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Dynamics of the Moving Load Acting on the Hydro-elastic
System Consisting of the Elastic Plate, Compressible

Viscous Fluid and Rigid Wall

S.D. Akbarov1,2 and M.I. Ismailov3

Abstract: The subject of the paper is the study of the dynamics of the moving
load acting on the hydro-elastic system consisting of the elastic plate, compressible
viscous fluid and rigid wall. Under this study the motion of the plate is described
by linear elastodynamics, and the motion of the compressible viscous fluid is de-
scribed by the linearized Navier-Stokes equations. Numerical results are obtained
for the case where the material of the plate is steel, but the fluid material is Glyc-
erin. According to these results, corresponding conclusions related to the influence
of the problem parameters, such as fluid viscosity, plate thickness, fluid depth, fluid
compressibility and initial stresses on the inter-phase normal stress and normal and
tangent velocities of the fluid caused by the load which moves with constant veloc-
ity, are made. In particular, it is established that the influence of the fluid viscosity
of the aforementioned quantities becomes more considerable under lower velocities
of the moving load. Moreover, it is established that there exists a critical velocity
of the moving load under which a resonance type event takes place.

Keywords: Moving load, compressible viscous fluid, metal elastic plate, critical
velocity, hydro-elastic system.

1 Introduction

Investigations of the dynamics of the hydro-elastic system consisting of the
plate and fluid have great significance in the theoretical and application sense in
aerospace, nuclear, naval, chemical and biological engineering. The first attempt in
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this field was made in a paper by Lamb (1921) in which vibrations of a circular elas-
tic “baffled” plate in contact with still water were considered. It was assumed that
this plate is clamped all around and placed in a matching circular aperture within an
infinite rigid plane wall. The investigations were made by the use of the so-called
“non-dimensional added virtual mass incremental” (NAVMI) method, according to
which, it is assumed that the modes of vibration of the plate in contact with still
water are the same as those in a vacuum, and the natural frequency is determined
by the use of the Rayleigh quotient. In this case it is supposed that the squares of
the natural frequencies of the plate are equal to the ratio between the maximum po-
tential energy of the plate and the sum of the kinetic energies of both the plate and
the fluid. Later this method was employed in many related investigations such as
in papers by Kwak and Kim (1991), Fu and Price (1987), Zhao and Yu (2012) and
many others listed in these papers. Up to now investigations without employing
the NAVMI method have also been carried out. For instance, in a paper by Tubaldi
and Armabili (2013) the vibration and stability of the rectangular plate immersed
in axial liquid flow was studied without employing the NAVMI method, and the
Galerkin method was applied to determine the expression of the flow perturbation
potential. Then the Rayleigh-Ritz method was used to discretize the system.

Investigations carried out in a paper by Charman and Sorokin (2005) and others
listed therein were also made without employing the NAVMI method. Note that in
this paper the forced bending vibration of an infinite plate in contact with compress-
ible (acoustic) inviscid fluid, where this fluid occupies a half-space, was considered.
This paper gives asymptotic analyses of the sound and vibration in the metal plate
and compressible inviscid fluid system.

Another aspect of investigations related to plate-fluid interaction regards wave
propagation problems. Investigations carried out in a paper by Sorokin and Chubin-
skij (2008) and others listed therein provide examples of such problems. It should
be noted that before the paper by Sorokin and Chubinskij (2008) the problems of
time harmonic linear wave propagation in elastic structure-fluid systems were in-
vestigated within the framework of the theory of compressible inviscid fluid. A
list and review of these studies are given in the aforementioned paper by Sorokin
and Chubinskij (2008). At the same time, the role of fluid viscosity in wave prop-
agation in the plate-fluid system was first investigated in the paper by Sorokin and
Chubinskij (2008). However, in this paper and all the papers indicated above, the
equations of motion of the plate were written within the scope of the approximate
plate theories by the use of various types of hypotheses such as the Kirchhoff hy-
potheses for plates. Consequently, the use of the approximate plate theories in
these investigations decreases the analyzed range of wave modes and their cor-
responding dispersion curves, significantly. It is evident that in many cases (for
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instance, in the cases where the wave length is less significant than the thickness
of the plate), more accurate results in the qualitative and quantitative sense, can be
obtained by employing the exact equations for describing the plate motion. The
use of the exact equations of plate motion are taken into consideration in a paper
by Bagno et al. (1994) and others, a review of which is given in a survey paper by
Bagno and Guz (1997). Note that in these papers, in studying wave propagation
in pre-stressed plate + compressible viscous fluid systems, the motion of the plate
was written within the scope of the so-called three-dimensional linearized theory of
elastic waves in initially stressed bodies. However, the motion of the viscous fluid
was written within the scope of the linearized Navier-Stokes equations. Detailed
consideration of related results was made in the monograph by Guz (2009).

Until recently, within this framework, there has been no investigation related to the
forced vibration of the pre-strained plate + compressible viscous fluid system. The
first attempt in this field was made in a work by Akbarov (2013b) in which the fre-
quency response of the system consisting of the pre-stressed metal elastic plate and
half-plane occupied with compressible viscous fluid was studied. The subsequent
step in this field was made in a paper by Akbarov and Ismailov (2014a) the subject
of which was forced vibrations of a system consisting of a pre-stressed highly elas-
tic plate under compressible viscous fluid loading. Moreover, in another paper by
Akbarov and Ismailov (2014b) the foregoing investigations were developed for the
case where the plate material is viscoelastic. It was assumed that the viscoelasticity
is described by fractional exponential operators.

A further considerable aspect of investigations regarding the plate-fluid systems is
the dynamic response analysis of plate-fluid systems induced by a moving load.
Results of these investigations are applied for construction of floating bridges and
for determination of their efficiency. An example of such investigations can be
seen in studies carried out in papers by Wu and Shih (1998), Fu et al. (2005), Wang
et al. (2009) and others listed therein. However in these investigations the fluid
reaction to the plate (i.e. to the floating bridge) is taken into consideration without
solution of the equations of the fluid motion. Namely, in these works the so-called
hydrostatic force (R) caused by the plate-fluid interaction is determined through
the linear spring model, i.e. through the relation R = −kw, where w is the vertical
displacement of the plate (i.e. the floating bridge) and k is the spring constant.
Consequently, in the foregoing investigations, the existence of the fluid is taken
into consideration only through this spring constant. It is evident that the approach
employed in works by Wu and Shih (1998), Fu et al. (2005) and Wang et al.
(2009) is a very approximate one and cannot answer questions about how the fluid
viscosity, fluid depth, fluid compressibility, plate thickness and moving velocity of
the external force act on the “hydrostatic force” and fluid flow velocities. To find
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the answers to these questions it is necessary to solve the corresponding coupled
fluid-plate interaction problems within the scope of the exact linearized equations
described to the plate and fluid motions. In the present paper the first attempt
is made for solution to the problems related to the dynamics of the moving load
acting on a system consisting of the metal elastic plate, compressible viscous fluid
and a rigid wall. The motion of the plate is described by linear elastodynamics, and
the motion of the compressible viscous fluid is described by the linearized Navier-
Stokes equations.

2 Formulation of the problem

Consider a system consisting of the elastic plate-layer, barotropic compressible
Newtonian viscous fluid and rigid wall (Fig. 1). We associate the coordinate system
Ox1x2x3 with the plate and the position of the points of the constituents we deter-
mine in this coordinate system. We consider a motion of the plate-layer in the case
where the lineal-located force which moves with the constant velocity V acts on its
free face plane. Assume that the plate occupies the region {|x1| <∞,−h < x2 < 0},
but the fluid occupies the region {|x1| < ∞,−hd < x2 <−h}.

Figure 1: The sketch of the hydro-elastic system under consideration .

Thus, according to the foregoing statement, we can write the following field equa-
tions of the linear elastodynamics under the plane-strain state in the Ox1x2 plane.

∂σ11
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Note that in Eq. (1) conventional notation is used.

Now, we consider the field equations of motion of the Newtonian compressible
viscous fluid: the density, viscosity constants and pressure which are denoted by
the upper index (1). Thus, according to Guz (2009), the linearized Navier-Stokes
and other field equations for the fluid are:

ρ
(1)
0

∂vi

∂ t
−µ

(1) ∂vi

∂x j∂x j
+

∂ p(1)

∂xi
−(λ (1)+µ

(1))
∂ 2v j

∂x j∂xi
= 0,

∂ρ(1)

∂ t
+ρ

(1)
0

∂v j

∂x j
= 0,

Ti j =
(
−p(1)+λ

(1)
θ

)
δi j +2µ

(1)ei j, θ =
∂v1

∂x1
+

∂v2

∂x2
,

ei j =
1
2

(
∂vi

∂x j
+

∂v j

∂xi

)
. a2

0 =
∂ p(1)

∂ρ(1) . (2)

where ρ
(1)
0 is the fluid density before perturbation. The other notation used in Eq.

(2) is also conventional.

Also, according to Guz (2009), the solution of the system of equations in (2) for
2D plane problems is reduced to finding the two potentials φ and ψ which are
determined from the following equations:[(

1+
λ (1)+2µ(1)

a2
0ρ

(1)
0

∂

∂ t

)
∆− 1

a2
0

∂ 2

∂ t2

]
φ = 0,

(
ν
(1)

∆− ∂

∂ t

)
ψ = 0, ∆ =

∂ 2

∂x2
1
+

∂ 2

∂x2
2
, (3)

where ν(1) is the kinematic viscosity, i.e. ν(1) = µ(1)
/

ρ
(1)
0 .

The velocities v1 and v2 and the pressure p(1) are expressed by the potentials φ and
ψ through the expressions

v=1
∂φ

∂x1
+

∂ψ

∂x2
, v=2

∂φ

∂x2
− ∂ψ

∂x1
, p(1) = ρ

(1)
0

(
λ (1)+2µ(1)

ρ
(1)
0

∆− ∂

∂ t

)
φ . (4)

Assuming that

p(1) =−(T11 +T22 +T33)
/

3, (5)

we obtain:

λ
(1) =−2

3
µ
(1). (6)
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Moreover, it is assumed that the following boundary, contact and impermeability
conditions are satisfied:

σ21|x2=0 = 0, σ22|x2=0 =−P0δ (x1−Vt),
∂u1

∂ t

∣∣∣∣
x2=−h

= v1|x2=−h ,

∂u2

∂ t

∣∣∣∣
x2=−h

= v2|x2=−h , σ21|x2=−h = T21|x2=−h ,

σ22|x2=−h = T22|x2=−h , v1|x2=−h−hd
= 0, v2|x2=−h−hd

= 0, (7)

where δ (·) is the Dirac delta function.

This completes the formulation of the problem.

3 Method of solution

For the solution of this problem, we use the moving coordinate system x′1 = x1−Vt,
x′2 = x2 (below we will omit the upper prime on the new moving coordinates) and,
replacing the derivatives ∂ (•)

/
∂ t and ∂ 2(•)

/
∂ t2 with −V ∂

∂x1
and V 2 ∂ 2

∂x2
1
, respec-

tively, we obtain the corresponding equations and boundary and contact conditions
for the sought values in the moving coordinate system. For the solution to these
equations, we employ the exponential Fourier transformation with respect to the x1
coordinate

fF(s,x2) =

+∞∫
−∞

f (x1,x2)e−isx1dx1 (8)

to these equations. The originals of the sought values can be found through the
integrals:

1
2π

+∞∫
−∞

{u1F ;u2F ;σ11F ;σ12F ;σ22F ;v1F ;v2F ;T11F ;T12F ; T22F}eisx1ds (9)

Before employing the Fourier transformation (8) we introduce the dimensionless
coordinates and dimensionless transformation parameter

x̄1 = x1
/

h, x̄2 = x2
/

h, s̄ = sh. (10)

Below we will omit the over-bar on the symbols in (10). Moreover, we will also
use the notation

V ′ =V
/

h, ν
(1) = µ

(1)
/

ρ
(1)
0 . (11)
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First, we consider the solution of the equations related to the Fourier transformation
of the quantities related to the plate-layer, i.e. the solution of the equations which
are obtained from the equations (1) and (9). Thus, substituting the expressions (9)
into the equations (1), and doing some mathematical manipulations we obtain the
following equations for u1F and u2F .

Au1F −B
du2F

dx2
+

d2u1F

dx2
2

= 0, Du2F +B
du1F

dx2
+G

d2u2F

dx2
2

= 0, (12)

where

A = X2− s2(λ/µ +2), B = s(λ/µ +1), D = s2(X2−1),

G = λ/µ +2,X2 =V ′2h2/c2
2 , c2 =

√
µ
/

ρ . (13)

Introducing the notation

A0 =
AG+B2 +D

G
, B0 =

BD
G

, k1 =

√√√√−A0

2
+

√
A2

0
4
−B0 ,

k2 =

√√√√−A0

2
−

√
A2

0
4
−B0, (14)

we can write the solution to the equation (12) as follows:

u2F = Z1ek1x2 +Z2e−k1x2 +Z3ek2x2 +Z4e−k2x2 ,

u1F = Z1a1ek1x2 +Z2a2e−k1x2 +Z3a3ek2x2 +Z4a4e−k2x2 , (15)

where

a1 =
−D−Gk2

1

Bk2
1

, a2 =−a1, a3 =
−D−Gk2

2

Bk2
2

, a4 =−a3. (16)

Using the equations (1) and (15) we also write expressions for the Fourier transfor-
mations σ21F and σ22F of the corresponding stresses which enter the boundary and
contact conditions in (7).

σ21F =Z1 (ω2112k1a1− sω2121)ek1x2 +Z2 (−ω2112k1a2− sω2121)e−k1x2

+Z3 (ω2112k2a3− sω2121)ek2x2 +Z4 (−ω2112k2a3− sω2121)e−k2x2 ,

σ22F =Z1 (sω2211a1 + k1ω2222)ek1x2 +Z2 (sω2211a2− k1ω2222)e−k1x2

+Z3 (sω2211a3 + k2ω2222)ek2x2 +Z2 (sω2211a4− k2ω2222)e−k2x2 .
(17)
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This completes consideration of the determination of the Fourier transformation of
the values related to the plate-layer. Now we consider determination of the Fourier
transformations of the quantities related to the fluid flow. First, we consider the
determination of φF and ψF from the Fourier transformation of the equations in
(3). Taking the relation

φF =−sV ′h2
φ̃F , ψF =−sV ′h2

ψ̃F (18)

into account, it can be written that

d2φ̃F

dx2
2
+ s2

(
Ω2

1

1− i4sΩ2
1

/
(3N2

w)
−1

)
φ̃F = 0,

d2ψ̃F

dx2
2
−
(
s2− isN2

w
)

ψ̃F = 0, (19)

where

Ω1 =
V ′h
a0

, N2
w =

V ′h2

ν(1) . (20)

The dimensionless number Nw in (20) can be taken as a Womersley number and
characterizes the influence of the fluid viscosity on the mechanical behavior of the
system under consideration. For pure hydrodynamic problems, when the Womer-
sley number is large (around 10 or greater), the flow is dominated by oscillatory
inertial forces. When the Womersley number is low, viscous forces tend to domi-
nate the flow. However, for hydro-elastodynamic problems the “large” and “low”
limits for the Womersley number can change significantly.

The dimensionless frequency Ω1 in (20) can be taken as the parameter through
which the influence of the compressibility of the fluid on the mechanical behavior
of the system under consideration can be characterized.

Thus, taking the relation (6) into consideration, the solutions to the equations in
(19) are found as follows:

φ̃F = Z5eδ1x2 +Z7e−δ1x2 , ψ̃F = Z6eγ1x2 +Z8e−γ1x2 , (21)

where

δ1 = s2

√
1−

Ω2
1

1− i4sΩ2
1

/
(3N2

w)
, γ1 =

√
s2− isN2

w. (22)

Using (21) and (18) we obtain the following expressions for the velocities, pressure
and stresses of the fluid from the Fourier transformations of the Eqs. (2) and (3).

v1F =−sV ′ h
[
−Z5seδ1x2−Z7se−δ1x2 +Z6eγ1x2 +Z8e−γ1x2

]
,
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v2F =−sV ′ h
[
Z5δ1eδ1x2−Z7δ1e−δ1x2−Z6seγ1x2−Z8se−γ1x2

]
,

T22F =µ
(1)(−sV ′)

[
Z5

(
4
3

δ
2
1 +

2
3

s2−R0

)
eδ1x2 +Z7

(
4
3

δ
2
1 +

2
3

s2−R0

)
e−δ1x2

+Z6

(
−sγ1−

2
3

sγ1

)
eγ1x2 +Z8

(
sγ1 +

2
3

sγ1

)
e−γ1x2

]
,

T21F =−µ
(1)(−sV ′)

[
2sδ1Z5eδ1x2−2sδ1Z7e−δ1x2

+(s2 + γ
2
1 )Z6eγ1x2 +(s2 + γ

2
1 )Z8e−γ1x2

]
p(1)F = µ

(1)(−sV ′)R0

(
Z5eδ1x2 +Z7e−δ1x2

)
, (23)

where

R0 =−
4
3

s2Ω2
1

1− i4sΩ2
1

/
(3N2

w)
+ isN2

w. (24)

Substituting expressions (15), (17) and (23) into the boundary and contact con-
ditions in (7) we obtain a system of equations with respect to the unknowns Z1,
Z2,. . . ,Z8 through which the sought values are determined. These equations can be
expressed as follows:(

σ21F
/

µ
)∣∣

x2=0 = Z1α11 +Z2α12 +Z3α13 +Z4α14 = 0,(
σ22F

/
µ
)∣∣

x2=0 = Z1α21 +Z2α22 +Z3α23 +Z4α24 =−P0
/

µ,

∂u1F

∂ t

∣∣∣∣
x2=−h

− v1F |x2=−h =− isV ′(Z1α31 +Z2α32 +Z3α33 +Z4α34)−

+ sV ′h(Z5α35 +Z6α36 +Z7α37 +Z8α38) = 0,

∂u2F

∂ t

∣∣∣∣
x2=−h

− v2F |x2=−h =− isV ′(Z1α41 +Z2α42 +Z3α43 +Z4α44)−

+ sV ′h(Z5α45 +Z6α46 +Z7α47 +Z8α48) = 0,(
σ21
/

µ
)∣∣

x2=−h−
(
T21
/

µ
)∣∣

x2=−h =Z1α51 +Z2α52 +Z3α53 +Z4α54+

Ms(Z5α55 +Z6α56 +Z7α57 +Z8α58) = 0,(
σ22
/

µ
)∣∣

x2=−h−
(
T22
/

µ
)∣∣

x2=−h =Z1α61 +Z2α62 +Z3α63 +Z4α64+

Ms(Z5α65 +Z6α66 +Z7α67 +Z8α68) = 0,

v1F |x2=−h−hd
=−sV ′h(Z5α75 +Z6α76 +Z7α77 +Z8α78) = 0,
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v2F |x2=−h−hd
=−sV ′h(Z5α85 +Z6α86 +Z7α87 +Z8α88) = 0 (25)

where

M =
µ(1)V ′

µh
. (26)

The expressions of the coefficients αnm(n;m = 1,2, ...,8) can be easily determined
from the Eqs. (15), (17) and (23), and therefore they are not given here. Thus, the
unknowns Z1,Z2, ...,Z8 in the Eq. (25) can be determined via the formula

Zk =
det
∥∥β k

nm

∥∥
det‖αnm‖

. (27)

Note that the matrix (β k
nm) is obtained from the matrix (αnm) by replacing the k−th

column of the latter with the column (0,−P0/µ,0,0,0,0,0,0)T .

Now we consider calculation of the integrals in Eq. (9). For this purpose, firstly we
consider the following reasoning. If we take the Fourier transformation parameter
s as the wavenumber, then the equation

det‖αnm‖= 0, n;m = 1,2, ...,8, (28)

coincides with the dispersion equation of the waves with the velocity V propagated
in the direction of the Ox1 axis in the system under consideration. It should be
noted that, according to well-known physico-mechanical considerations, the equa-
tion (28) must have complex roots only for the system under consideration. This
character of the roots is caused by the viscosity of the fluid. However, as usual,
the viscosity of the Newtonian fluids is insignificant in the qualitative sense and
therefore in some cases within the scope of the necessity of the accuracy of the PC
calculation, the equation (28) may have “real roots”. Consequently, these roots be-
come singular points of the integrated expressions in the integrals (9) and for such
cases the algorithm for calculation was discussed in papers by Akbarov (2013a),
Akbarov et al. (2013), Akbarov and Ilhan (2013), and other works listed therein.
Moreover, the algorithm was also detailed in a monograph by Akbarov (2015), ac-
cording to which, in these cases the wavenumber integrals (9) may be evaluated
along the Sommerfeld contour. However, in the present investigations under calcu-
lation of the integrals in (9) the aforementioned “real roots” cases did not arise and
according to expression (9), the sought values are determined through the following
relation:

{u1;u2;σ11;σ12;σ22;v1;v2;T11;T12;T22}=
1

2π
Re

 +∞∫
−∞

{u1F ;u2F ;σ11F ;

σ12F ;σ22F ;v1F ;v2F ;T11F ;T12F ; T22F}eisx1ds
]
.

(29)
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The algorithms employed for calculation of the integrals in the form (29) will be
discussed in the next section. Note that after some obvious changes the foregoing
solution method can also be applied for the case where the fluid is inviscid.

4 Numerical results and discussions

It follows from the foregoing discussions that the problem under consideration is
characterized through the dimensionless parameters Ω1 and Nw, which are deter-
mined by the expressions in (20) and M which is determined by the expression (26)
and λ

/
µ , λ and µ are the mechanical constants which enter the expression of the

elastic relations in Eq. (1). Note that the case where Ω1 = 0 corresponds to the case
where the fluid is incompressible, but the case where 1

/
Nw = 0 corresponds to the

case where the fluid is inviscid.

In the numerical investigation, according to Guz (2004, 2009), and Guz and
Makhort (2000), we assume that the material of the plate-layer is Steel with
mechanical constants µ = 79 × 109Pa, λ = 94.4 × 109Pa, and density ρ =
1160kg

/
m3, but the material of the fluid is Glycerin with viscosity coefficient

µ(1) = 1,393kg
/
(m · s), density ρ = 1260kg

/
m3and sound speed a0 = 1927m/s.

We also introduce the notation c2 =
√

µ
/

ρ which is the shear wave propagation
velocity in the layer material in the case where the initial strains are absent.

Thus, after selection of these materials, the foregoing dimensionless parameters
can be determined through the three quantities: h (the thickness of the plate-layer),
hd (the thickness of the fluid strip) and V (the velocity of the external moving
load). One of the main parameters for the problem under consideration is hd

/
h.

Namely, through this parameter we will estimate the influence of the fluid depth on
the dynamic behavior of the hydro-elastic system. Numerical results which will be
discussed below relate to the normal stress acting on the interface plane between
the fluid and plate-layer and to the velocities of the fluid (or of the plate-layer) on
the interface plane in the directions of the Ox1 and Ox2 axes (Fig. 1). Discussions
related to the results illustrating the influence of the fluid viscosity and the fluid
compressibility on the studied quantities will be made separately. However we
begin discussions of the numerical results with consideration of the calculation
algorithm and its convergence.

4.1 Convergence of the numerical algorithm

Under obtaining numerical results, which will be discussed below, the integral∫ +∞

−∞
(•)ds in the expression (29) is replaced with

∫ +S∗1
−S∗1

(•)ds, i.e. it is assumed that∫ +∞

−∞
(•)ds ≈

∫ +S∗1
−S∗1

(•)ds. The values of S∗1 are determined from the convergence
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criterion of the calculated integrals in (29). The results obtained for various prob-
lem parameters show that the very disadvantaged case, in the convergence sense,
appears for the thinner plate under low velocity of the moving load and under small
values of the ratio hd

/
h. Therefore, for illustration of this convergence we con-

sider the case where h = 0.01m, 4hz≤V ′ ≤ 2000hz, hd
/

h = 2 and x1/h =−20.0.
Under calculation of the related integrals, the interval [−S∗1,+S∗1] is divided into a
certain number of shorter intervals. Let us denote this number through 2N. Con-
sequently, the length of these shorter intervals is S∗1

/
N and in each of these shorter

intervals the integration is made by the use of the Gauss integration algorithm with
ten sample points. Consequently, convergence of the numerical integration can be
estimated with respect to the values of S∗1 and N.

Thus, we consider examples of the convergence of the numerical results with re-
spect to the aforementioned number N in the case where S∗1 = 5. Analyze the graphs
given in Fig.2 which illustrate the response of the dimensionless stress T22h/P0
(Fig. 2a) and dimensionless velocities v2µh/(P0c2) (Fig. 2b) and v1µh/(P0c2)
(Fig. 2c) to the moving load velocity V/h (= V ′) under x1/h = −20.0. Note that
under construction of these graphs (as well as all graphs which will be discussed
below) the values of the velocities and stress are calculated on the interface plane
(i.e. at x2 =−h) between the fluid and the plate.

It follows from Fig. 2 that the values of the velocities and stress approach a certain
asymptote with the number N. In other words, the numerical results obtained for
the studied quantities approach a certain limit with the number N and that after a
certain value of N (denote it by N∗) the numerical results obtained for the various
N > N∗ coincide with each other with accuracy 10−5− 10−6. It should be noted
that the value of N∗ depends not only on the velocity of the moving load, but also
on the other problem parameters and mainly on h and hd

/
h. For instance, for the

case under consideration it can be taken that N∗ = 2000.

Consider also the graphs which illustrate the convergence of the numerical results
with respect to the integrating interval, i.e. with respect to the values of S∗1. These
graphs are given in Fig. 3a for the dimensionless stress T22h/P0, and in Figs. 3b
and 3c for the dimensionless velocities v2µh/(P0c2) and v1µh/(P0c2), respectively.
Under construction of these graphs it is assumed that N = 2000, hd

/
h = 2 and

x1/h =−20.0.

It follows from these graphs that the numerical results approach a certain asymptote
with S∗1, and with the velocity V ′, the convergence of the numerical results with
respect to S∗1 requires an increase in the values of S∗1.

In obtaining the numerical results, which will be discussed below, all the foregoing
particularities relating to the convergence of the numerical results are taken into
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(a)

(b)

(c)
Figure 2: The illustration of the convergence of the numerical results related to
T22h/P0 (a), v2µh/(P0c2)(b) and v1µh/(P0c2)(c) with respect to number N, which
are obtained in the case where h = 0.01m, hd/h = 2, S∗1 = 5 and x1/h =−20.0.
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(a) (b)

(c)

Figure 3: The illustration of the convergence of the numerical results related to
T22h/P0 (a), v2µh/(P0c2)(b) and v1µh/(P0c2)(c) with respect to number S∗1which
are obtained in the case where h = 0.01m, hd/h = 2, N = 2000 and x1/h =−20.0

consideration and it is established that the case where S∗1 = 5 and N = 2000 is
quite sufficient for obtaining verified results. Therefore in obtaining the numerical
results presented in the present paper we assume that S∗1 = 5 and N = 2000. At
the same time, it should be noted that the foregoing convergence results can also
be taken as validation of the algorithm and programs used. Unfortunately, we have
not found any related results of other authors in order to compare with the present
ones. Therefore validation of the present results can be proven with the convergence
of the numerical results and with the consistency of the results with mechanical
considerations.
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(a) (b)

(c)

Figure 4: The distribution of the stress T22h/P0 with respect to the dimension-
less moving coordinate x1/h under h = 0.01m, hd/h = 2 in the cases where
V/h = 50(1/s) (a), 100 (1/s) (b) and 500 (1/s) (c)

4.2 The influence of the fluid viscosity on the distribution of the interface stress
and velocities

First we investigate the distribution of the studied quantities T22h/P0, v2µh/(P0c2)
and v1µh/(P0c2) on the interface plane with respect to the dimensionless coordinate
x1
/

h. We recall that here the coordinate x1 is determined with respect to the moving
coordinate system and, according to the coordinate transformation x′1 = x1−Vt,
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x′2 = x2 which was introduced in the beginning of the previous section (the upper
prime over the moving coordinates was omitted), the change in the values of x1

/
h

(i.e. of x′1
/

h) can also be considered as a change in the values of the dimensionless
time Vt/h. Consequently, the distribution of the foregoing quantities with respect
to the moving dimensionless coordinate x1

/
h can also be considered as the change

at some fixed point in the frame of the fixed coordinate system with respect to the
dimensionless time Vt/h.

According to the foregoing reason and to the fact that in the hydro-elastic system
which contains a viscous fluid, there exists a phase shifting between the external
forces and responses as well as between the velocities and stresses. Thus, we can
make the following prediction: if the distribution of some quantities obtained for
the hydro-elastic system containing the inviscid fluid with respect to the dimen-
sionless moving coordinate x1

/
h is symmetric (or asymmetric) with respect to the

point x1
/

h = 0, then this symmetry (or asymmetry) must be violated for the same
distribution obtained for the same hydro-elastic system containing the correspond-
ing viscous fluid. It is evident that this violation will become more considerable
with decreasing values of the dimensionless parameter Nw (20) (Womersley num-
ber). Consequently, if we increase the values of the plate thickness h for a fixed
velocity of the moving load, or if we increase the velocity of the moving load for
a fixed plate thickness then the aforementioned symmetry or asymmetry violation
must decrease.

Thus, taking the foregoing mechanical considerations into account, consider the
numerical results related to the distribution of the studied quantities with respect
to the dimensionless moving coordinate x1

/
h. Graphs of these distributions are

given in Figs. 4 (for T22h/P0), 5 (for v2µh/(P0c2)), 6 (for v1µh/(P0c2) in the
viscous fluid case) and 7 (also for v1µh/(P0c2) in the inviscid fluid case). Note that
these graphs are constructed in the case where h = 0.01m for various values of the
ratio hd

/
h and for various values of the velocity V

/
h. The graphs grouped by the

letters a, b and c relate to the cases where V
/

h =50 (1/s), 100 (1/s) and 500 (1/s),
respectively. In Figs. 4 and 5 the results related to the viscous and corresponding
inviscid fluid cases are given simultaneously. Here and below under "inviscid fluid
case" ("viscous fluid case") we will understand the case where the selected fluid
(i.e. Glycerin) is modeled as inviscid (viscous). However, the results obtained for
v1µh/(P0c2) in the viscous fluid case are incompatible with those obtained in the
inviscid fluid case. Therefore the results obtained for v1µh/(P0c2) in the viscous
and inviscid fluid cases are given separately in Figs. 6 and 7, respectively. This
incompatibility can be explained with the disappearance of the contact condition
∂u1
/

∂ t
∣∣
x2=−h = v1|x2=−h and the impermeability condition v1|x2=−h−hd

= 0 in (7)
for the inviscid fluid case.
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(a) (b)

(c)

Figure 5: The distribution of the velocity v2µh/(P0c2) with respect to the dimen-
sionless moving coordinate x1/h under h = 0.01m, hd/h = 2 in the cases where
V/h = 50(1/s) (a), 100 (1/s) (b) and 500 (1/s) (c)

It follows from the analysis of the graphs that in the inviscid fluid case the dis-
tribution of the stress T22h/P0 and velocity v1µh/(P0c2) with respect to x1

/
h is

symmetric, but the same distribution of the velocity v2µh/(P0c2) is asymmetric
with respect to the point x1

/
h = 0. However, this symmetry and asymmetry is vio-

lated in the viscous fluid case. The absolute maximum values of the stress T22h/P0
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(a) (b)

(c)

Figure 6: The distribution of the velocity v1µh/(P0c2) with respect to the di-
mensionless moving coordinate x1/h for the viscous fluid case under h = 0.01m,
hd/h = 2 in the cases where V/h = 50(1/s) (a), 100 (1/s) (b) and 500 (1/s) (c)

and velocity v2µh/(P0c2) in the viscous fluid case appear behind the moving load,
i.e. at x1

/
h < 0, but absolute maximum values of the velocity v1µh/(P0c2) appear

at point x1
/

h = 0. The values of the stress T22h/P0 decrease but the values of the
velocity v2µh/(P0c2) increase with hd

/
h. At the same time, the values of the ve-

locity v1µh/(P0c2) in the viscous fluid case also increase, but in the inviscid fluid
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(a) (b)

(c)

Figure 7: The distribution of the velocity v1µh/(P0c2) with respect to the di-
mensionless moving coordinate x1/h for the inviscid fluid case under h = 0.01m,
hd/h = 2 in the cases where V/h = 50(1/s) (a), 100 (1/s) (b) and 500 (1/s) (c)

case, they decrease with the ratio hd
/

h. Moreover, the results show that the fluid
viscosity causes the absolute values of the stress T22h/P0 to increase, but the ab-
solute values of the velocity v2µh/(P0c2) to decrease. However, the values of the
velocity v1µh/(P0c2) obtained in the viscous fluid case are not comparable with the
corresponding ones obtained in the inviscid fluid case. Consequently, according to
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(a) (b)

(c)

Figure 8: The influence of the plate thickness h on the distribution of the stress
T22h/P0(a) and velocities v2µh/(P0c2) (b) and v1µh/(P0c2) (c) with respect to
the dimensionless moving coordinate x1/h in the case where V/h = 100(1/s)and
hd/h = 2

the results given in Figs. 6 and 7, we can conclude that the distribution of the ve-
locity v1µh/(P0c2) cannot be described within the scope of the inviscid fluid model
either in the quantitative sense or in the qualitative sense.

The analysis of the results given in the figures indicated by the letters a, b and c
allow us to conclude that the difference between the results obtained for the stress
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Figure 9: The distribution of the displacement u2µh/(P0c2) with respect to the
dimensionless moving coordinate x1/h under h = 0.01m for various values of hd/h
in the cases where V/h = 100(1/s)

T22h/P0 and for the velocity v2µh/(P0c2) in the viscous and inviscid fluid cases
decreases with the velocity V

/
h of the moving load. At the same time, this analysis

shows that the attenuation of the investigated quantities with
∣∣x1
/

h
∣∣ takes place

more rapidly and the width of the action area of the moving load decreases with
increasing V

/
h.

Now we investigate how the increase of the plate thickness acts on the char-
acter of the foregoing distribution under fixed V

/
h. For this purpose we con-

sider the graphs given in Fig. 8 which show the distribution of T22h/P0(Fig.8a),
v2µh/(P0c2)(Fig.8b) and v1µh/(P0c2)(Fig. 8c) with respect to x1

/
h for various

values of the plate thickness h in the case where V
/

h = 100(1/s) and hd
/

h = 2.
It follows from these graphs that the influence of the fluid viscosity on the distri-
butions under considerations weakens with the plate thickness h. Consequently,
all the predictions based on the mechanical considerations made in the first two
paragraphs of the present subsection are proven with the concrete numerical results
given in Figs. 4 - 8.

We again note that the foregoing results can also be estimated as the change of the
studied quantities with respect to time at a certain fixed point of the interface plane.
For instance, we consider a point which is at a distance L from the origin of the
fixed coordinate system. According to the relation x1 = L−Vt = 0, we determine
the time t∗= L

/
V at which the moving load achieves this point. Consequently, the



96 Copyright © 2015 Tech Science Press CMC, vol.45, no.2, pp.75-105, 2015

(a) (b)

(c)

Figure 10: The graphs of the dependence between the stress T22h/P0 and velocity
of the moving load V/h calculated at x1/h = 0.0 (a), -20.0 (b) and -40.0 (c) in the
case where h = 0.01m for various values of hd/h

left (right) branch of the graphs given in Figs. 4 – 8 which illustrate the change of
the studied quantities with respect to x1

/
h under x1

/
h ≤ 0 (under x1

/
h ≥ 0) can

also be taken as the change with respect to time t under t ≥ t∗ (under t ≤ t∗) at the
point which is at a distance L from the origin of the fixed coordinate system.

In the aforementioned sense it is also interesting to consider the distribution of the
displacement of the interface plane with respect to x1

/
h, namely because through
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(a) (b)

(c)

Figure 11: The graphs of the dependence between the velocity v2µh/(P0c2) and
velocity of the moving load V/h calculated at x1/h = 0.0 (a), -20.0 (b) and -40.0
(c) in the case where h = 0.01m for various values of hd/h

these distributions we can make some estimations on the attenuation of the action of
the moving vehicles with time. As an example of such a distribution are the graphs
given in Fig. 9 which illustrate the dependence between u2µh/(P0c2) and x1

/
h

constructed for various hd
/

h in the case where V
/

h = 100(1/s) under h = 0.01m.
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(a) (b)

(c)

Figure 12: The graphs of the dependence between the velocity v1µh/(P0c2) and
velocity of the moving load V/h calculated at x1/h = 0.0 (a), -20.0 (b) and -40.0
(c) in the case where h = 0.01m for various values of hd/h

These graphs show that the absolute maximal values of the vertical displacement
u2 of the points of the interface plate decrease with the velocity of the moving load.
Some other conclusions from these graphs relating to the character of the vibration
of the foundation on which the moving vehicles act, can also be made.

Now we consider the graphs of the dependence between the studied quantities
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and the velocity V
/

h. These graphs for the stress T22h/P0 and for the velocities
v2µh/(P0c2) and v1µh/(P0c2) are given in Figs. 10, 11 and 12, respectively and
are constructed for the case where h = 0.01m under various hd

/
h. In these figures

the graphs grouped by letters a, b and c relate to the cases where the values of the
stress and velocities are calculated at points x1

/
h = 0.0, -20.0 and -40.0, respec-

tively. It follows from these graphs that the character of the dependencies under
consideration differs at different points. However, at each point the influence of
the fluid viscosity on these dependencies decreases with the velocity of the moving
load. In other words, at each selected point the dependencies constructed in the vis-
cous fluid case are close to the corresponding ones with the velocity of the moving
load.

(a) (b)

Figure 13: Illustration of the resonance values of the stress T22h/P0(a) and velocity
v2µh/(P0c2) (b) under the critical velocities of the moving load for various hd/h
arising in the case where h = 0.50m and x1/h =−20.0

All the foregoing results have been obtained within the scope of the compressible
viscous and inviscid fluid models. However, results obtained within the scope of the
incompressible fluid models for the above-selected values of the problem parame-
ters coincide almost completely with the corresponding ones given above. Now we
consider the results which illustrate the influence of the fluid compressibility on the
values of the studied quantities.
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4.3 The influence of the fluid compressibility on the distribution of the interface
stress and velocities

We recall that the influence of the fluid compressibility is characterized through the
parameter Ω1 (20). Numerical results show that the influence of the fluid compress-
ibility on the studied quantities becomes considerable in the cases where Ω1≥ 0.25.
However, in the cases where Ω1 ≥ 0.25 the influence of the fluid viscosity on the
distribution of the stress T22h/P0 and velocity v2µh/(P0c2) disappears almost com-
pletely. Under obtaining results related to the incompressible fluid model we as-
sume that Ω1 = 0.0. Based on this reason, we investigate the influence of the fluid
compressibility on the values of the studied quantities within the scope of the in-
viscid fluid case.

Thus, according to the foregoing discussions, an increase in the values of the veloc-
ity must increase the difference between the results obtained within the scope of the
compressible and incompressible fluid models. However, the investigations show
that there exists such a value of the velocity of the moving load under which the
absolute values of the studied quantities become infinite and a resonance-type event
takes place. As an example of the said event we consider the graphs given in Fig.13
which show the dependence among the stress T22h/P0 (Fig.13a), v2µh/(P0c2) (Fig.
13b) and the velocity V/h around the aforementioned critical velocity for various
values of hd

/
h under h = 0.5m. Note that under construction of these graphs the

values of the stress and velocity are calculated at the point x1
/

h =−20. Moreover,
note that these graphs were constructed for the incompressible fluid case, but as
an example, the corresponding graphs for the compressible fluid case which are
constructed in the case where hd

/
h = 10 are also given in Fig. 13.

Note that the existence of the critical velocity is characteristic for dynamics of the
moving load acting on the layered medium. A review of the investigations relating
to the critical velocity of the moving load acting on bi-material elastic systems was
made in a paper by Akbarov and Ilhan (2008). However, up to now, we have not
found any investigation on the critical velocity of the moving load action on hydro-
elastic systems. Consequently, the results related to the critical velocity, which are
discussed here, are the first attempts on the investigations of the critical velocity of
the moving load acting on hydro-elastic systems.

We introduce the notation Vcr
/

a0 for illustration of the values of the dimensionless
critical velocity. Numerical investigations show that the values of Vcr

/
a0 are the

same for each studied quantity and for each point, i.e. for each value of x1
/

h,
where the values of these quantities are calculated. Numerical investigations also
show that the values of Vcr

/
a0 do not depend on the plate thickness h, but depend

on the values of the ratio hd
/

h and on the compressibility or incompressibility of
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(a) (b)

Figure 14: The influence of the fluid compressibility on the dependence between
stress T22h/P0and the velocity of the moving load V/h with various values of hd/h
in the cases where h = 0.15m (a) and 0.50 m (b)

(a) (b)

Figure 15: The influence of the fluid compressibility on the dependence between
the velocity v2µh/(P0c2) and the velocity of the moving load V/h with various
values of hd/h in the cases where h = 0.15m(a) and 0.50 m (b)



102 Copyright © 2015 Tech Science Press CMC, vol.45, no.2, pp.75-105, 2015

Table 1: The values of the critical velocity of the moving load. Upper (lower) num-
bers relate to the case where the fluid is modeled as incompressible (compressible).

Fluids
hd/h

2 3 6 10

Glycerin Vcr/a0Gl
0.4839
0.5889

0.4203
0.4748

0.3515
0.3788

0.3308
0.3528

Water Vcr/a0W
0.5606
1.0011

0.4809
0.5912

0.3891
0.4304

0.3550
0.3842

the fluid. Moreover, it is established that the values of Vcr
/

a0 depend also on the
mechanical properties of the fluid and of the plate. Table 1 shows the values of
Vcr
/

a0 calculated for various values of hd
/

h. Note that these calculations were
made not only for the case where the fluid which filled the strip-space between
the plate and rigid wall is Glycerin, but also for the case where this fluid is water
for which ρ0 = 1000kg/m3 and a0 = 1459.5m/s. Note that in Table 1 through
a0Gl and a0W the sound speed in the Glycerin and in the Water, respectively, is
denoted. Moreover, in Table 1 the upper (lower) numbers show the values of Vcr

/
a0

obtained in the case where the corresponding fluid is modeled as incompressible
(compressible). Thus, according to the data given in Table 1, we can conclude that
the fluid compressibility causes an increase in the values of the critical velocity.
However, as a result of the increase in the ratio hd

/
h the values of the critical

velocity decrease.

Now we consider the graphs of the dependence among T22h/P0, v2µh/(P0c2) and
the velocity V/h constructed for the compressible and incompressible fluid models
in the case where V/h<Vcr/h. These graphs are given in Figs. 14 (for T22h/P0) and
15 (for v2µh/(P0c2)) and those grouped by letters a and b indicate the cases where
h = 0.15m and 0.5m, respectively. It follows from these graphs that the character
of the influence of the fluid compressibility on the values of the studied quantities
depends on V/h not only in the quantitative sense but also in the qualitative sense.

5 Conclusions

Thus, in the present paper the dynamics of the moving load acting on the hydro-
elastic system consisting of the elastic plate, compressible viscous fluid and rigid
wall is investigated. The motion of the plate is described within the scope of the
so-called three-dimensional linearized theory of elastic waves in pre-stressed bod-
ies, however, the motion of the fluid is described within the scope of the linearized
Navier-Stokes equations. The formulated hydro-elastic problem is solved by em-
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ploying the moving coordinate system and Fourier transformation with respect to
the moving coordinate. Analytical expressions for the Fourier transformation of
the sought values are obtained and their originals are determined numerically. Nu-
merical results related to the interface normal stress and velocities are presented
and discussed. According to these discussions, the following concrete conclusions
related to the mechanics of the studied problem are established:

- the influence of the fluid viscosity on the distribution of the studied quantities
increases with decreasing fluid depth, plate thickness and velocity of the moving
load;

- as a result of the fluid viscosity the distribution of the studied quantities with re-
spect to the moving coordinate along the moving direction becomes non-symmetric
with respect to the point at which the moving load acts;

- according to the determination of the moving coordinates, the aforementioned
distributions with respect to the moving coordinate are also taken as the change of
the studied quantities with respect to time at some fixed interface point;

- in the cases where the influence of the fluid viscosity on the studied quantities is
considerable, the influence of the fluid compressibility on these quantities is negli-
gible;

- the influence of the fluid compressibility on the studied quantities appears under
high velocities of the moving load, and this influence increases with plate thickness
and with fluid depth;

- according to the foregoing conclusions, under high velocities of the moving load
the influence of the fluid compressibility on the studied normal stress and on the
velocity of the interface point in the direction of the normal to the interface plane,
can be studied within the scope of the inviscid fluid model;

- it is established that for the selected pair of plate and fluid materials there exists
the critical velocity of the moving load under which the resonance-type event takes
place and the absolute values of the studied quantities become infinite;

- it is also established that the values of the critical velocity decrease with the fluid
depth. At the same time, the compressibility of the fluid causes the values of the
critical velocity to increase.
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