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Flexoelectricity in Solid Dielectrics: From Theory to
Applications
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Abstract: Flexoelectricity phenomenologically describes the universal electrome-
chanical coupling effect between electric polarization and strain gradient, and elec-
tric field gradient and elastic strain. In contrast to piezoelectricity which is invalid
in materials with inversion symmetry, flexoelectricity exists, commonly, in all solid
dielectrics. In this paper, a summary of the research on flexoelectricity is presented
to illustrate the development of this topic. Flexoelectricity still have many open
questions and unresolved issues in the developing field, although it has attracted a
surge of attention recently. Here we review the theoretical investigations and ex-
perimental studies on flexoelectricity, and the aim of the current paper is to look
into the potential applications of this electromechanical coupling effect.

Keywords: Flexoelectricity, Strain gradient, Electric field gradient, Electrome-
chanical coupling.

1 Introduction

The development of nanotechnology, such as high performance electronics, in-
tegrated circuit, microelectromechanical systems and nanoelectromechanical sys-
tems, has the deepest effect on our daily life [Craighead (2000); Ekinci and Roukes
(2005)]. The conversion between mechanical energy and electrical energy has at-
tracted a surge of attention, such as field effect transistors [Nishi (1978); Javey
et al. (2003)], self-powered nanogenerators [Wang (2008); Xu et al. (2010);
Fan et al. (2012)], sensors and actuators [Park and Gao (2006)]. A novel appli-
cation is proposed to harvest the mechanical energy in the ambient based on the
classical piezoelectricity [Sodano et al. (2004); Hong and Moon (2005); Friswell
and Adhikari (2010)]. However, piezoelectric effect is commonly allowed in non-
centrosymmetric media. The presence of non-uniform strain field such as strain
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gradient can locally break the inversion symmetry and induces electric polariza-
tion in solid dielectrics, which has been termed as flexoelectric effect. Conversely,
mechanical stress can be generated by an electric field gradient [Tagantsev (1987);
Tagantsev (1991); Ma (2010); Lee and Noh (2012); Nguyen et al. (2013)]. Flex-
oelectricity phenomenologically describes the coupling between polarization and
strain gradient, and electric field gradient and stress. In contrast to piezoelectricity
which is invalid in materials with inversion symmetry, flexoelectricity exists in all
solid dielectrics, even in soft membranes [Petrov (2002); Deng et al. (2014)] and
biological tissues [Fu (2010)]. Flexoelectricity also manifests as a size-dependent
electromechanical coupling effect due to the including of strain gradient and elec-
tric field gradient. Moreover, flexoelectricity hold the promising applications in
nanoelectronics where strong strain gradients often be presented [Majdoub et al.
(2009a); Fu et al. (2011); Lee et al. (2012)].

In this paper, a summary of research on flexoelectricity is presented to illustrate the
development of such topic. The effect of flexoelectricity on the electromechanical
coupling response of nanostructures, the modified electrostatic potential generated
in a bent piezoelectric nanowires and piezoelectric semiconductor nanowires has
been discussed. Especially, the authors focus on the experimental study on the
flexoelectricity in solid materials, the experimental methods and results are dis-
cussed in this paper. The aim of this paper is to look into the potential applications
of this electromechanical coupling effect in engineering.

2 Fundamental of flexoelectricity

Flexoelectric effect is a fundamental physical property of dielectrics which can be
defined as the linear coupling between strain gradient and electric polarization, and
linear coupling between stress and electric field gradient. Although flexoelectric
effect is a universal electromechanical coupling effect, flexoelectricity has been
ignored for a long time. Recently, it was realized that the flexoelectric effect may
explain various physical phenomena in solids, such as the intrinsic “dead-layer” in
ferroelectric capacitors [Majdoub et al. (2009a); Maranganti et al. (2009)], the
size-dependent electromechanical coupling response of nanostructures [Liang and
Shen (2013); Yan and Jiang (2013a); Yan and Jiang (2013b); Liang et al. (2014)],
the rotation of electric polarization in ferroelectrics [Catalan et al. (2011)]. By
introducing the flexoelectricity, Liu et al. [Liu et al. (2012)] analytically solved the
electrostatic potential generated in a bent piezoelectric nanowire and Xu [Xu et al.
(2013)] discussed the interaction between flexoelectric effect and semiconductor
properties.

The fundamental physical formulation for the theory of flexoelectricity can be
found in many literatures, Hu and Shen [Hu and Shen (2009)] developed a the-
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ory for nano-dielectrics with electric field gradient effect, surface and electrostatic
force, Shen and Hu [Shen and Hu (2010)] developed a theory for solid dielectrics
with flexoelectric effect, surface effect and electrostatic force. These works pro-
vided the fundamental physical and mathematical description of the flexoelectric-
ity. Based on these theories, the effect of flexoelectric can be expressed as [Hu and
Shen (2009); Liang et al. (2014)]:

σi j = ci jklεkl − eki jEk −µkli j
∂Ek

∂xl

Pk = ε0χklEl + eki jεi j +µkli j
∂εi j

∂xl

(1)

where ci j is the elastic modulus, eki j is the piezoelectric constants, ε0 is the dielec-
tric constant of vacuum, χi j is the relative susceptibility and µi jkl is the flexoelectric
coefficients. εi j and Ek are the strain and electric field, σi j and Pk are the Cauchy
stress and electric polarization, respectively. The third terms in the right hand of
Eq. (1) describe the direct and converse flexoelectric effect.

It is worth mentioning that in the case of small gradients (such as mechanical bend-
ing), Eq. (1) is suitable, and however, in the case of strong gradients the following
expressions are suggested [Shen and Hu (2010); Yudin and Tagantsev (2013)]:

σi j = ci jklεkl +dki jPk + ekli j
∂Pk

∂xl

Ek = (ε0χkl)
−1 Pl +dki jεi j + fkli j

∂εi j

∂xl

(2)

where ekli j and fkli j are the converse and direct flexocoupling coefficients, respec-
tively. Eq. (1) and Eq. (2) give the completely full coupled description of flexoelec-
tricity. Based on these phenomenological descriptions, a series of theoretical works
have been done to investigate the flexoelectric effect in solid dielectrics, i.e., Yang
[Yang and Shen (2014)] solved the embedded inclusion problem by the generalized
Green’s function method, in which the flexoelectricity is taken into consideration.

Although there are some review papers on such topic [Maranganti et al. (2006);
Majdoub et al. (2008a); Yudin and Tagantsev (2013); Zubko et al. (2013)], flexo-
electricity still have many open questions in the developing field. Especially, review
on experimental studies of flexoelectricity has not been done so far, that is the focus
of this paper.

Flexoelectric effect has been discovered in the middle twentieth century, however,
it has been ignored for a long time by the researchers because this effect is quite
small at macroscopic level. With the development of new techniques and nanotech-
nology, flexoelectricity has attracted an increasing amount of attention. Typically,
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flexoelectricity has been found in presence of strong electromechanical coupling in
nano scaled materials and structures. In this section, we give a briefly summary of
the development of flexoelectricity.

Kogan (1964) developed the phenomenological description for electric polarization
due to strain gradient in solid crystals while Meyer (1969) discussed the contri-
bution of electric quadrupole to flexoelectricity. Indenbom (1981) suggested the
flexoelectricity for such phenomenon as was discussed in liquid crystals. In the
1980s, Tagantsev (1985,1986) gave a more extensively study on the flexoelectric
effect, and systematically studied four contributions to this effect, i.e. the bulk
static flexoelectric effect, the bulk dynamic flexoelectric effect, the surface flexo-
electric effect, and the surface piezoelectric effect. Based on the lattice dynamics
theory, an explicit expression for the flexoelectric coefficients is [Tagantsev (1986);
Fu et al. (2006)]:

µi jkl = χi jγkl
e
a

(3)

whereχ is the dielectric susceptibility, γ is the material parameter constant, e is the
electron charge and a the lattice parameter.

Inspired by the Tagantsev’s theory and lattice dynamics theory’s prediction, there
spring up numerous investigation on flexoelectricity. Marvan et al (1994) pro-
posed the parallel chains of harmonic oscillator model combined with surface force
rather than strain gradient to understand the physical reason of flexoelectric effect.
Klic et al. (2004) used the potential double-well model to derive the formula-
tion of flexoelectric coefficient which is compatible with Tagantsev’s expression.
Maranganti (2006) developed the fundamental solutions for spherical and cylindri-
cal inclusion problems from the framework of flexoelectricity. After that, Majdoub
(2008b,2009b) employed molecular dynamics to interpret the flexoelectric effect,
and investigated the size-dependent piezoelectric and elastic behavior by combin-
ing atomistic and theoretical approaches. Deng (2014) developed a nonlinear the-
oretical framework for flexoelectricity in soft material, and proposed a concept of
designing soft piezoelectric composite without using piezoelectric materials.

Variational principle has been regarded as the bases of the computational for elec-
tromechanical coupling problems for a long time. Hu and Shen (2009, 2010), Shen
and Hu (2010) proposed a variational principle based on electric enthalpy for nano-
sized dielectrics concerning the effects of flexoelectricity, surface and electrostatic
force. This works provide the physical fundamentals and computational method
for flexoelectricity. Based on this work, the size-dependent piezoelectricity and
elasticity due to strain gradient-electric field coupling has been studied based on
a modified Bernoulli-Euler beam model [Liang and Shen (2013)], the effect of
flexoelectricity on the electrostatic potential in bent ZnO and piezoelectric semi-
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conductive nanowire has been investigated and discussed [Liu et al. (2012); Xu et
al. (2013)]. The flexoelectric effect on elastic wave propagating in periodically lay-
ered nanostructure has also been performed using the transfer matrix method [Liu
et al. (2014)]. There are a series of theoretical works considering the flexoelectric
effect in nanoscale dielectrics, however, the flexoelectric coefficients have not be
experimentally measured. The difficulties in measuring flexoelectric coefficients of
dielectrics are in measuring tiny electric signals generated in bulk dielectrics or the
need of new detection techniques for nano scaled dielectrics.

3 Development of experiments on flexoelectricity

3.1 Experimental measurement of flexoelectric coefficients of ferroelectrics

Although lattice dynamics predict a much small magnitudes of the flexoelectric
coefficients, theoretical analysis have shown that flexoelectricity plays an important
role in enhancing the electromechanical coupling effect, especially in where strong
strain gradients is presented [Maranganti et al. (2006); Majdoub et al. (2008a);
Majdoub et al. (2008b); Majdoub et al. (2009a)]. To understand the flexoelectricity
better, it is very necessary to measure the flexoelectric coefficients of dielectrics,
typically for dielectrics with high dielectric constants (high dielectric susceptibility)
as suggested by the lattice dynamic theory. For cubic crystals, there are only three
independent non-zero components of the flexoelectric coefficients [Ma and Cross
(2001b); Ma (2007); Shu et al. (2011)]. By stretching or compressing a truncated
pyramid specimen, the flexoelectric coefficient µ11 has been measured [Fu et al.
(2006)]. By bending a cantilever beam specimen, the flexoelectric coefficient µ12
for a series of un-poled ferroelectrics has been measured [Ma and Cross (2001b, a);
Ma and Cross (2002); Ma and Cross (2005, 2006)]. Four point bending method is
also employed to measure the flexoelectric coefficient µ12 [Ma and Cross (2003)].
In these works, giant flexoelectric coefficients which are 4-5 order larger than the
predictions of lattice dynamics have been observed.

In the last decades, experiments on a series of ferroelectrics have been performed
inspired by the intrinsic property of flexoelectricity. Cross et al. studied the flexo-
electric effect in various perovskite ceramics, such as ferroelectric and paraelectric
Barium Titanate [Ma and Cross (2006)], Barium Strontium Titanate (BST) [Ma and
Cross (2002)], Lead Magnesium Niobate (PMN) [Ma and Cross (2001b)], Lead
ZirconateTitanate (PZT) [Ma and Cross (2003)]. In their analysis of experimental,
the quasi-static or low frequency dynamic techniques as well as four point bend-
ing configuration were employed to measure the flexoelectric coefficients. It is
found that the flexoelectric coefficient can come up to 100µC/m, 4-5 orders larger
than the lattice dynamic predictions (∼ 10-10 C/m). The temperature dependence



150 Copyright © 2015 Tech Science Press CMC, vol.45, no.3, pp.145-162, 2015

of flexoelectric coefficients has also been investigated in perovskite ceramics, and
it is found that flexoelectric coefficient approaches its peak at the phase transition
point [Ma and Cross (2006)].

By bending beam methods, the flexoelectric coefficient µ12 has been measured for
various ceramics. Figure 1 illustrated the bending method for measuring flexoelec-
tric coefficient. The wire connects to electrodes on the surface of the specimen for
current detection, and the displacement of the specimen is monitored. The electric
charge can be calculated from the measured electric current in the external elec-
trical circuit by Pi = i

/
2π f A, where i is the measured electrical current, f is the

driving frequency of the applied load and A is the area of the electrodes on the top
and bottom surface [Cross (2006)]. The flexoelectric effect of the specimen can be
simplified as

P3 = µ12
∂ε11

∂x3
(4)

where µ12 is the transverse flexoelectric coefficient.

Figure 1: Schematic for experiments measurement of flexoelectric coefficients by
bending mothed. a: cantilever bending method; b: four point bending method.
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By stretching or compressing truncated pyramid specimens, the flexoelectric coeffi-
cient µ11 for various ceramics has also been measured. Figure 2 gives the schematic
for the experiments set up. This special geometrical shape of the specimen was de-
signed to generate strain gradient when elastic stress is applied. The average strain
gradient in the truncated pyramid can be calculated from

∂ε11

∂x1
=

∆ε11

∆x1
=

εu
11 − ε l

11
h

(5)

The electric charge can be calculated from the measured electric current in the
external electrical circuit by Pi = i

/
2π f A, where i is the measured electrical current,

f is the driving frequency of the applied load and A is the area of the electrodes on
the top and bottom surface [Cross (2006)]. The definition of the direct flexoelectric
effect holds

P1 = µ11
∂ε11

∂x1
(6)

where µ11 is longitudinal flexoelectric coefficient.

After measured the electric current and calculated the average strain gradient, the
flexoelectric coefficient can be calculated

µ11 =
P1(

∂ε11
/

∂x1
)

average

and effective piezoelectric stress constant [Cross (2006)] can be defined from the
experiments as

d33 = µ11
a2

2 −a2
1

a2
1c11h

(7)

Eq. (6) indicates that flexoelectric effect can perform as piezoelectric effect, how-
ever, the effective piezoelectric stress constant related to the geometric parameters
of the specimen.

The flexoelectric coefficients and the material parameters for different ceramics are
listed in Table 1. These works proved the flexoelectric effect by experiments, in
addition it is found that the flexoelectric coefficient for high-K ceramics are 4-5
orders larger than the prediction by the lattice dynamic theory. It is also found that
the flexoelectric coefficients in ceramics have been enhanced by the high dielectric
susceptibility, which agrees well with the predictions of lattice dynamic theory.

Inspired by Cross’s works and the lattice dynamic prediction, ferroelectric compos-
ites with high dielectric susceptibility were fabricated. Giant flexoelectric coeffi-
cients in these composites are observed [Li et al. (2013); Shu et al. (2013); Kwon



152 Copyright © 2015 Tech Science Press CMC, vol.45, no.3, pp.145-162, 2015

Figure 2: Schematic for measuring flexoelectric coefficient µ11 by compressing a
truncated pyramid specimen.

Table 1: flexoelectric coefficient of various materials at room temperature (24˚C).

Material Flexoelectric
coefficient

Material
parameter (γ)

Relative dielectric
susceptibility

(χ/ε0)
PMN

(PbMg1/3NB2/3O3)
[Ma and Cross

(2001a)]

µ12 =
4×10−6C/m

0.65 ≈ 13,000

BST [Ma and Cross
(2002)]

µ12 =
100×10−6C/m

9.3 ≈ 20,000

PZT [Ma and Cross
(2003)]

µ12 =
2×10−6C/m

0.57 ≈ 2,200

BT [Ma and Cross
(2006)]

µ12 =
5×10−6C/m

11.4 ≈ 10,000

BST [Zhu et al.
(2006)]

µ11 =
120×10−6C/m

9.3 ≈ 20,000
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et al. (2014); Li et al. (2014); Shu et al. (2014a); Shu et al. (2014b)]. Although
there are many attempts on measuring the flexoelectric coefficient of ferroelectrics,
no works are made on measuring the flexoelectric µ44 of ceramics.

3.2 Measurement of flexoelectric effect in polyvinylidene fluoride films (PVDF)

Besides ferroelectrics, flexoelectric coefficients in some thermoplastic polymers
such as PVDF have been measured. Fu et al. [Fu et al. (2006); Fu et al. (2007);
Baskaran et al. (2011a); Baskaran et al. (2011b); Baskaran et al. (2011c); Baskaran
et al. (2012); He et al. (2012)] observed giant flexoelectric effect in polyvinylidene
fluoride (PVDF) films. Different shapes of no stretched and poled PVDF films were
measured via lock-in detection setup to verify the flexoelectric effect [Baskaran et
al. (2011a)].

The polarization in the film includes the residual piezoelectricity effect and the flex-
oelectric effect. The generated electric polarization in PVDF films can be written
as:

P1 = dr
11ES̄tra +µ11∇Stra (8)

where dr
11 represents the effective coefficient of the residual piezoelectricity due to

the residual electric polarization, microstructural effects such as defects, cracks and
might be the interaction between the α-phase and the amorphous phase in the film
[Baskaran et al. (2011a)]. E is the Young’s modulus, S̄tra is the average strain and
∇Stra is the average strain gradient. The flexoelectric coefficient can be derived as:

µ11 = (P1 −d33ES̄tra)/∇Stra (9)

Theoretically, the flexoelectric effect in polymers such as PVDF is similar to that
in liquid crystals. Therefore the flexoelectric effect in polymers is more compli-
cated than that in solid crystals. However, the mechanism of flexoelectric effect in
polymers has not been adequately understood so far.

4 Development of numerical methods of flexoelectricity

Strain gradient and electric field gradient are included in the theory of flexoelec-
tricity. Analytical solutions for the electromechanical coupled problems with flex-
oelectricity can be obtained for simple models such as beams, plates and so on.
For the case where the shapes and boundary conditions are complex, the numerical
methods are needed and urgent.

At the atomic level, Hong (2013) used the first-principles to calculate the flexoelec-
tric coefficient for cubic insulating materials. Mbarki (2014) used the molecular
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dynamics (MD) approach with specially tailored interatomic force-field to verify
flexoelectric effect of BST/STO and its temperature dependence. Atomic and MD
simulations, however, are expensive and restricted by the hardware conditions.

At the macroscopic level, numerical methods can be used to solve the compli-
cated electromechanical coupling problems with flexoelectricity. Classical finite
element methods cannot solve the higher order theories which including the gradi-
ents of strain and electric field. The mixed finite element methods or the meshless
methods might be the appropriate methods to solve the electromechanical coupling
problems with flexoelectricity. There are also some attempts on solving such elec-
tromechanical coupling problems. Arias et al. (2014, 2015) introduced the smooth
meshfree basis function to deal with the higher-order partial differential equations
which could be convenient when handle the general geometries and boundary con-
ditions. Darrall et al. (2015) provided the variational formulation and used the
mixed finite element method to solve the size-dependent problem. Several exam-
ples were bringing out to illustrate the size-dependent characteristics. Some other
researchers also conducted numerical study on flexoelectricity [Fang et al. (2013);
Yurkov (2015)].

5 Potential applications of flexoelectricity

There are also some applications based on the flexoelectric effect, such as curvature
detection by flexoelectric sensors [Kwon et al. (2013); Yan et al. (2013a); Yan et
al. (2013b)] and flexoelectric actuators [Hu et al. (2011)]. Among these structural
health monitoring (SHM) in mechanical, civil, shipbuilding, transportation and air-
craft structures may be the key point. The system defects such as cracks could
cause a catastrophic failure. The present detection technology involves time con-
suming, expensive and low accuracy, so the researchers and enterprise are always
hunting for the high efficiency with low cost structure health monitoring systems.
Strain gradient distribution changes abruptly in the vicinity of a crack due to the
stress concentration. Strain gradient in the vicinity of a crack can be measured
based on flexoelectric effect, and precautionary measures can be carried out based
on the estimation of loading parameter to avoid accident. A novel technique has
been proposed [Huang et al. (2012); Kwon et al. (2013); Yan et al. (2013b); Huang
et al. (2014a, b)] for structural health monitoring and crack detection based on the
flexoelectric effect. The strain gradient sensors were attached in the neighboring of
crack and hole with varied tension stress, the charge generated by flexoelectric ef-
fect was measured to predict the position of crack. In the centrosymmetric crystals,
the flexoelectricity can be written as[Huang et al. (2014a, b)]:

Pi = µ11
∂εii

∂xi
+µ12

(
∂ε j j

∂xi
+

∂εkk

∂xi

)
+µ44

(
∂ε ji

∂x j
+

∂εki

∂xk

)
(10)
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Another novel application for flexoelectric effect is to fabricate piezoelectric com-
posite but without any piezoelectric constituents. Cross [Fousek et al. (1999)]
analyzed the piezoelectric response of 0-3 composite made of non-piezoelectric
constituent. Then they presented a flexure mode multilayer composite in which gi-
ant piezoelectric effect was observed [Chu et al. (2009)]. Zhu et al. (2006) devised
the pyramid array structure based on the enhanced flexoelectric effect.

The flexoelectric coefficients of ceramics are affected by the grain size, tempera-
ture and loading frequency. Systematic investigations are needed to analyze these
factors. The flexoelectric effect in polymers is more complex, the mechanism has
not been fully understood so far. There is still a long way to go from theory to
engineering applications, in view of the difficulties in theoretical and experimental
works.

6 Conclusion

As a universal electromechanical coupling effect, flexoelectricity attracted an in-
creasing of attention. Flexoelectricity phenomenologically describes the coupling
between electric polarization and strain gradient, and electric field gradient and
stress. Flexoelectricity plays an important role in determining the electro-elastic
response of nanoscaled structures. In the last decades, a lot of experimental works
have been done to measure the flexoelectric coefficients of non-poled ferroelectrics
and thermoplastic polymers. The experimental methods and experimental results
are summarized and discussed in this paper. The potential applications such as flex-
oelectric sensors, actuators, structural health monitoring and crack detection have
also been briefly summarized.
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