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Structural Continuous Dependence in Micropolar Porous
Bodies
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Abstract: Our study is dedicated to mixed initial boundary value problem for
porous micropolar bodies. We prove that the solution of this problem depends con-
tinuously on coefficients which couple the micropolar deformation equations with
the equations that model the evolution of voids. The evaluation of this dependence
is made by using an appropriate measure.
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1 Introduction

The theory of materials with voids or vacuous pores is the simplest extension of the
classical theory of elasticity and was first proposed by Nunziato and Cowin in the
paper Nunziato and Cowin (1979). In this theory the authors introduce an additional
degree of freedom in order to develope the mechanical behavior of a body in which
the matrix material is elastic and interstices are voids of material. It is worth to
recall that porous materials have applications in many fields of engineering such as
petroleum industry, material science, biology and so on. The intended applications
of the theory are in geological materials like rocks and soil and in manufactured
porous materials. The linear theory of elastic materials with voids was developed
by Cowin and Nunziato in Cowin and Nunziato (1983). Here the uniqueness and
weak stability of solutions are also derived. Then, the problem of bodies with voids
was approached in a large number of studies, of which we mention only some of
the most recent. For example, Iesan (2011) considered the problem of Almansi for
porous Cosserat elastic solids. The non-linear deformations of porous elastic solids
were approached in Iesan and Quintanilla (2013).
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Also, in the paper Mora and Waas (2007) the micropolar and Lamè constants for a
circular cell polycarbonate honeycomb are calculated by using a finite element rep-
resentation of the honeycomb microstructure. The known smeared crack approach
is revisited in the paper Heinrich and Waas (2013) to describe post-peak softening
in laminated composite materials.

The paper Abbas and Kumar (2014) is a study of the plane problem in initially
stressed generalized thermoelastic half-space with voids. In the paper Mahmoud
and Abd-Alla (2014) the equations of elastodynamic problems of the orthotropic
hollow sphere in terms of displacement are solved The minimum principle for dipo-
lar materials with strec is considered in the paper Marin (2009). For the same cat-
egory of materials, Marin and Stan (2013) give some weak solutions, while the
paper Marin et al. (2013 a) presents some results obtained with the help of La-
grange Identity. A study of temporal behaviour of solutions in Thermoelasticity
of porous micropolar bodies is given in Marin and Florea (2014) and in Marin et
al. (2013 b). Some considerations regarding the localization in time of solutions
for thermoelastic micropolar materials with voids can be found in the paper Marin
et. al (2014). Also, the study Sharma and Marin (2014) is dedicated to micropolar
thermoelastic solids.

Continuous dependence of solutions with regards to the coefficients of the equa-
tions that govern the deformation of a body is more important than continuous
dependence the initial data and on boundary conditions. This is because, in the
mathematical modeling of the continuum, there may be errors or disturbances due
the idealization of the model. Also, the continuous dependence of solutions with
regards to the coefficients of the equations is important in obtaining some numeri-
cal approximations of the solutions of the models. Continuous dependence is im-
portant both in terms of pure mathematics and in terms of practical applications.
Therefore, many studies published in recent years are devoted to this topic. We
recall only the fundamental paper of Knops and Payne (1988) and also the papers
Chirita and Ciarletta (2011), Franchi and Straughan (1996), Iovane and Passarela
(2004), Green and Naghdi (1993).

The paper is structured as follows. First, we formulate the mixed intial-boundary
value problem in the context of micropolar porous bodies. Then we will prove
some preliminaries identities which we will use in order to derive the continous
dependence theorems. In the last part of our paper we deduce the convergence of
the solution of our mixed problem, when the coupling coefficients tend to zero, by
using an appropriate measure, which is specified in advance.
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2 Basic equations

An anisotropic elastic material is considered. Assume a body of this type that
occupies a properly regular region B of the three-dimensional Euclidian space R3

bounded by a piecewise smooth surface ∂B and we denote the closure of B by B̄.
The boundary ∂B is smooth enough to apply the divergence theorem.

We use a fixed system of rectangular Cartesian axes Oxi,(i = 1,2,3) and adopt
Cartesian tensor notation. A superposed dot stands for the material time derivative
while a comma followed by a subscript denotes partial derivatives with respect to
the spatial coordinates. Einstein summation convention on repeated indices is used.
Also, the spatial argument and the time argument of a function will be omitted when
there is no likelihood of confusion.

The motion of a micropolar porous body is described by the independent variables
ui(x, t), the displacement vector field, ϕi(x, t), the microrotation vector field and φ ,
the change in volum fraction.

We consider the mixed problem associated with the theory of elasticity of microp-
olar bodies with voids on the time interval I. In the absence of supply terms, it is
known that the basic equations on B× I are, [see, for instance Iesan (2011)]

ti j, j = ρ üi,

mi j, j + εi jkt jk = Ii jϕ̈ j, (1)

hi,i +g = ρκφ̈ , (2)

Here, the equations (1) are the motion equations and (2) is the balance of the equi-
librated forces.

Next, we restricte our considerations only to the case where the materials have
a center of symmetry. Consequently, the constitutive tensors of odd order must
vanish and therefore the constitutive equations become

ti j =Ci jmnεmn +Bi jmnγmn +ai jφ ,

mi j = Bmni jεmn +Ci jmnγmn +bi jφ ,

hi = Ai jφ, j, (3)

g =−ai jεi j−bi jγi j−ξ φ − τφ̇ ,

where the strain tensors εi j and γi j are defined by means of the kinetic relations

εi j = u j, i + ε jikϕk, γi j = ϕ j, i. (4)
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In the above equations we used the following notations: ρ-the constant mass den-
sity; Ii j = I ji-the coefficients of microinertia; κ-the equilibrated inertia; ui-the com-
ponents of displacement vector; ϕi-the components of microrotation vector; φ -the
volume distribution function which in the reference state is φ0; εi j,γi j-kinematic
characteristics of the strain; ti j-the components of the stress tensor; mi j-the compo-
nents of the couple stress tensor; hi-the components of the equlibrated stress vector;
g-the intrinsic equilibrated force; Ai jmn, Bi jmn, Ci jmn, Ai j, ai j, bi j, τ and ξ from the
constitutive equations are prescribed characteristic functions of the material, and
they obey to the symmetry relations

Ai jmn = Amni j, Ci jmn =Cmni j, Ai j = A ji. (5)

As time interval I we take I = (0, T ) and consider the mixed boundary-final prob-
lem P defined by the system of equations (1)-(4), the initial conditions in B̄

ui(x,0) = u0
i (x), u̇i(x,0) = u1

i (x),

ϕi(x,0) = ϕ
0
i (x), ϕ̇i(x,0) = ϕ

1
i (x), (6)

φ(x,0) = φ
0(x), φ̇(x,0) = φ

1(x),

and the following boundary conditions

ui(x, t) = ũi(x, t) on ∂B× (0, T ),

ϕi(x, t) = ϕ̃i(x, t) on ∂B× (0, T ), (7)

φ(x, t) = φ̃(x, t) on ∂B× (0, T ).

Introducing the constitutive relations (3) into equations (1) and (2), we obtain the
following system of equations

ρ üi = (Ai jmnεmn +Bi jmnγmn +ai jφ), j ,

Ii jϕ̈ j = (Bmni jεmn +Ci jmnγmn +bi jφ), j + εi jk(A jkmnεmn +B jkmnγmn +a jkφ), (8)

ρκφ̈ = (Ai jφ, i), j−ai jεi j−bi jγi j−ξ φ − τφ̇

By a solution of the mixed initial-boundary value problem of the theory of ther-
moelasticity of micropolar bodies with voids in the cylinder Ω0 = B× (0, T ) we
mean an ordered array (ui,ϕi,φ) which satisfies the system of equations (8) for all
(x, t) ∈Ω0, the boundary conditions (7) and the initial conditions (6).

In our subsequent analysis we need to require the following restrictions

ρ > 0, κ > 0, τ ≥ 0 (9)
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Also, we need to impose the positivity of constitutive tensors from the above rela-
tions

Ai jmnηi jηmn ≥ a1|η |, a1 > 0

Bi jmnηi jηmn ≥ b1|η |, b1 > 0 (10)

Ci jmnηi jηmn ≥ c1|η |, c1 > 0

Ai jξiξ j ≥ a2|ξ |, a2 > 0 (11)

These assumptions are in agreement with the usual restrictions imposed in the me-
chanics of continua. We can couple these restrictions with the assumption that the
Helmholtz free energy is a positive definite quadratic form and the best of their
interpretation finds its place in the theory of mechanical stability:

Ψ =
1
2

Ai jmnεi jεmn +
1
2

Ci jmnγi jγmn +
1
2

Ai jφ, iφ, j+

+
1
2

ξ φ
2 +Bi jmnεi jγmn +ai jεi jφ +bi jγi jφ ≥ (12)

≥ a0

2
(
|∇u|2 + |∇v|2 + |φ |2

)
+

a2

2
|∇φ |2, a0 > 0.

In the above relations a0, a1 and a2 are appropiate constants. Also, u and v are the
vector notations, namely u = (ui), v = (ϕi).

The functions, together with their domains of definition, used in the above equa-
tions of motion, in initial conditions and boundary conditions are supposed to be as
smooth as required.

3 Preliminary identities

Before tackling the mixed initial-boundary value problem of the theory of thermoe-
lasticity of micropolar bodies with voids we will construct certain auxiliary prob-
lems and will prove some bounds for the solutions of these auxiliary problems. The
identities that we will obtain are commonly called Rellich identities.

Using an idea suggested in the paper Knops and Payne (1988), we will consider the
following formal boundary value problem

(Ai j H, j), i = 0, in B

H = q, on ∂B. (13)

We assume that the functions H and q (as well as the surface ∂B) satisfy the regular-
ity conditions required by the theorem of existence (see Fichera (1972)). Therefore,
based on this theorem, we ensure the existence of a solution of the problem (13).
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Theorem 1. If H is a solution of the problem (13), then the quantities

∫
B

Ai jH, iH, j dV, H2,
∮

∂B

(
∂H
∂n

)2

dA

admit some bounds in terms of the data function q.

Proof. Starting from the obvious equality∫
B

xkH, k(Ai jH, j), idx = 0.

we can derive, without much difficulty (integrating by parts), the following se-
quence of relations

0 =−
∫

B
xk, iH, kAi jH, j dV −

∫
B

xkH, kiAi jH, j dV +
∮

∂B
nixkH, kAi jH, j dA

=−
∫

B
Ai jH, iH, j dV − 1

2

∫
B

xkAi j(H, iH, j), k dV +
∮

∂B
nixkH, kAi jH, j dA

=
1
2

∫
B

Ai jH, iH, j dV +
1
2

∫
B

xkAi j, kH, iH, j dV +
∮

∂B
nixkH, kAi jH, j dA

− 1
2

∮
∂B

nixkAi jH, kH, j dA

(14)

where ni represent the components of the unit normal to the surface ∂B. If we
denote by si the components of the tangential vector to the surface ∂B, we can
write the derivative H, i in the form

H, i = ni
∂H
∂n

+ si∇sH

where ∂/∂n denotes the derivative in the direction of the normal and ∇s is the
tangential derivative.

If we denote by aαβ the coefficients of the first fundamental form of the surface
∂B, then the tangential derivative can be written in the form

∇sH = xi; αaαβ H; β

where the notation f; α represents the differentiation of function f with respect to
surface variables tα .

In what follows we suppose that the surface ∂B is star shaped with respect to origin
and, furthermore, we have

xknk ≥ h0, |xksk| ≤ δ0 on ∂B.
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Also, we need the following limitation of the gradients of Ai j∣∣xkAi j, k
∣∣≤ as < µ a2, 0 < µ < 1 (15)

In the above relations h0, δ0, as and µ are constants.

If we take into account these conditions, (14) can be rewritten in the form

1−µ

2

∫
B

Ai jH, iH, j dV +
h0a2

2

∮
∂B

(
∂H
∂n

)2

dA

≤
∮

∂B

(
1
2

xknksis j−nis jskxk

)
Ai j|∇sq|2 dA (16)

+
δ0α

2

∮
∂B

Ai jnin j

(
∂H
∂n

)2

dA+
δ0α

2α

∮
∂B

Ai jnin j|∇sq|2dA

where α will be conveniently chosen.

Thus, if we choose α of the form

α =
h0a2

2δ0a3

then

h0a2 > δ0αa3

where we used the notation

a3 = max
∂B

∣∣ nin jAi j
∣∣

With these considerations, we can write the inequality (16) in the form

1−µ

2

∫
B

Ai jH, iH, j dV +
h0a2

4

∮
∂B

(
∂H
∂n

)2

dA

≤
∮

∂B

[(
1
2

xknksis j−nis jskxk

)
+

δ 2
0 a3

h0a2
nin j

]
Ai j|∇sq|2 dA (17)

On the other hand, with the help of the Poincare inequality we are lead to

λ1

∫
B

H2 dV ≤
∫

B
H, iH, j dV +C1

∮
∂B

H2 dA (18)

Inequalities (17) and (18) give us the desired bounds for quantities
∫

B Ai jH, iH, j dV ,

‖φ‖2 and
∮

∂B

(
∂ϕ

∂n

)2
dA, these bounds being expressed with the help of the bound-

ary function q. The proof of Theorem 1 is concluded.
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Our next considerations are analog to those of Theorem 1 but for a vector version
of the inequality (17).

By analogy with (13), taking into account the geometric equations (4), we consider
(Ui, Fi) a solution of the boundary value problem[
Ai jmn

(
U j, i + ε jikFk

)
+Bi jmnFn, m

]
, j = 0, in B

[Bmni j (Un, m + εnmkFk)+Ci jmnFn, m], j +

+εi jk
[
A jkmn (Un, m + εnmkFk)+B jkmnFn, m

]
= 0, in B (19)

Ui = ġi, Fi = ḟi, on ∂B.

We assume that the functions (Ui, Fi), (gi, fi), as well as the surface ∂B, satisfy the
regularity conditions required by the theorem of existence of Fichera (see the paper
Fichera (1972). Based on this theorem, we ensure the existence of a solution of the
problem (19).

Theorem 2. If (Ui, Fi) is a solution of the problem (19), then the quantities

∫
B

[
Ai jmn

(
U j, i + ε jikFk

)
(Un, m + εnmkFk)+2Bi jmn

(
U j, i + ε jikFk

)
Fn, m+

+Ci jmnFj, iFn, m]dV, ‖U‖2, ‖F‖2,
∮

∂B

(
∂Ui

∂n

)(
∂Ui

∂n

)
dA,

∮
∂B

(
∂Fi

∂n

)(
∂Fi

∂n

)
dA

admit some bounds in terms of the data functions gi and fi

Proof. To obtain an a priori bounds for∫
B

[
Ai jmn

(
U j,i + ε jikFk

)
(Un,m+εnmkFk)+2Bi jmn

(
U j,i + ε jikFk

)
Fn,m +Ci jmnFj,iFn,m

]
dV

∮
∂B

(
∂Ui

∂n

)(
∂Ui

∂n

)
dA,

∮
∂B

(
∂Ui

∂n

)(
∂Ui

∂n

)
dA,

we can use similar assessments with those in the proof of Theorem 1.

To obtain an a priori bounds for ‖U‖2 , ‖F‖2 we can use the Poincare inequality,
and thus we find that

λ1

∫
B

UiUi dV ≤
∫

B
Ui, jUi, jdV +C1

∮
∂B

ġiġi dA

λ2

∫
B

FiFi dV ≤
∫

B
Fi, jFi, jdV +C2

∮
∂B

ḟi ḟi dA
(20)
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and these inequalities give a bound for PUP2 and PFP2. W

Now, we proceed to derive some estimates for a solution of equations (8). For this
purpose, we use the bounds found in Theorem 1 and in Theorem 2 for the solutions
of the auxiliary problems (13) and (19).

First, we write equations (8) in the form

−ρ üi +(Ai jmnεmn +Bi jmnγmn +ai jφ), j = 0

−Ii jϕ̈ j +(Bmni jεmn +Ci jmnγmn +bi jφ), j +

+εi jk(A jkmnεmn +B jkmnγmn +a jkφ) = 0, (21)

−ρκφ̈ −ai jεi j−bi jγi j−ξ φ − τφ̇ +(Ai jφ, j), i = 0

the system of equations (21) being defined on the cylinder B× (0,T )

We assume that a solution (ui, ϕi, φ) of the system (21) satisfies the initial condi-
tions (6) and boundary conditions (7).

Theorem 3. If (ui, ϕi, φ) is a solution of the system (21) which satisfies the initial
conditions (6) and boundary conditions (7), then the quantities∫ t

0
‖∇v‖2ds,

∫ t

0
‖∇ϕ‖2ds

admit some bounds in terms of the data functions u0
i , u1

i ϕ0
i , ϕ1

i , φ 0 and φ 1, with
v = (ui, ϕi).

Proof. Let us denote by H the solution of equation (13)1 which satisfies the bound-
ary condition H = ḣ on ∂B. If we take into account equation (21)3 we obtain easily
the identity∫ t

0

(
(Ai jϕ, j), i−ai jεi j−bi jγi j−ξ ϕ− τϕ̇−ρκϕ̈, H− ϕ̇

)
ds = 0. (22)

We integrate (22) by parts with respect to s ∈ [0, t] and with respect to the spatial
variable on domain B and thus we are lead to the identity

1
2

∫
B

ξ ϕ
2(t) dV +

1
2

∫
B

ρκϕ̇
2(t) dV +

∫ t

0

∫
B

τϕ̇
2(s) dV ds

+
1
2

∫
B

Ai jϕ, i(t)ϕ, j(t) dV +
∫ t

0

∫
B
(ai jεi j +bi jγi j) ϕ̇(s) dV ds

=
1
2

∫
B

Ai jϕ
0
, iϕ

0
, j dV +

∫ t

0

∮
∂B

nin jAi jh
∂H
∂n

dA ds (23)
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+
∫ t

0

∮
∂B

n jsiAi jh∇sḣ dA ds+
1
2
(
ξ ϕ

0, ϕ
0)− (ρκϕ

1,H(0)
)

+
1
2
(
ρκϕ

1,ϕ1)+∫ t

0
(ai jεi j +bi jγi j, H) ds+

∫ t

0
(ξ ϕ, H) ds

+(ρκϕ̇, H)−
∫ t

0

(
ρκϕ̇, Ḣ

)
ds+

∫ t

0
(τϕ̇,H)ds

For the last five terms on the right-hand side of relation (23) we will use the
arithmetic-geometric mean inequality in the form

< a,b >≤ 1
2

(
µ ‖a‖2 +

1
µ
‖b‖2

)
, µ > 0. (24)

For this reason we use the notation

aM = max
B̄

∣∣ai j
∣∣ , bM = max

B̄

∣∣bi j
∣∣ , ρM = max

B̄
|ρ| ,

κM = max
B̄
|κ| , ξM = max

B̄
|ξ | , τM = max

B̄
|τ|

Using this notation, we can conveniently choose the constants µ1, µ2, µ3, µ4, µ5
and so by applying the arithmetic-geometric mean inequality (24), from relation
(23) we can deduce

1
2

∫
B

ξ ϕ
2(t) dV +

1
2

∫
B

ρκϕ̇
2(t) dV +

∫ t

0

∫
B

τϕ̇
2(s) dV ds

+
1
2

∫
B

Ai jϕ, i(t)ϕ, j(t) dV +
∫ t

0

∫
B
(ai jεi j +bi jγi j) ϕ̇(s) dV ds

≤ 1
2

∫
B

Ai jϕ
0
, iϕ

0
, j dV +

∫ t

0

∮
∂B

nin jAi jh
∂H
∂n

dA ds

+
∫ t

0

∮
∂B

n jsiAi jh∇sḣ dA ds+
1
2
(
ξ ϕ

0, ϕ
0)− (ρκϕ

1,H(0)
)

+
1
2
(
ρκϕ

1,ϕ1)+ µ1

2

∫ t

0

∥∥εi j
∥∥2ds+

a2
M

2µ1

∫ t

0
‖H‖2ds (25)

+
µ2

2

∫ t

0

∥∥γi j
∥∥2ds+

b2
M

2µ2

∫ t

0
‖H‖2ds+

µ3

2

∫ t

0
‖ϕ‖2ds

+
ξ 2

M

2µ3

∫ t

0
‖H‖2ds+

µ4

2

(
ρκϕ̇, ϕ̇

)
+

ρMκM

2µ4
‖H‖2

+
µ5

2

∫ t

0
‖ϕ̇‖2ds+

(ρMκM)2

2µ5

∫ t

0

∥∥Ḣ
∥∥2ds+

µ6

2

∫ t

0
‖ϕ̇‖2ds
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+
τ2

M

2µ6

∫ t

0
‖H‖2ds

Terms relating to φ , φ̇ and φ, i from the right-hand side of relation (25) may be
bounded using the left-hand side, while the terms relating to H from the right-
hand side of relation (25) may be bounded by using the estimations found by using
Theorem 1 and Theorem 2.

Analog considerations with the above one will now be made relative to the first two
equations of system (21)

So, we consider the equation (21)1 and if we take into account equation (19)1 we
find the identity∫ t

0

(
[Ai jmn (Un, m + εnmkFk)+Bi jmnFn, m], j +(ai jϕ), j−ρ üi,Ui− u̇i

)
ds = 0 (26)

Finally, if we consider the equation (21)2 and if we take into account equation (19)2
we find the identity∫ t

0

(
[Bmni j (Un, m + εnmkFk)+Ci jmnFn, m], j +(bi jϕ), j− Ii jφ̈ j,Fi− φ̇i

)
ds = 0 (27)

Adding together the relations (26) and (27), term by term, then integrating by parts
in space and in time and taking into account the geometric equations (4) we get

1
2

∫ t

0

d
ds

[∫
B

(
ρ u̇iu̇i + Ii jφ̇iφ̇ j +Ai jmnεi jεmn +2Bi jmnεi jγmn +Ci jmnγi jγmn

)
dV
]

ds

+
∫ t

0

∫
B
(ai jε̇i j +bi j γ̇i j)ϕ dV ds =

∫ t

0

∮
∂B

nm (Ai jmngnUi, j +Bi jmn fnFi, j)dAds

+
∫ t

0

∮
∂B

nm (Bi jmngnUi, j +Ci jmn fnFi, j)dAds−
∫

B

(
ρUi(0)u1

i + Ii jFi(0)φ 1
j
)

dV (28)

+
∫ t

0

∫
B
(ai jUi, j +bi jFi, j)ϕ dV ds+

∫
B

(
ρUiu̇i + Ii jFiφ̇ j

)
dV

−
∫ t

0

∫
B

(
ρU̇iu̇i + Ii jḞiφ̇ j

)
dV ds

For the last three integrals on the right-hand side of relation (28) we will use the
arithmetic-geometric mean inequality in the form (24). Thus we can conveniently
choose the positive constants α1, α2, ..., α6 so that

1
2

∫
B

(
ρ u̇iu̇i + Ii jφ̇iφ̇ j +Ai jmnεi jεmn +2Bi jmnεi jγmn +Ci jmnγi jγmn

)
dV
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+
∫ t

0

∫
B
(ai jε̇i j +bi j γ̇i j)ϕ dV ds≤ 1

2

∫
B

(
ρ u̇1

i u̇1
i + Ii jφ̇

1
i φ̇

1
j
)

dV

+
1
2

∫
B

(
Ai jmnε

0
i jε

0
mn +2Bi jmnε

0
i jγ

0
mn +Ci jmnγ

0
i jγ

0
mn
)

dV

+
∫ t

0

∮
∂B

nm (Ai jmn +Bi jmn)gn

(
n j

∂Ui

∂n
+ s j∇sġi

)
dAds

+
∫ t

0

∮
∂B

nm (Bmni j +Ci jmn) fn

(
n j

∂Fi

∂n
+ s j∇s ḟi

)
dAds (29)

−
∫

B

(
ρUi(0)u1

i (0)+ Ii jFi(0)φ 1
j (0)

)
dV +

α1

2

∫ t

0
‖ϕ‖2ds+

a2
M

2α1

∫ t

0

∥∥Ui, j
∥∥2ds

+
α2

2

∫ t

0
‖ϕ‖2ds+

b2
M

2α2

∫ t

0

∥∥Fi, j
∥∥2ds+

α3

2

∫
B

ρ u̇iu̇idV +
1

2α3

∫
B

ρUiUidV

+
α4

2

∫
B

Ii jφ̇iφ̇ jdV +
1

2α4

∫
B

Ii jFiFjdV +
α5

2

∫ t

0

∫
B

ρ u̇iu̇idV ds

+
1

2α5

∫ t

0

∫
B

ρU̇iU̇idV ds+
α6

2

∫ t

0

∫
B

Ii jφ̇iφ̇ jdV +
1

2α6

∫ t

0

∫
B

Ii jḞiḞjdV

where ε0
i j = u0

j, i + ε jikϕ0
k , γ0

i j = ϕ0
j, i.

By adding the relations (25) and (29) we are lead to

1
2

∫
B

(
ρ u̇iu̇i + Ii jφ̇iφ̇ j +Ai jmnεi jεmn +2Bi jmnεi jγmn +Ci jmnγi jγmn

)
dV

+
1
2
(ξ ϕ, ϕ)+

1
2
(ρκϕ̇, ϕ̇)+

∫ t

0
(τϕ̇, ϕ̇)ds+

1
2

∫
B

Ai jϕ, iϕ, j dV

+
∫

B
(ai jεi j +bi jγi j)ϕ dV ≤ µ1

2

∫ t

0

∥∥εi j
∥∥2ds+

µ2

2

∫ t

0

∥∥γi j
∥∥2ds (30)

+
µ3 +α1 +α2

2

∫ t

0
‖ϕ‖2ds+

µ4

2
(ρκϕ̇, ϕ̇)+

µ5 +µ6

2

∫ t

0
‖ϕ̇‖2ds

+
α3

2

∫
B

(
ρ u̇iu̇i + Ii jφ̇iφ̇ j

)
dV +

α5

2

∫ t

0

∫
B

(
ρ u̇iu̇i + Ii jφ̇iφ̇ j

)
dV ds+R

Here we have denoted by R the other terms resulting from the gathered formulas
(25) and (29). The remaining R contains either terms that involve direct data either
terms that can be estimated in terms of data based on Theorem 1 and Theorem 2,
generically denoted by M. With these considerations, we can deduce that the left-
hand side of inequality (30) is a positive definite measure. Also, if we use as energy
measure the function E, given by

E(t) =
1
2

∫
B

[
ρ u̇i(t)u̇i(t)+ Ii jφ̇i(t)φ̇ j(t)+ρκϕ̇

2(t)
]

dV
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+
1
2

∫
B
[Ai jmnεi j(t)εmn(t)+2Bi jmnεi j(t)γmn(t)+Ci jmnγi j(t)γmn(t)]dV

+
∫

B
[ai jεi j(t)+bi jγi j(t)]ϕ(t)dV +

1
2
(ξ ϕ(t),ϕ(t))+

1
2

∫
B

Ai jϕ, i(t)ϕ, j(t)dV (31)

then from (30) we can deduce the following inequality

E(t)≤ K
∫ t

0
E(s)ds+M, (32)

in which the positive constant K is conveniently chosen.

Now we multiply both members of inequality (32) by e−Kt and after the resulting
inequality is integrated over [0, t] we are led to the result∫ t

0
E(s)ds≤ eKT

K
M. (33)

It is clear that this inequality provides a priori estimates for quantities∫ t

0
‖∇v‖2ds,

∫ t

0
‖∇ϕ‖2ds

which concludes the proof of Theorem 3.

4 Main result

In this section we will prove the continuous dependence of solutions of the mixed
initial-boundary value problem P1 consisting of equations (8), the initial conditions
(6) and the boundary conditions (7) with respect to coupling coefficients ai j and bi j

To this end we consider a solution (ui,ϕi,φ) of our problem P1 and (vi,ψi,χ) a
solution of problem P2 which is similar to the problem P1 namely, it has the same
initial data, the same boundary data, but different coupling coefficients. The cou-
pling coefficients of problem P1 are ai j, bi j and of problem P2 are αi j, βi j. We
assume that the other characteristics coefficients of the material are the same for
both problems P1 and P2, namely Ai jmn, Bi jmn, Ci jmn, Ai j, ρ , κ , τ and ξ

Let us denote by (wi,ϖi,θ) the difference between the two solutions and by ci j, di j

the difference between the coupling coefficients, that is

wi = ui− vi, ϖi = ϕi−ψi, θ = φ −χ,

ci j = ai j−αi j, di j = bi j−βi j (34)

Due to linearity, the difference (wi,ϖi,θ) satisfies a system of equation similar to
that of (8):

−ρẅi +(Ai jmnε̄mn +Bi jmnγ̄mn), j +(αi jθ), j =−(ci jφ), j
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−Ii jψ̈ j +(Bmni jε̄mn +Ci jmnγ̄mn), j +(βi jθ), j +

+εi jk(A jkmnε̄mn +B jkmnγ̄mn +α jkθ) =−(di jφ), j , (35)

−ρκθ̈ −αi jε̄i j−βi j γ̄i j−ξ θ − τθ̇ +(Ai jθ, j), i =−ci jεi j−di jγi j (36)

where we used the notations

ε̄i j = w j, i + ε jikϖk, γ̄i j = ϖ j, i

Equations (35)-(36) are satisfied on the cylinder B× (0,T )

Also, due to linearity, the difference (wi,ϖi,θ) satisfies the initial conditions in
their homogeneous form

wi(x,0) = 0, ẇi(x,0) = 0, ϖi(x,0) = 0,

ϖ̇i(x,0) = 0, θ(x,0) = 0, θ̇(x,0) = 0 (37)

and, also, the boundary conditions in their homogeneous form

wi(x, t) = 0, ϖi(x, t) = 0, θ(x, t) = 0, (x, t) ∈ ∂B× (0,T ) (38)

The main result regarding the continuous dependence with respect to coupling co-
efficients is proved in the following theorem.

Theorem 4. The solutions of the mixed initial-boundary value problem consists
of equations (8), the initial conditions (6) and the boundary conditions (7) depend
continuously with respect to coupling coefficients ai j and bi j

Proof. We multiply equation (35)1 by ẇi and then integrate over B to find

d
dt

1
2

[∫
B

ρẇiẇidV +
∫

B
(Ai jmnε̄mn +Bi jmnγ̄mn)wi, jdV

]
+

+
∫

B
αi j θ ẇi, jdV =

∫
B
(ci jϕ), j ẇidV (39)

Similarly, we multiply equation (35)2 by ϖ̇i and then integrate over B to find

d
dt

1
2

[∫
B

Ii jϖ̇iϖ̇ jdV +
∫

B
(Bmni jε̄mn +Ci jmnγ̄mn)ϖi, j dV+

+
∫

B
εi jk
(
A jkmnε̄mn +B jkmnγ̄mn +α jk θ

)
ϖ̇i dV

]
+ (40)

+
∫

B
βi j θ ϖ̇i, jdV =

∫
B
(di jϕ), j ϖ̇i dV
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Now, we add equations (39) and (40) and take into account the geometric equations
(6) to see that

d
dt

1
2

[∫
B
(ρẇiẇi + Ii jϖ̇iϖ̇ j)dV+

+
∫

B
(Ai jmnε̄i jε̄mn +2Bi jmnε̄i j γ̄mn +Ci jmnγ̄i j γ̄mn)dV

]
+ (41)

+
∫

B

(
αi j̇̄ε i j +βi j̇̄γ i j

)
θdV =

∫
B

[
(ci jϕ), jẇi +(di jϕ), j ϖ̇i

]
dV

We will multiply now equation (36) by θ̇ and then integrate over B so that we find

d
dt

1
2

[(
ρκθ̇ , θ̇

)
+
∫

B
Ai jθ, iθ, jdV +(ξ θ ,θ)

]
+
(
τθ̇ , θ̇

)
+

+
∫

B
(αi jε̄i j +βi j γ̄i j) θ̇dV =−

∫
B
(ci jεi j +di jγi j) θ̇dV (42)

If we add the equations (41) and (42), term by term, we deduce that

d
dt

{
1
2

[∫
B
(ρẇiẇi + Ii jϖ̇iϖ̇ j)dV +(ξ θ ,θ)+

(
ρκθ̇ , θ̇

)
+

+
∫

B
(Ai jmnε̄i jε̄mn +2Bi jmnε̄i j γ̄mn +Ci jmnγ̄i j γ̄mn)dV+ (43)

+
∫

B
Ai jθ,iθ, jdV

]
+
∫

B
(αi jε̄i j +βi j γ̄i j)θdV

}
+
(
τθ̇ , θ̇

)
=

=
∫

B

[
(ci jϕ), jẇi +(di jϕ), jϖ̇i

]
dV −

∫
B
(ci jεi j +di jγi j) θ̇dV

We will use the notation

c2 = ci j ci j, c∗2 = ci j, j cik,k, d2 = di j di j,

d∗2 = di j, j dik,k, ρm = min
B

ρ, κm = min
B

κ, Im = min
B

Ii j

and we apply the Schwarz’s inequality in relation (43) and taking into account the
hypotheses (10) we find that

d
dt

{
1
2

[∫
B
(ρẇiẇi + Ii jϖ̇iϖ̇ j)dV +(ξ θ ,θ)+

(
ρκθ̇ , θ̇

)
+

+
∫

B
(Ai jmnε̄i jε̄mn +2Bi jmnε̄i j γ̄mn +Ci jmnγ̄i j γ̄mn)dV+
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+
∫

B
Ai jθ,iθ, jdV

]
+
∫

B
(αi jε̄i j +βi j γ̄i j)θdV

}
+
(
τθ̇ , θ̇

)
≤ (44)

≤ 1
2ρm

∫
B

ρẇiẇidV +
1

2Im

∫
B

Ii jϖ̇iϖ̇ jdV +
1
2

∫
B

(
c2 +d2)

ϕ,kϕ,kdV

+
∫

B

(
1

2a1
Ai jmnεi jεmn +

1
b1

Bi jmnεi jγmn +
1

2c1
Ci jmnγi jγmn

)
dV

+
1
2

∫
B

(
c∗2 +d∗2

)
ϕ

2dV +
1

2κmρm

∥∥θ̇
∥∥

Now we introduce the measure M by

M =
1
2

[∫
B
(ρẇiẇi + Ii jϖ̇iϖ̇ j)dV +(ξ θ ,θ)+

(
ρκθ̇ , θ̇

)
+

+
∫

B
(Ai jmnε̄i jε̄mn +2Bi jmnε̄i j γ̄mn +Ci jmnγ̄i j γ̄mn)dV+ (45)

+
∫

B
Ai jθ,iθ, jdV

]
+
∫

B
(αi jε̄i j +βi j γ̄i j)θdV

With the help of notations

c2
M = max

B̄

{
c2 +d2} , c∗2M = max

B̄

{
c∗2 +d∗2

}
, C = max

B̄

{
2

ρm
,

1
ρmκm

}
from (45) we deduce that

dM
dt
≤CM+ c2

M

[∫
B

(
1

2a1
Ai jmnεi jεmn +

1
b1

Bi jmnεi jγmn +
1

2c1
Ci jmnγi jγmn

)
dV

+
1
2

∫
B

ϕ,kϕ,kdV
]
+

1
2

c∗2M ‖ϕ‖
2

After we integrate this inequality over [0, t], we are led to

M(t)≤C
∫ t

0
M(s)ds+

+c2
M

[∫ t

0

∫
B

(
1

2a1
Ai jmnεi jεmn +

1
b1

Bi jmnεi jγmn +
1

2c1
Ci jmnγi jγmn

)
dV ds (46)

+
1
2

∫ t

0

∫
B

ϕ,kϕ,kdV ds
]
+

1
2

c∗2M

∫ t

0
‖ϕ‖2ds
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Using the a priori estimate (33) we deduce that the last term of inequality (46) is
bounded. Then we can write, formally, inequality (46) in the following form

M(t)≤C
∫ t

0
M(s)ds+ c2

MD1 + c∗2M D2 (47)

Here D1 and D1 are some terms that depend on data.

After integration over the interval [0, t], inequality (47) leads to∫ t

0
M(s)ds≤

(
c2

MD1 + c∗2M D2
) 1

C

(
eCT −1

)
(48)

Inequality (47) proves that the solution of the mixed initial-boundary value problem
consists of the system of equations (8), the initial conditions (6) and the boundary
conditions (7) which depend continuously on coupling coefficients ai j and bi j.

The evaluation of this dependence is made by means of measure
∫ ∫

t 0.

On the other hand, if we substitute the integral
∫ ∫

t 0 from (48) in (47), we obtain the
following inequality

M(t)≤
(
c2

MD1 + c∗2M D2
)

eCT

This inequality proves that the solution depends continuously on coupling coeffi-
cients ci j and di j from (34). This time the evaluation of this dependence is made by
means of measure M(t). With this, the proof of Theorem 4 is complete.

5 Conclusions

In the first part of the study, we attach to our mixed problem certain auxiliary prob-
lems and prove some bounds for solutions of these problems. The second part of
the study is devoted to obtain a priori estimates for the gradient of displacement
(ui) and microrotation (ϕi) and the gradient of the volume distribution function φ .

In the main result of the study we prove that the solution of this problem depends
continuously on coefficients which couple the micropolar deformation equations
the equations that model the evolution of voids. The evaluation of this dependence
is made by using an appropriate measure.

Acknowledgement: The authors are deeply grateful to the reviewers, whose very
pertinent suggestions have helped improve the paper.
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