.Taking into account nr=1, nθ =0 and nz=0 in the equa-
tions (1), (2) and (3), the contact condition (4) will be provided. Therefore, the
equations and the contact conditions obtained for the zeroth approximation are non-
linear equations. The zeroth approximation is the boundary-value problem for the
determination of stresses and strain in the curvature-free nanofiber in our model.
To the determine the zeroth approximation, we obtain the equations (16) and the
contact condition (17) .

∇iσ
(k)i j,0 = 0, 2ε

(k),0
jm = ∇ ju

(k),0
i +∇mu(k),0k ,

σ
(k)
(i j) = (λ (k)e(k))δ n

i +2(µ(k)
ε
(k)
(i j)), e(k),0 = ε

(k),0
(rr) + ε

(k),0
(θθ) + ε

(k),0
(zz) (16)

σ
(1),0
i j

∣∣∣
Rq=R1

= σ
(1),0
i j

∣∣∣
Rq=R1

, u(1),0i

∣∣∣
Rq=R1

= u(1),0i

∣∣∣
Rq=R1

,

σ
(1),0
i j

∣∣∣
Rq=R2

=σ
(1),0
i j

∣∣∣
Rq=R2

, u(1),0i

∣∣∣
Rq=R2

=u(1),0i

∣∣∣
Rq=R2

, (i j) = rr,rθ ,rz,(i) = r,θ ,z

(17)

In this case, an exact analytical solution is given in Akbarov and Guz (2000), Guz
(2003), Akbarov and Guz (1985). According to wchich , at ν(1) = ν(1), we have
the following relations:

ε
(1),0
zz = ε

(1),0
zz =

p
E(1) , σ

(1),0
zz = p, u(1),0z = u(1),0z =

p
E(1) z, u(1),0r =−ν

(1)
ε
(1),0
zz r,

u(1),0r =−ν
(1)

ε
(1),0
zz r, u(1),0

θ
= u(1),0

θ
= 0, σ

(1),0
rr = σ

(1),0
rr = σ

(1),0
θθ

= σ
(1),0
θθ

= 0,

σ
(1),0
zz = p

E(1)

E(1) , σ
(1),0
θz = σ

(1),0
θz = σ

(1),0
rz = σ

(1),0
rz = σ

(1),0
rθ

= σ
(1),0
rθ

= 0 (18)

E(1) , E(2) in (18) represent the elasticity modules of the matrix, nanofiber material,
respectively.
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The First approximation. Taking into consideration the fact that the solution ob-
tained for the zeroth approximations, we assume that the materials of the matrix and
nanofiber are comparatively rijid, therefore, the nonlinear trems can be neglected in
the equations obtained for the first approximation and the term (δ j

n +∇nu(k) j,0)can
be replaced with δ

j
n in the first and subsequent approximations. For the first ap-

proximation, we obtain the equations (19), (20) and (21).

∇i

[
σ
(k)i j,n +σ

(k)in,0
∇nu(k) j,1

]
= 0, k = 1,2 (19)

2ε
(k)
i j = ∇ ju

(k),1
i +∇iu

(k)
j , (20)

σ
(k)
(in) = λ

(k)e(k)δ n
i +2(µ(k)

ε
(k)
(in)), e(k) = ε

(k)
rr + ε

(k)
θθ

+ ε
(k)
zz (21)

The expressions of the physical components of the equations (19) and (20) are
given in Kosker (2002).

Taking into consideration the fact that the solution obtained for the zeroth approxi-
mation, other assumptions and the right-side function to be obtained for the second
approximation would have values small enough to be neglected, governing equa-
tions for the first and second approximation can be defined as follows in terms of
the physical components of the tensors and vectors:

∂σ
(k),1
rr

∂ r
+

1
r

∂σ
(k),1
rθ

∂θ
+

∂σ
(k),1
rz

∂ z
+

1
r

(
σ
(k),1
rr −σ

(k),1
θθ

)
+σ

(k),0
zz

∂ 2u(k),1r

∂ z2 = 0,

∂σ
(k),1
rθ

∂ r
+

1
r

∂σ
(k),1
θθ

∂θ
+

∂σ
(k),1
θz

∂ z
+

2
r

σ
(k),1
rθ

+σ
(k),0
zz

∂ 2u(k),1
θ

∂ z2 = 0,

∂σ
(k),1
rz

∂ r
+

1
r

∂σ
(k),1
θz

∂θ
+

∂σ
(k),1
zz

∂ z
+

1
r

σ
(k),1
rz +σ

(k),0
zz

∂ 2u(k),1z

∂ z2 = 0 (22)

These equations coincided with the 3-dimensional linearized elasticity equations.

The mechanical and geometrical relations for the foregoing approximation are

σ
(k),1
(in) = λ

(k)e(k),1δ
n
i +2µ

(k)
ε
(k),1
(in) ,

e(k),1 = ε
(k),1
(rr) + ε

(k),1
(θθ) + ε

(k),1
(zz) ,

ε
(k),1
rr =

∂u(k),1r

∂ r
, ε

(k),1
θθ

=
∂u(k),1

θ

r∂θ
+

u(k),1r

r
,

ε
(k),1
zz =

∂u(k),1z

∂ z
, ε

(k),1
rθ

=
1
2

(
∂u(k),1r

r∂θ
+

∂u(k),1
θ

∂ r
−

u(k),1
θ

r

)
,
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ε
(k),1
θz =

1
2

(
∂u(k),1

θ

∂ z
+

∂u(k),1z

r∂θ

)
, ε

(k),1
zr =

1
2

(
∂u(k),1z

∂ r
+

∂u(k),1r

∂ z

)
(23)

The contact conditions for the first approximation become

(σ
(1),1
rr −σ

(2),1
rr )

∣∣∣
(R2,θ ,t3)

= 0, (σ
(1),1
rθ
−σ

(2),1
rθ

)
∣∣∣
(R2,θ ,t3)

= 0,

(σ
(1),1
rz −σ

(2),1
rz )

∣∣∣
(R2,θ ,t3)

= (σ
(1),0
zz −σ

(2),0
zz )

dδ (t3)
dt3

cosθ ,

(u(1),1r −u(1),1r )
∣∣∣
(R2,θ ,t3)

= 0, (u(1),1
θ
−u(1),1

θ
)
∣∣∣
(R2,θ ,t3)

= 0,

(u(1),1z −u(1),1z )
∣∣∣
(R2,θ ,t3)

= 0, σ
(1),1
rr

∣∣∣
(R1,θ ,t3)

= 0,

σ
(1),1
rθ

∣∣∣
(R1,θ ,t3)

= 0, σ
(1),1
rz

∣∣∣
(R1,θ ,t3)

= σ
(1),0
zz

dδ (t3)
dt3

cosθ , (24)

To solve the problem (22), (23), and (24), we employ the representations in Guz
(1999)

u(k)
r =

1
r

∂

∂θ
ψ

(k)− ∂ 2

∂ r∂z
χ

(k) ; u(k)
θ

=− ∂

∂ r
ψ

(k)− 1
r

∂ 2

∂θ∂z
χ

(k);

∆1 =
∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2

u(k)z = (λ (k)+µ
(k))−1

(
(λ (k)+2µ

(k))∆
(k)
1 +(µ(k)+σ

(k),0
zz )

∂ 2

∂z2

)
χ
(k) (25)

The functions of ψ(k), χ(k) are determined from the equations(
∆
(k)
1 +

(
ξ
(k)
1

)2 ∂ 2

∂ z2

)
ψ

() = 0;(
∆
(k)
1 +

(
ξ
(k)
2

)2 ∂ 2

∂z2

)(
∆
(k)
1 +

(
ξ
(k)
3

)2 ∂ 2

∂z2

)
χ
(k) = 0

(26)

Where, ξ
(k)
i (k=1,2; i=1,2,3) given in the following equations:

ξ
(k)
1 =

√
µ(k)+σ

(k),0
zz

µ(k) , ξ
(k)
2 =

√
µ(k)+σ

(k),0
zz

µ(k) , ξ
(k)
3 =

√
λ (k)+2µ(k)+σ

(k),0
zz

λ (k)+2µ(k)
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We apply the exponential Fourier transform with respect to z, i.e.

f (s) =
∞∫
−∞

f (z)e−iszdz (27)

to the Eqs. (22)-(26). In this case, we have the governing equations as follows :

∂ σ̄
(k),1
rr

∂ r
+

1
r

∂ σ̄
(k),1
rθ

∂θ
+

is
L

σ̄
(k),1
rz +

1
r

(
σ̄
(k),1
rr − σ̄

(k),1
θθ

)
− s2

L2 σ̄
(k),0
zz u(k),1r = 0,

∂ σ̄
(k),1
rθ

∂ r
+

1
r

∂ σ̄
(k),1
θθ

∂θ
+

is
L

σ̄
(k),1
θz +

2
r

σ̄
(k),1
rθ
− s2

L2 σ̄
(k),0
zz u(k),1

θ
= 0, (28)

∂ σ̄
(k),1
rz

∂ r
+

1
r

∂ σ̄
(k),1
θz

∂θ
+

is
L

σ̄
(k),1
zz +

1
r

σ̄
(k),1
rz − s2

L2 σ̄
(k),0
zz u(k),1z = 0

The strain are obtained as follows :

ε̄
(k),1
rr =

∂ ū(k),1r

∂ r
, ε̄

(k),1
θθ

=
∂ ū(k),1

θ

r∂θ
+

ū(k),1r

r
,

ε̄
(k),1
zz =

is
L

∂u(k),1z

∂ z
, ε

(k),1
rθ

=
1
2

(
∂ ū(k),1r

r∂θ
+

∂ ū(k),1
θ

∂ r
−

ū(k),1
θ

r

)
,

ε̄
(k),1
θz =

1
2

(
∂ ū(k),1z

∂θ
+

is
L

u(k),1
θ

)
, ε

(k),1
zr =

1
2

(
∂ ū(k),1z

∂ r
+

is
L

∂u(k),1r

∂ z

)
(29)

The Constutive equations are given as follows :

σ
(k),1
(in) = (λ (k)e(k),1)δ n

i +2(µ(k)
ε
(k),1
(in) ) ,e(k) = ε

(k)
(11)+ ε

(k)
(22)+ ε

(k)
(33) (30)

The Contact condition are as follows ;

(σ̄
(1),1
rr − σ̄

(2),1
rr )

∣∣∣
(R2,θ ,t3)

= 0, (σ̄
(1),1
rθ
− σ̄

(2),1
rθ

)
∣∣∣
(R2,θ ,t3)

= 0,

(σ̄
(1),1
rz − σ̄

(2),1
rz )

∣∣∣
(R2,θ ,t3)

= (σ
(1),0
zz −σ

(2),0
zz )

is
L

δ̄ (t3)cosθ ,

(ū(1),1r − ū(2),1r )
∣∣∣
(R2,θ ,t3)

= 0, (ū(1),1
θ
− ū(2),1

θ
)
∣∣∣
(R2,θ ,t3)

= 0,

(ū(1),1z − ū(2),1z )
∣∣∣
(R2,θ ,t3)

= 0,
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σ̄
(2),1
rr

∣∣∣
(R1,θ ,t3)

= 0, σ̄
(2),1
rθ

∣∣∣
(R1,θ ,t3)

= 0,

σ̄
(2),1
rz

∣∣∣
(R1,θ ,t3)

= σ
(2),0
zz

is
L

δ̄ (t3)cosθ , (31)

We have the expressions (25) as follows ;

ūr =
1
r

∂

∂θ
ψ̄ − is

L
∂

∂ r
χ̄ ; ūθ =− ∂

∂ r
ψ̄ − is

rL
∂

∂θ
χ̄ ; ∆1 =

∂ 2

∂ r2 +
1
r

∂

∂ r
+

1
r2

∂ 2

∂θ 2

uz = (λ +µ )−1
(
(λ +2µ )∆1−

s2

L2 (µ +σ
0
zz)

)
χ̄ (32)

The equations (26) are as follows ;(
∆1−

s2

L2 (ξ1)
2
)

ψ̄ = 0;
(

∆1−
s2

L2

(
ξ
(k)
2

)2 ∂ 2

∂z2

)(
∆1−

s2

L2 (ξ3)
2
)

χ̄ = 0 (33)

Considering the equations (28) and the contact condition (31) , the equations (33)
turns into the following equations

ψ
(1),1 = A(1)

1 (s)K1(ξ
(1)
1 s

r
L
)sinθ ,

χ
(1),1 = i

[
A(1)

2 (s)K1(ξ
(1)
2 s

r
L
)+A(1)

3 (s)K1(ξ
(1)
3 s

r
L
)
]

cosθ

ψ
(2),1 =

[
A(2)

11 (s)I1(ξ
(2)
1 s

r
L
)+A(2)

12 (s)K1(ξ
(2)
1 s

r
L
)
]

sinθ ,

χ
(2),1 =i

[
A(2)

21 (s)I1(ξ
(2)
2 s

r
L
)+A(2)

22 (s)K1(ξ
(2)
2 s

r
L
)

+A(2)
31 (s)I1(ξ

(2)
3 s

r
L
)+A(2)

32 (s)K1(ξ
(2)
3 s

r
L
)
]
cosθ

(34)

where In(x) are Bessel functions of a purely imaginary argument and Kn(x) are the
Macdonald functions. The derivatives of this function are given as follows ;

I
′
n =

1
2
(In−1+In+1), I

′
0 = I1, K

′
n =
−1
2
(Kn−1+Kn+1), K

′
0 = K1 (35)

The function (34) is employed in (32) and in (29) and substituted the contact con-
dition (30) ; an 9x9 linear equation system is obtained which depends on the un-

knowns A(1)
1 =

Ā(1)
1
L , A(1)

2 =
Ā(1)

2
L2 , Ā(1)

3 =
Ā(1)

3
L2 ......, A(2)

ik =
Ā(2)k

ik
L2 , k=1,2, i=1,2,3.

To solving this equation system, the unknowns
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Ā(1)
1 (s), Ā(1)

2 (s), Ā(1)
3 (s), Ā(2)

11 (s), Ā(2)
12 (s), Ā(2)

21 (s), Ā(2)
22 (s), Ā(2)

31 (s), Ā(2)
32 (s) are

determined. By using the values Ā(1)
1 (s), Ā(1)

2 (s), ......, Ā(2)
32 (s), the expressions

σ̄
(1),1
rr , ..., σ̄

(2),1
zz are obtained. The inverse transform for the stresses, for example,

for the stress σ
(1),1
rr is determined by

σ
(1),1
rr =

1
2π

+∞∫
−∞

σ̄
(1),1
rr eiszds (36)

Equation (4) shows that the function δ (t3) is even, and therefore the expression
(36) can be replaced with

σ
(1),1
rr =

1
π

+∞∫
0

σ̄
(1),1
rr coszds (37)

By similar manner we obtain the expressions to calculate the other sought values.

Thus, by the above-described method we determine completely the values in the
first approximation. Note that the values of the second and subsequent approx-
imations can also be determined by this method. According to the investigations
analyzed in Akbarov and Guz (2004) the main effect of the fiber curving on the dis-
tribution of stresses is manifested within the framework of the first approximation.
The second and subsequent approximations give only some insignificant quantita-
tive corrections to these results. However, to determine of the values of these ap-
proximations requires some very complicated and cumbersome mathematical pro-
cedures. Taking the above stated into account the investigations in the present paper
are made only within the framework of the zeroth and first approximations.

4 Numerical Results and Discussion

First, we consider some remarks on the calculation of the improved integral (37).
Note that under the calculation procedure these improved integrals are replaced by
the corresponding definite ones, i.e. we use the relation

∫ +∞

0 (.)ds ∼=
∫ S∗

0 (.)ds =
N
∑

i=0

∫ Si+1
Si

(.)ds, S0 = 0, SN = S∗. The values of N and S∗ are determined from the

convergence criterion of the improved integrals. Further, for the calculation of
the integrals

∫ Si+1
Si

(.)ds the Gauss integration algorithm is employed. All these
procedures are made automatically in PC by using programmes written in FTN77.

Thus, we consider numerical results regarding the normal stress σττ ,which operate
along the tangent vectors τ to surface S, which constitute the matrix and nanofiber
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intersection surfaces. In view of corresponding symmetry, we consider the distri-
bution of these stresses only for x3 ≥ 0 and 0≤ θ ≤ π (Fig. 1). If ε = 0 (i.e. if the
curving is absent), the stresses σττ coincide with σzz.

We introduce the parameter κ = R2
/

L, bk=h
/

L and assume that ν(1) = ν(2) =

0.3, ε = 0.07, θ = 0, κ = 0.3, E(2)/E(1)=300. To illustrate the influence of the
geometrical nonlinearity on the distribution of the considered stresses we will use
the parameter α = p

/
E(1).

The graphs given in Figs. 2 show the relationships between σττ/p and h/L at
point of the S1 surface in tension (a) and compression (b) for various values of
α at χ3

/
L = 1.0 and m=1. The intermittently lines in these figures represent the

lines obtained in the problem of the single locally curved nanofiber in an infinite
body given in Kosker and Simsek (2006). Here, it can be concluded that when the
thickness of nanofiber material is increased, it is possible to obtain the same result
as those obtained in the case of the single locally curved nanofiber in an infinite
body in the same parameter values.

Figure 2: The relationships between σττ/ |p| and h /L for values α at x3 /L=1.0,
and m=1 (−−−) for a single locally curved nanofiber in an infinite body.

Let us consider the graphs given in Figure 3, which illustrate the distribution of
σττ/ |p| with respect to h/L on the surfaces S2 in tension (a) and compression (b)
for various values of α and m at χ3

/
L = 1.0. It follows from the graphs that as

a result of the geometrical nonlinearity, the absolute values of the stresses σττ/ |p|
in compression (tension) increase (decrease) monotonically with absolute values of
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α . Note that under compression of the considered infinite body we assume that the
selected values of α are smaller than those of critical values αcr, which correspond
to the micro-buckling of the fiber in the matrix in Guz (1990).

The same figures show also the influence of the parameter m on the distribution of
the normal stresses. According to the graphs in Figure 3, absolute maximal values
of the normal stresses σττ/ |p| increase monotonically with m.

In. Fig.4 and 5, relationships between σττ/ |p| and x3 /L on the surfaces S1 and
surfaces S2 in tension (a) and compression (b) are shown for various values of α at
h/L=0.5 value. It follows from the graphs that as a result of the geometrical nonlin-
earity the absolute values of the stresses σττ/ |p| increase (decrease) monotonically
with absolute values of α under compression (tension). Note that under compres-
sion of the considered infinite body we assume that the selected values of α are
smaller than those of αcr. which correspond to the micro-buckling of the fiber in
the matrix in Guz (1990).

Table 1 shows the values of σττ/ |p| for various E(2)
/

E(1), m and α . In this case
the values of σττ/ |p| are calculated under κ = 0.25, χ3/L = 1.0 for m = 0, 1 and 3
respectively. The table shows that σττ/ |p| normal stresses increase with E(2)/E(1)

and m. We assume that α is smaller than its critical values αcr corresponding to
microbukling of the fiber in the matrix in Guz (1990).

m E(2)

E(1)

α = p
E(1)

Tension Compression
5.10−5 5.10−4 3.10−3 5.10−3 −5.10−5 −5.10−4 -3.10−3 -5.10−3

0
300 1.0526 1.05241 1.05134 1.05051 -1.05265 -1.05284 -1.05395 -1.05485
400 1.06444 1.06408 1.06213 1.06062 -1.06452 -1.06489 -1.06697 -1.06871
500 1.07551 1.07498 1.0721 1.06991 -1.07563 -1.07618 -1.0793 -1.08194

1
300 1.06213 1.0622 1.06258 1.06286 -1.06211 1.06204 -1.06159 -1.0612
400 1.0723 1.07225 1.07195 1.07171 -1.07231 -1.07236 -1.07266 -1.07291
500 1.08172 1.08152 1.08049 1.07972 -1.08176 -1.08195 -1.08308 -1.08403

3
300 1.0913 1.09223 1. 09728 1.10113 -1.09109 -1.09014 -1.0847 -1.08013
400 1.09483 1.09578 1.10093 1.10485 -1.09461 -1.09365 -1.08809 -1.08342
500 1.0977 1.09865 1.10379 1.10771 -1.09749 -1.09652 -1.09097 -1.0863

5 Conclusion

In the present paper in the framework of the piecewise homogeneous body model
with the use of the three-dimensional geometrically nonlinear exact equations of
the theory of elasticity, the method is developed for the determination of the
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Fig 3: Distribution of the p)1(
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  with respect to  h /L for various 

)1(Ep  where 

E
(2)

/E
(1)

=300 , 07.0  and 3.0 , under 0m  ; 1m  ; 3m  . 

 

Figure 3: Distribution of the σ
(1)
ττ /p with respect to h/L for various α = p/E(1)

where E(2)/E(1)=300, ε = 0.07 and κ = 0.3, under m = 0; m = 1; m = 3.
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Fig 4: Distribution of the p)2(
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Figure 4: Distribution of the σ
(2)
ττ /p with respect to x3/L for various α = p/E(1)

where E(2)/E(1)=300, ε = 0.07 and κ = 0.3, under m = 0; m = 1; m = 3.



18 Copyright © 2014 Tech Science Press CMC, vol.44, no.1, pp.1-21, 2014

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X3/L

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

1.055

1.06

1.065




(1)/IpI

5.10-4

1.10-2

15.10-2

5.10-5

5.10-3

                 
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X3/L

-1.085

-1.08

-1.075

-1.07

-1.065

-1.06

-1.055

-1.05

-1.045

-1.04

-1.035

-1.03

-1.025

-1.02

-1.015

-1.01




(1)/IpI

-5.10-3

-5.10-4

-1.10-2

-5.10-5

-15.10-2

 

      a              b 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X3/L

1.032

1.034

1.036

1.038

1.04

1.042

1.044

1.046

1.048

1.05

1.052

1.054

1.056

1.058

1.06

1.062

1.064

1.066

1.068

1.07

1.072

1.074

1.076




(1)/IpI

1.10-2

15.10-2

5.10-5

5.10-4

5.10-3

              
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X3/L

-1.095

-1.09

-1.085

-1.08

-1.075

-1.07

-1.065

-1.06

-1.055

-1.05

-1.045

-1.04

-1.035




(1)/IpI

-5.10-3

-5.10-4

-1.10-2

-15.10-2

-5.10-5

 

       a               b 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X3/L

0.984

0.992

1

1.008

1.016

1.024

1.032

1.04

1.048

1.056

1.064

1.072

1.08

1.088

1.096

1.104

1.112

1.12

1.128




(1)/IpI

5.10-3

1.10-2

5.10-4

5.10-5

15.10-2

           
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

X3/L

-1.14

-1.13

-1.12

-1.11

-1.1

-1.09

-1.08

-1.07

-1.06

-1.05

-1.04

-1.03

-1.02

-1.01

-1

-0.99

-0.98




(1)/IpI

-5.10-5

-5.10-4

-5.10-3

-1.10-2

-15.10-2

 

        a                           b 

Fig 5: Distribution of the p)1(


  with respect to Lx3  for various 

)1(Ep  where 

E
(2)

/E
(1)

=300 , 07.0  and 3.0 , under 0m  ; 1m  ; 3m  . 

Figure 5: Distribution of the σ
(1)
ττ /p with respect to x3/L for various α = p/E(1)

where E(2)/E(1)=300, ε = 0.07 and κ = 0.3, under m = 0; m = 1; m = 3.
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stress-strain state in the nanocomposites with unidirectional locally curved and
hollow nanofibers is used for investigation of the normal stresses acting along the
nanofibers. The case is considered where a locally curved and hollow nanofiber
of infinite length is located in an infinite elastic body with a low concentration of
nanofibers. The interaction between the nanofibers is neglected.

The numerical results related normal stresses, which act on the interface, are given.
From the analyses of the numerical results are derived the following conclusions:

1. when the thickness between the hollow and nanofiber goes to 0 as a limit , it
was obtained the same normal stresses values in the locally curved nanofiber
in an nanocomposite material in same parameter values.

2. As a result of the geometrical nonlinearity the absolute values of normal
stresses σττ/ |p|, increase (decrease) in compression (tension) with |α|.

3. The absolute maximum values of the considered stresses increase with
monotically with m.

4. An increase in E(2)/E(1) results in an increase in the absolute values of the
normal stresses on the Hollow and nanofiber interface.

The locally curvature of nanofiber is one of characteristics of nanocomposites as
noted in Guz, Rushchitsky and Guz (2007), Guz and Chekhov (2007), Xiao, Zhang,
Zarudi (2007). These results are also important for estimating the adhesion stress
between the nanofibers and a polymer matrix. In this case, it is necessary to take
into account the restrictions noted in Guz, Rushchitsky and Guz (2007).

The numerical results obtained agree with well-known mechanical consideration
and, in some particular cases, coincide with known results.
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