Copyright © 2015 Tech Science Press CMC, vol.45, no.3, pp.163-186, 2015

Time-Dependent J-Integral Solution for Semi-elliptical
Surface Crack in HDPE

M. Bendouba', A. Djebli!, A. Aid', N. Benseddiq”> and M. Benguediab?

Abstract: This work focuses on a linear elastic analysis by the finite element
method and the development of a shape function, commonly known as geometri-
cal correction factor, for the case of semi-elliptical crack in a cylindrical rod. We
used the same shape function to analyze the behavior of the rod in the case of a
viscoelastic medium materialized by a polymeric material such as HDPE. A lin-
ear viscoelastic model calibrated from a relaxation test was developed and imple-
mented in Abaqus. Results showed a relatively good performance, compared with
finite element method.
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1 Introduction

The ability to predict crack growth continues to be a major component of re-
search for several structural materials. Multiple mechanisms may be responsible
for crack initiation, nevertheless eventually dominant fatigue cracks evolve into
surface cracks, which often have a semi-elliptical shape [Findley, (2007)]

Cylindrical components such as pipes, pins, reinforcement wires and shafts are
commonly used in engineering structures, where, under repeated or continued load-
ing, cracks may develop at the surface and grow across the section [Cai (2005)].
Due to geometrical complexity, certain simplification had been made for the crack
profile; early attempts used a straight edge [Daoud et al. (1978); Bush (1981);
Carpinteri (1992)] or a circular arc [Wilhem et al. (1982); Mackay and Alperin
(1985); Daoud (1985); Forman and Shivakumar (1986); Raju and Newman (1986)]
to idealize the crack front. These idealizations, although so close, are not exactly
in agreement with experimental observations [Shin and Cai (2004)]. Thus, the au-
thors, through recent works, agree on this crack configuration. Afterward, linear
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elastic fracture mechanics (LEFM) has been used to analyze stress intensity factors
along the crack front for the case of Mode I loading. Recently, a solution of SIFs
under mode III was proposed by Benhamena et al. (2011) for two bonded function-
ally graded material, and recently, the solution for combined loading (bending, ten-
sion and torsion) was proposed [Danton, (2002)]. Apart from the metallic materials
that have attracted abundant literature in this subject of research, the polymer ma-
terials, unfortunately, have not had their fair share of the subject, apart from works
dealing with the subject in point of view elastic or elastoplastic material domain.
However it is established that between this two domain, there is one area where the
response of the material is substantially dependent on the speed of loading. Thus,
unlike metallic materials, the mechanical properties of polymeric materials are in-
deed sensitive to many parameters, even under normal operating conditions, such
as loading rate and temperature. In addition, physical, chemical and mechanical
changes can occur in service, especially, when they are subjected to cyclic loading
(crack growth) as considered by Herndndez et al. (2001)

Controlling these parameters, and predicting their long-term effects, helps to avoid
design errors, and maintain the integrity of structures. For viscoelastic material,
fracture toughness is assumed to be a material property function. As such, it is
implicitly taken to depend on loading rate and temperature. In practice, this prop-
erty function may be quantified using differents methods. Popular among these
methods, the work of fracture, the critical energy release rate, the pseudo-elastic or
viscoelastic J integral, and the more common critical J integral [Riyadh and Wafa
(2006)] According to Danton (2002), it is unlikely that a single-parameter material
function would suffice to fully characterize the fracture response of a real linear
viscoelastic solid. In practice it is merely hoped that if geometric effects are re-
moved from the test data, a test article and a cracked structural component will fail
at the same value of the fracture parameter only if the corresponding failure times
are also the same.

It is in this restricted sense that the J integral at crack-growth initiation (Jc(?)) is
taken here as a measure of fracture resistance.

Many resent papers in fracture and fatigue analysis of complex 2D & 3D solid
structures and materials are presented [see, Dong and Atluri (2012); Dong and
Atluri (2013)]. The interest for this series of works is to explore the advantageous
features of computational methods as modelling the complicated uncracked struc-
tures with simple FEMs, and model the crack-singularities by mathematical meth-
ods such as complex variables, special functions.

HDPE is a significant material, whose tensile creep is a suitable measure of its
viscoelastic nature [Schapery (1984); Creus (1986)]. It is used in the manufactur-
ing of pipes for transporting fluids such as natural gas and water under relatively
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high permanent loads, for this reason it is necessary to develop simple tools for
engineers to optimize the design of all polymer components, while compromising
the safety and cost. When linear viscoelasticity theory is applied to the analysis
of the traction problem for a cracked body, the correspondence principle indicates
that stresses remain constant in time [Knauss (1973); Williams (1984); Masuero
and Creus (1993)]. Thus, when a K stress intensity criterion for crack growth is
applied, no deferred effect appears to be possible. On the other hand, experimental
results [Williams (1984); Ismail et al. (2012)] indicate that cracks in viscoelastic
materials grow under constant loads proficiently beneath the elastic fracture load
level. In this study, we analyze the applicability of the concept of the normalized
stress intensity factor, in the case of a viscoelastic material behavior. For that pur-
pose, finite element analysis is performed to analyze the behavior of a cylindrical
rod having a semi elliptical crack, by analyzing the evolution of stress intensities
along the crack front. The elastic mechanical properties such as Young’s modulus
(E) and Poisson’s ratio (V) are taken arbitrarily in order to calculate the normalized
SIF, and developing its analytical function under the Mode /I case loading. There-
after, we checked the validity of this function for the calculation of the J integral
in the case of viscoelastic response. Therefore, An expression of the normalized
SIFs F (a/c, a/D, x/h = 0) to the deepest point is obtained. The second purpose
of this paper is an analysis of visco-Elastic fracture behavior of HDPE rod loaded
in tension, by studying the J integral (in sense of G(¢)) evolution with time. The
results have led to the formulation of analytical J(¢) relationship that involve the
normalized SIFs (F (a/c, a/D, x/h = 0)) that has been developed in the first section
and time-dependent modulus E(¢). The analytical relationship obtained describes
the evolution of the energy release rate with time, and gives an advantage for quick
and simple calculation of the rupture parameters, such as the J integral.

2 Material and method

2.1 Geometrical model

This study presents a three dimensional finite element analysis using Abaqus com-
mercial [Abaqus (2009] code for semi-elliptical surface cracks in rod. The rod was
subjected to remote tension load. The ratio of crack depth to crack length (a/c)
ranged from 0.1 to 1, the ratio of crack depth to rod diameter (a/D) ranged from
0.05 to 0.45. Figure 1 presents the geometrical model used in this study.

2.2 Material Model

As has been argued above, this analysis highlights the point on the independence
of the normalized SIF F with respect to the elastic properties (E,v) intrinsic to
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h
Figure 1: Schematic illustration for surface cracked and definition of an arbitrary
crack shape.

the material, For this reason, the mechanical properties used in the calculation of
F are chosen arbitrarily, E=207 GPa and v=0.3, as values of Young’s modulus
and Poisson’s ratio, respectively. Otherwise, in the second section of this paper, the
mechanical model used is linear viscoelastic. The material of interest is a Polyethy-
lene HDPE characterized at different strain rates by Riadh et al. (2006), the authors
have confirmed, following an experimental analysis using creep and relaxation tests
at room temperature, the linear viscoelastic nature of the polymer of interest in
the field of small deformations. However, static mechanical properties for various
strain rates are shown in Tab.1 [Riadh et al. (2006)]

Table 1: Tensile mechanical properties of HDPE under different strain rates [Riadh
et al. (2006)].

Strain rate (s 1) | Plastic flow Stress | Elastic Modulus
(MPa) (MPa)
4 <1073 13.3 978
4 <1072 15.6 1060
4 x107! 26 1523

Figure 2 illustrates the superposition of the relaxation modulus for different levels

of imposed strains that assumes a linear viscoelastic behavior at room temperature
[Riadh et al., (2006)]
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Figure 2: Experimental tensile stress relaxation modulus E(t) of HDPE versus time
for different applied strain levels [Riadh et al. (2006].

2.3 Finite element modeling

Finite element model is developed using Abaqus, A refined mesh has been created
in the area that surrounds the crack front, with using of 20 nodes iso-parametric
quadratic brick elements. The square root singularity of stress and strain fields is
modeled by shifting the mid-point nodes to the quarter point location around the
crack line region This fact is made possible by choosing wedge elements with 15
nodes surrounding the crack tip (Figure 3).

Crack tip

Figure 3: Detailed modeling of the singularity in the region of the crack line.
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The geometry of the surface crack is completely defined by the size ratio a/D and
the crack shape ratio a/c (Figure 1), where D, a and c are, respectively, the diameter
of the rod, the crack depth (minor radius of the ellipse) and the major radius of the
ellipse. a/c is ranged between 0.1 to 0.9, while, a/D is taken between 0.05 and
0.45, with different increments to encompass the majority of shapes and sizes as
possible similar works as Dubois et al., (2001) the Warby et al., (1992) A typical
finite element model is shown in Figure 4

Figure 4: Typical Finite element model.

We have applied uniaxial tensile load at the free end of the rod, the other end (the
crack plane minus its surface) is fixed with respect to displacement along the axis
of the rod as rotations. For reasons of symmetry of loading and geometry, we used
a quarter of the rod to minimize the cost in computation time and memory space
allocated. The rods length is taken to H =200 mm. since, as it is illustrated in Figure
5, the value of J is independent of this latter, however, Raju and Newman (1986)
require a length sufficiently large as a condition of applicability of their approach;
the diameter D is fixed to D=20 mm.

2.4 Evaluation of the rupture parameters
2.4.1 Normalized SIF F

It is recognized in linear fracture mechanics that stress intensity factor is obtained
by the following relation:

K = F.o\/7a, (1)

The elastic FE results displays the elastic component of J integral, the stress inten-
sity factor for mode / condition can be extracted as:

K =VJ.E', ()
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Figure 5: Elastic FE results of J integral along the crack front for different rod
lengths.

Where, the subscript / indicates the mode one (crack opening), E’ = E for plane
stress condition and E’' = E / 1 — v? for plane strain condition.

A normalized SIF (shape function), F, can be defined as:

Fi=KifoVra=VIFE [oVza 3)

F values will be evaluated using the results of the J-integral obtained by numerical
simulation, just the deepest point A will be discussed here, yet a full analysis of the
results allows extending the current approach to all points on the line of the crack
front with restrictions on the outer point where the singularity is poorly defined
[Danton (2002)]

3 Analysis of J

Through the results obtained in this study, we found a fact that different contours
integrals yield almost equal values of J (except the first contour), which confirms
one of the properties of J through our calculations; we have chosen the values of
the last contour in the analysis. Figure 6 illustrate three trends of J along the crack
front, which provides information on the intensity distribution of stresses.

The first tendency is that obtained for aspect ratios (0.1 < a/c < 0.5), we note that
J is maximum at the deepest point of the crack (see Figure 1) and it is a minimum
in the surface point of the crack , The second trend is observed for the aspect ratios
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Figure 6: FE results of J for various crack parameters a) a/D=0.2, b) a/D=0.333.

(0.6, 0.7), where J shows relative stability along the crack front, for aspect ratios
greater than 0.7, the trend is reversed and Jbecomes maximum at the surface point
and it decreases to the minimum value at the deepest point. The evolution of J
shown in Figure 6 is qualitatively reproduced for all size ratios (a/D). Figure 7
shows the results of J as a function of the position on the crack front for a size ratio
a/D =0.133, and different shape ratios. The three trends of J are clearly illustrated.
These results yield an idea on the crack propagation.
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Figure 7: The effect of aspect ratio (a/c) on the value of J along the crack front for
a size ratio a/D = 0.133.



Time-Dependent J-Integral Solution 171

Now, if the initial crack configuration where (a/c) is greater than 0.7 is assumed,
crack starts propagating at the outside point. The parameter (c) is expanded, there-
fore, (a/c) decreases and the crack adopts a larger configuration, at this stage, the
depth (a) is constant and remains constant until (a/c) is equal to or less than 0.5, J
will now be maximum at the deepest point. It is noted here that the critical value of
J is reached first and therefore (a) increases. The propagation process is reversed
to the depth direction. The crack has a larger size and will find its original shape.

4 Results
4.1 Normalized SIF (F) formulation

Now, we present the expression of the Normalized SIF (F) to be used in the ana-

lytical formulation of J in the section dealing with the linear viscoelastic behavior
of HDPE.

The results obtained by the FEM allowed us to calculate (F) for all shape and size
ratios, and after smoothing the results, we established an expression that gives (F')
as a function of (a/c and a/D) Attention is pointed on the deepest point A (x/h=0,
Figure 1). Thus, (x/h) will not be taken as a parameter in the function. The results
are validated by comparison with those collected from literature. Figure 8 show the
variation of F as a function with the respect of the aspect ratios for different size
ratios. A polynomial fit of results in Figure 9 provides a variety of coefficient bi

(bi=f (a/D)).
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Figure 8: Variation of F as a function of aspect ratios for different size ratios.
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We observe that, indeed, F decreases with increasing (a/c) and it increases with
increasing (a/D). The combination of data and the curves fitting resulted in an
expression of (F') as follows:

303 i ;
al raij
Foreo =Y Y B 2] [5] *)
i=0 j=0 ¢
The values of B;; are summarized in Tab. 2

The results summarized in Figure 10 show confrontations of our results with those
of Shin and Cai, (2004). In the works of Warby et al. (1992) and those of Raju and
Newman (1986), we note here that we used configurations of cracks similar to shin
and Cai (2004) However, Raju and Newman (1986) define the parameter c as the
length intersection of the crack surface with the outer surface of the rod. Results
of F expression obtained in this work are in agreement with the results obtained
by Shin and Cai (2004) for all aspect ratios. Deviations are observed from the
results Raju and Newman (1986), especially for large size ratios. This fact can be
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Table 2: B;; Factors of Eq. 4.

/i1 0 1 2 3

0 | 0.6733 4.6595 | -17.4969 | 32.4207

1 0.3710 | 4.71931 | -16.1446 | 19.9367

2 1.1013 | -23.8917 | 87.0521 | -115.091

3 | -0.8204 | 15.5833 | -56.5025 | 69.7002
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Figure 10: Variation of F with respect to a/D, a) Comparison of present results for
a/c=0.6, b) a/c= 0.8, ¢) a/c=1.

explained by the difference between the definition of crack parameter c, therefore,
if we observe Figure 10(b), where (a/c) =0.8, the difference between the results
decreases significantly.

Exactly, at this configuration, we have observed that the two definitions of ¢ co-
incide, which explain the consistency of the F values. For aspect ratios less than
0.8, our results are below those of Raju and Newman (1986) (Figure 10(a)), the
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difference becomes greater pronounced by increasing the size ratios (a/D), in the
other hand, for a/c greater than 0.8, our results are above those of Raju and New-
man (1986) (Figure 10(c)). These observations are illuminated by Figure 11 that
confirms the observation made for the consistency of the results with those of Shin
and Cai (2004). We clearly observe that the curves intersect at the point (a/c =
0.8), where we observe almost the same value of F'.
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Figure 11: Variation of F with respect to a/c, comparison of the present results for;
a)a/c=0.6,b)a/c=0.8 and ¢) a/c=1.

4.2 Correspondence principle for viscoelastic material.

Polymeric materials such as HDPE are increasingly used in engineering; these vis-
coelastic materials are time-dependent. That is, the viscoelastic mechanical behav-
ior problems are dependent on both the current state and the entire history [Riadh
and Wafa (2006)] This material is a typical mesoscopic response of semicrystalline
polymers, see Tomita and Uchida (2005). Generally, the stress level is relatively
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Figure 13: Evolution of J with time along the crack front for a/D=0.35 and
a/c=0.9.

low and loading time is not long, so the mechanical properties of numerous vis-
coelastic materials are usually modeled as linear viscoelastic materials [Williams
(1984)] For linear viscoelasticity, the determination of solutions is to invoke the
numerical inversion of Laplace transform [Marques and Creus (2012)]. FEM, as
commonly computational methods, has been used to investigate viscoelastic prob-
lems [Park and Schapery (1999); Stavros and Jiangwei (2008)]. So, for service
loading conditions, and with the assumption that the material is homogeneous and
isotropic, we applied the finite element method to calculate J-integrals. Results are
shown in Figure 12 and 13, where, for various loading time, we present the results
of J along the crack front. Figure 12 indicates an increase of J for each point on the
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crack with time for a/c=0.2. Figure 13 indicates the same trend of J for each point
along the crack front with time for a/c=0.9, except this, we note the same trends
discussed above.

4.3 Viscoelastic formulation

The viscoelastic behavior is characterized by a time hereditary relationship between
stresses and strains. Afterwards, according to time evolutions of stress and strain
scalar 6(7) and () respectively, the behavior law is described by a Boltzmann’s
integral:

t
d
e(t) = / it - .52, 5)
0

Where j(r — 7) is the time creep function in where, ¢ and 7 are actual and delayed
times respectively.

Since several years, this formulation is implemented in the finite element method
allowing a mechanical field definition and energy interpretations. The finite ele-
ment implementation, of the hereditary integral (Eq. 5) requests to develop mem-
orization techniques for mechanical field history. In this context, we propose in
the present work to formulate an analytical expression based on the linear fracture
mechanic. The principle of the proposed procedure is based on the fact that it is
possible to reduce the problem to instantaneous linear elastic by increments. This
means that, at every moment, we calculate the value of the J-integral based on the
updated mechanical properties. The shape function (normalized SIF) is the same.

4.4 Formulation procedure

The geometrical model is the same as that used for the calculation of the normalized
SIF for a semi-elliptical surface crack studied in the previous sections. This same
function is assumed to be constant for a given configuration of crack; it varies
only with cracks parameter, the elastic modulus varies with time, it is given, for
relaxation case, by

E/(1) ===, ©)

Where, o () is the time-dependent stress and € is the applied strain. For creep,
the stress is kept constant at 6y and the variation of deformation with time &(¢) is
measured. The time-dependent creep modulus is given by:

Eu()= 22 (7)
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The time domain viscoelastic material model available in Abaqus describes isotropic
rate-dependent material behavior for materials in which dissipative losses primarily

caused by viscous (internal damping) effects, assuming that the shear and volumet-

ric behaviors are independent in multiaxial stress states (except when used for an

elastomeric foam), it can be used only in conjunction with linear elastic behavior,

hyperelastic behavior of rubber materials or hyperelastic behavior for elastomeric

foams. It can be calibrated using time-dependent creep test data, time-dependent

relaxation test data, or frequency-dependent cyclic test data [Abaqus (2009)]

The basic hereditary integral formulation for linear isotropic viscoelasticity is:
t t
o(t):/2G(t—r)é~dr+I/K(t—r)chr, (8)
0 0

Where e and ¢ are the mechanical deviatoric and volumetric strains, K is the bulk
modulus and G is the shear modulus, which are function of time [Stavros and Jiang-
wei (2008)]

The relaxation function K (¢) and G(¢) can be defined individually in terms of Prony
series [Park and Schapery (1999)]:

ng %

K(t) = Ket Y Ki-e /% ©)
i=1
nG G

G(t) =Gty Gi-e ¥/ (10)

i=1

Where K.. and G.. represent the long term bulk and shear modulus. In order to
numerically simulate the response of HDPE rod in this analysis, at least one curve
of relaxation or creep is required for calibration of our material, since it is possi-
ble to interconvert between the viscoelastic functions, based on Prony series [Park
and Schapery (1999] For this purpose, we need to transform the results of the test
performed in tension (Figure 2) to relaxation shear data, using the relation:

G(t)=E(1)/2(1-v), (11)

Where, v denotes Poisson’s ratio, it is assumed to be constant throughout the period
of relaxation. Let us, now, consider shear test at small strain where the response is
the shear stress, the viscoelastic material model defines 7(z) as:

(1) = [ Gult ~) ¥(s)ds (12)
0
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Where Gg(?) is the time-dependent shear relaxation modulus, which characterizes
the materials response. This constitutive behavior is illustrated by considering a
relaxation test in which strain is suddenly applied to a specimen and next constant
for a long time. The initial time is taken as s=0 in the beginning of the experiment,
so that:

T(t) = G(1) -V, (13)

L]
Since ¥ = 0 for ¢ > OFor long time, the response settles down to a constant stress;
i.e. lim Gg(f) = G.. Normalized shear relaxation modulus is needed as input data
t—roo

for calibration of long term response of the material, that, it is given by:

gr(t) = Gg(t)/Go, (14)

Go = G(0) is the instantaneous shear modulus, the normalized relaxation function
(required as data input) has the limiting values gg(0) = 1 and gg() = G../Go.
For Elastic domain, we need to integrate elastic modulus; it is taken equal to 1060
MPa. Corresponding to the strain rate £’= 4.1072, Poisson’s ratio is arbitrarily
chosen equal to 0.35.

4.5 Analytical viscoelastic J integral solution

When the evaluation of the strain energy release rate G is based on energy varia-
tions from an instantaneously elastic state, a correspondence can be established be-
tween the viscoelastic and a fictitious elastic problem [(Marc and Hung (2004)]. As
pointed out by Schapery (1990). In the works of Nguyena et al. (2008), it would yet
be possible to identify a path-independent integral J(7) which is identical to G and
obtained directly from an elastic solution consisting of the current stress field o
appropriately defined displacements X and strains fields 8{}. The path-independent
integral is given by [Marc and Hung (2004); Nguyena ef al. (2008); Duan et al.
(2012)]

J= /(de2 — piufydr), (15)
T
Where
€
W= /Gij(t)dsf (16)

0
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It is always possible to identify J(71) corresponding to G(¢1) when the resulting
stress field o;;(;) is combined with uf and 85 fields, determined from an elas-
tic analysis under boundary traction p;(;), using as material constants, the mod-
ule 1(0) and k(0). Analytical expression of Energy release rate J(¢) formulated in
this work is based on knowledge of the law evolution of the elastic modulus with
time. However, this modulus is numerically calculated using Prony series [Park and
Schapery (1999)] approximation of relaxation test in Figure 2. Curve fitting of the
relaxation modulus versus time leads to the expression of E(¢) which is expressed

as follows:

3
E(t)=Ew+) Ejexp—t/T, (17
i=1
This equation is typically analogous to Eq. 10 with three decades of recovery time.
E.., E; and T; are the rheological parameters for the viscoelastic model for a given
conditions, their values are given in Tab. 3.

Table 3: Viscoelastic model parameters of the studied HDPE at room temperature.

Ee E, T (s) E; T; (s) Es T3 (s)
(MPa) | (MPa) (MPa) (MPa)
291.05 | 288.99 | 321.18 | 183.90 | 1575.26 | 277.31 | 13893.16

Using Eq. 7 allows us, to check the validity of Eq. 17 in the calculations that follow.
Figure 14 shows the results of E(¢) calculated by using €33(¢) obtained by the FE
method (Figure 15) compared with E(¢) calculated directly by Eq. 17. We note that
we have imposed an axial stress equal to 1 MPa at the end of the rod, the same limit
conditions was applied. Thus, Figure 14 shows an agreement of E(¢) calculated
directly by Eq. 17 with E(¢) calculated by dividing axial strain FE output (Figure
15) by instantaneous applied stress.

So the simulation by finite element method is reliable and can be replaced by an-
alytical equation. Based on these results, we propose to develop an analytical ex-
pression for J, involving E(¢) given by Eq. 17, and the shape function which is
determined by Eq. 4 above. Once the expressions of F' (Eq. 4) and the expression
of E(t) expressed by Eq. 17 are found, we formulate the expression of the J integral
using the expression of SIF K given by Eq. 1.

Jo=K*/E(1- %), (18)

Where, J,; is the elastic domain of J, therefore; viscoelastic expression of J is



180

Copyright © 2015 Tech Science Press

CMC, vol.45, no.3, pp.163-186, 2015

X Calculated with Eq.17
—— EF results

T
1x10*

T T T T T T
4x10* 5x10' 6x10' 7x10" 8x10' 9x10® 41x10°

Time (s)

T T
2x10"  3x10"

Figure 14: Comparison between FE results and analytical viscoelastic model (E(t))
calculated with Eq. 17.
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obtained by substituting E by E(t) expressed in Eq. 17, and using the expression
of F for the deepest point of the crack (point A in Figure 1)

Viscoelastic J integral is written as

_ Flogm(1—9?)

J,=J(1) E(7)

19)
That gives the dependant-time analytical expression of J(¢) as a function of F,
which depends on surface crack parameters, E(¢) which is function of creep time,

and of course, the remote axial stress as a constant throughout time and the crack
depth

12

£ £ m()/()] wman-

Eot i Ajexp(—t/Ty) ’ 20)
i=1

This work deals with the problem of viscoelastic fracture of a cylindrical rod. Thus,
as shown in Figure 14, the viscoelastic model developed after calibration of a re-
laxation test on a specimen HDPE is highly reliable owing to accurately reproduces
the response to loading of the rod for a given period. Nevertheless, and given the
tremendous effort in time and resources, e.g. memory space allocated to the stor-
age of meshes and output data for post-processing, it is convenient for an engineer
to possess means simple calculations. Simply, the analytical method, that provides
proven effectiveness. Of course, it should be accompanied by the finite element
method which is the further widely used, especially for complicated problems. For
the constant loading, the stress intensity factors for the crack in a linear viscoelastic
material are invariable along with time and their values are the same as those for the
corresponding elastic material [Duan (2012]; Lei et al. (2012)]. So the latter case
can be referred to check the validity of the developed expression. Figure 16 (a) to
16 (d) summarize certain results of the J-integral calculated by the analytical rela-
tion proposed here. Comparisons between them and the results extracted from the
numerical simulation by FEM, give satisfaction, however, it should be noted that
deviations were observed for long load times, which can be explained by the accu-
mulation of error with increasing iterations, taking into account the discrepancies
of approximation.

Figure 17 (a) and 17 (b) illustrate this last observation for periods of loading up to
90,000 seconds, where the difference between the results is pronounced for periods
exceeding 30 000 seconds in both cases, the results always converge to one J value
which remains constant when E () reaches E... Both curves of Figs 17 (a) and 17
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Figure 16: Energy release rate (J-integral) of the HDPE rod subjected to tension at
the deepest point A. (a). Comparison between analytical and FE results for crack
size ratio 0.15and crack shape ratio 0.4. (b) crack size ratio 0.15 and crack shape
ratio 0.9; (c) crack size ratio 0.2 and crack shape ratio 0.4 and (d) crack size ratio
0.2 and crack shape ratio 0.5
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Figure 17: Long term energy release rate (J-integral) of HDPE rod subjected to
tension for the deepest point A. (a) Comparison between analytical and FE results
for crack size ratio 0.2 and crack shape ratio 0.1 (b) crack size ratio 0.35 and crack
shape ratio 0.9
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(b) converge to the same horizontal asymptote that takes the value of J, infinite J
is specific for each cracks configuration, it depends of course on the value of the
shape function.

For example, in the case where a/D = 0.35 and a/c=0.9 (Fig.17 (b)), J converges
to 0.0660 MPa.mm for the finite element method and to 0.0636 MPa.mm for the
analytical method. So if we consider the simulation results as a reference, we can
estimate relative errors equal to 3.63 percent for the first case and 4.78 percent in the
case of a/D = 0.2 and a/c = 0.1 (Figure 17 (a)), Considered eligible in numerical
approximations.

5 Conclusion

This work deals with the problem of viscoelastic fracture of a cylindrical rod. How-
ever, anormalized SIF is determined for an arbitrary elastic material; it is applicable
to HDPE of study. The results of this work show that

- The Normalized SIF is independent of the material. Moreover, it depends on the
parameters of the crack surface.

- Knowledge of the stress intensity repartition along the crack front, by using a
simple analytical expression of the normalized SIF, gives access to J as a rupture
parameter that is widely used for its simplicity and its experimental determination
established.

- Results of this work allowed developing a simple analytical expression giving the
time-dependent J integral involving the Young’s modulus which is itself a function
of time and the shape function.

- The correspondence principle between elastic and viscoelastic problem has been
used, the numerical simulations give similar results to those calculated by the ex-
pression developed in this work, consequently, the J integral method, by its sim-
plicity, can be exploited in the case of a viscoelastic medium such as HDPE.

- Because very small computational burden is needed, the current Method is very
suitable for fracture analyse of 3D structures such as cylindrical rod with a semi-
elliptical crack

- A more detailed study is in progress, where the use of the correspondence prin-
ciple will be retained in the case of pressurized HDPE pipes containing cracks in
different positions and a more rigorous shape function will be necessary
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