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Abstract: The problem of the generalized thermoelastic medium for three differ-
ent theories under the effect of a gravitational field is investigated. The Lord–
Shulman, Green-Naghdi III, three-phase-lag theories are discussed with two-
temperature. The normal mode analysis is used to obtain the analytical expres-
sions of the displacement components, force stress, thermodynamic temperature
and conductive temperature. The numerical results are given and presented graph-
ically, when the thermal force is applied. Comparisons are made with the results
predicted by three-phase-lag model, Green-Naghdi III and Lord-Shulman theories
in the presence and absence of gravity as well as two temperature.
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Nomenclature

λ ,µ Lame’s parameter counterparts
u,w displacement components
g gravity
a the volume coefficient of thermal expansion
δi j Kronecker delta
ρ mass density
ce specific heat at constant strain
K(≥0) thermal conductivity
K∗ material characteristic of the theory
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T thermodynamic temperature
T0 reference temperature
φ conductive temperature
τv phase lag of thermal displacement gradient
τt phase lag of temperature gradient
τq phase lag of heat flux
b constant material "two temperature parameter "
ωi j skew symmetric tensor called the rotation tensor

1 Introduction

The effect of mechanical and thermal disturbances on an elastic body is studied
by the theory of thermoelasticity. This theory has two defects, it has been studied
by Biot (1956). He deals with a defect of the uncoupled theory that mechanical
causes have no effect on temperature. This theory predicts an infinite speed of
propagation of heat waves which is a defect that it shares with the uncoupled the-
ory. The first theory was studied by Lord and Shulman (1967), who formulated
the generalized thermoelasticity theory involving one thermal relaxation time. The
second theory was discussed by Green–Lindsay (1972). They introduced two dif-
ferent relaxation times in the entropy expression and stress–strain relations. The
third generalization of the coupled theory of thermoelasticity introduced by Green
and Naghdi (1993) whose developed different theories labeled type I, type II, and
type III. The Green–Naghdi (G-N) theory of type I in the linearized theory is equiv-
alent to the classical coupled thermoelasticity theory, the (G-N) theory of type II
does not admit energy dissipation, and the third (G-N) theory of type III admits
dissipation of energy and the heat flux is a combination of type I and type II. The
fourth generalization of the coupled theory of thermoelasticity is developed by Tzau
(1995) and Chandrasekhariah (1998) and is referred to the dual-phase-lag thermoe-
lasticity. Abbas and Othman (2012) have studied the generalized thermoelsticity of
thermal shock problem in an isotropic hollow cylinder and temperature dependent
elastic moduli. Raychoudhuri (2007) has recently introduced the three-phase-lag,
heat conduction equation in which the Fourier law of heat conduction is replaced
by an approximation to a modification of the Fourier law with the introduction of
three different phase-lag for the heat flux vector, the temperature gradient and the
thermal displacement gradient. The stability of the three-phase-lag, the heat con-
duction equation is discussed by Quintanilla and Racke (2008). Reflection and
transmission of waves from the imperfect boundary between two heat conducting
micropolar thermoelastic solids by Marin (2014a). Weak solutions in elasticity of
dipolar bodies with stretch were studied by Marin (2013). On temporal behav-
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ior of solutions in thermoelasticity of porous micropolar bodies by Marin (2014b).
The effect of initial stress on generalized thermoelastic medium with three-phase-
lag model under temperature dependent properties has studied by Othman et al.
(2014a). Subsequently Kar and Kanoria (2009) have employed this theory of ther-
moelasticity with three-phase-lag to discuss a problem of thermoelastic interactions
on functional graded orthotropic hollow sphere under thermal shock.

In the classical theory of elasticity, the gravity effect is generally neglected. Gen-
eralized thermoelastic medium with temperature-dependent properties for different
theories under the effect of gravity field has studied by Othman et al. (2013a).
The effect of gravity in the problem of propagation of waves in solids, in partic-
ular on an elastic globe, was first studied by Bromwich (1898). The influence of
the gravitational field and rotation on a generalized thermoelastic medium using
a dual-phase-lag model has studied by Othman et al. (2013b). Subsequently, an
investigation of the influence of the gravitational field and rotation on thermoelas-
tic solid with voids under Green-Naghdi theory was considered by Othman et al.
(2013c). The effect of gravity on the surface waves, on the propagation of waves
in an elastic layer has been studied by De and Sengupta (1974 and 1978). The
effect of rotation on micropolar generalized thermoelasticity with two temperature
using a dual-phase-lag model has studied by Othman et al. (2014b). Generalized
thermoelsticity of thermal shock problem in a non-homo-geneous isotropic hollow
cylinder with energy dissipation studied by Othman and Abbas (2012).

The two temperature theory of thermoelasticity was introduced by Gurtin and
Williams (1967), Chen and Gurtin (1968), and Chen et al. (1968), in which the
classical Clausius-Duhem inequality was replaced by another one depending on
two temperature; the conductive temperature and the thermodynamic temperature,
the first is due to the thermal processes, and the second is due to the mechanical pro-
cesses inherent between the particles and the layers of elastic material, this theory
was also investigated by Ieşan (1970). The two-temperature model was underrated
and unnoticed for many years thereafter. Only in the last decade has the theory
been noticed, developed in many works, and find its applications, mainly in the
problems in which the discontinuities of stresses have no physical interpretations.
Among the authors who contribute to develop this theory, Quintanilla (2004) stud-
ied existence, structural stability, convergence and spatial behavior of this theory.
Youssef (2006) introduced the generalized Fourier’s law to the field equations of the
two-temperature theory of thermoelasticity and proved the uniqueness of the solu-
tion for homogeneous isotropic material, Puri and Jordan (2006) studied the prop-
agation of harmonic plane waves. Recently, Magaña and Quintanilla (2009) have
studied the uniqueness and growth solutions for the model proposed by Youssef
(2006).
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The present paper is concerned with the investigations related to the effect of grav-
ity with two temperature on a generalized thermoelastic medium based on three-
phase-lag model by applying the normal mode analysis. Also, the effect of gravity
and two-temperature on the physical quantities are discussed numerically and illus-
trated graphically.

2 Formulation of the problem and basic equations

We consider a homogeneous thermoelastic half-space with two-temperature under
the influence of gravity. All the considered quantities are functions of the time
variable t and of the coordinates x and z We consider the normal source acting
on the plane surface of generalized thermoelastic half-space under the influence of
gravity. The system of governing equations of a linear thermoelasticity with gravity
and without body forces consists of:

The stress-strain relation written as:

σi j = 2µ ei j +[λ e− γ (T −T0)]δi j. (1)

The equation of motion in the absence of body force

σi j, j +ρgw,x = ρ ü, (2)

σi j, j−ρgu,x = ρẅ. (3)

The equation of heat conduction under three phase lag model

K∗∇2
φ + τ

∗
v ∇

2
φ̇ +Kτt∇

2
φ̈ = (1+ τq

∂

∂ t
+

τ2
q

2!
∂ 2

∂ t2 )(ρceT̈ + γT0ë). (4)

Where, τ∗v = (K +K∗τv),

T = (1−b∇
2)φ , (5)

ei j =
1
2
(ui, j +u j,i), (6)

ωi j =
1
2
(u j,i−ui, j). (7)

For a two dimensional problem in xz-plane, Eqs. (2) - (4) can be written as:

µ ∇
2u+(λ +µ)

∂e
∂x
− γ (1−b∇

2)
∂φ

∂x
+ρg

∂w
∂x

= ρ
∂ 2u
∂ t2 , (8)

µ ∇
2w+(λ +µ)

∂e
∂ z
− γ (1−b∇

2)
∂φ

∂ z
−ρg

∂u
∂x

= ρ
∂ 2w
∂ t2 , (9)
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K∗∇2
φ +τ

∗
v ∇

2 ∂φ

∂ t
+Kτt∇

2 ∂ 2φ

∂ t2 =(1+τq
∂

∂ t
+

τ2
q

2!
∂ 2

∂ t2 )[(ρce(1−b∇
2)φ̈ +γT0

∂ 2e
∂ t2 ].

(10)

For the purpose of numerical evaluation, we introduce dimensions variables

(x′,z′) =
ω∗

c0
(x,z), (u′,w′) =

ρc0ω∗

γT0
(u,w),

σ
′
i j =

1
γT0

σi j, (t ′,τ ′v,τ
′
q,τ
′
t ) = ω

∗(t,τv,τq,τt),

[T ′,φ ′] =
1
T0

[T,φ ], c2
0 =

λ +2µ

ρ
, e =

γT0

ρc2
0

e′, g′ =
g

c0ω∗

ω
∗ =

ρcec2
0

K
, ∇

2 =
ω∗2

c2
0

∇
′2

γ = (3λ +2µ)αt

Using the above dimensions quantities, Eqs. (8) - (10) become

(
µ

λ +2µ
)∇2u+(

λ +µ

λ +2µ
)
∂e
∂x
− (1−b∗∇2)

∂φ

∂x
+g

∂w
∂x

=
∂ 2u
∂ t2 , (11)

(
µ

λ +2µ
)∇2w+(

λ +µ

λ +2µ
)
∂e
∂ z
− (1−b∗∇2)

∂φ

∂ z
−g

∂u
∂x

=
∂ 2w
∂ t2 , (12)

ε1∇
2
φ + ε2∇

2
φ̇ + τt∇

2
φ̈ = (1+ τq

∂

∂ t
+

τ2
q

2!
∂ 2

∂ t2 )[(1−b∗∇2)φ̈ + ε3ë]. (13)

Where, ε1 =
K∗

ρcec2
0
, ε2 = 1+ ε1τv, ε3 =

γ2T0
ρ2cec2

0
, b∗ = bω∗2

c2
0
.

We define displacement potentials q and ψ which relate to displacement compo-
nents u and w as,

u = q,x−ψ,z, w = q,z + ψ,x. (14)

Using Eq. (14) in Eqs. (11)-(13), we obtain:

∇
2q− (1−b∗∇2)φ +g

∂ψ

∂x
=

∂ 2q
∂ t2 , (15)

a1∇
2
ψ−g

∂q
∂x

=
∂ 2ψ

∂ t2 , (16)

ε1∇
2
φ + ε2∇

2
φ̇ + τt∇

2
φ̈ = (1+ τq

∂

∂ t
+

τ2
q

2!
∂ 2

∂ t2 )[(1−b∗∇2)φ̈ + ε3∇
2q̈]. (17)

Where, a1 =
µ

λ+2µ
= 1

β 2 .
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3 Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form

[u,w,e,T,φ ,q,ψ,σi j](x,z, t) = [u∗,w∗,e∗,T ∗,φ ∗,q∗,ψ∗,σ∗i j](z)exp[i(ωt +ax)].

(18)

Where, ω is the complex time constant and a is the wave number in x-direction.

Using (18) in Eqs. (15)-(17), we obtain

(D2−A1)q∗− (A2−b∗D2)φ ∗+A3ψ
∗ = 0, (19)

(a1D2−A4)ψ
∗−A3q∗ = 0, (20)

(A5D2−A6)φ
∗+A7(D2−a2)q∗ = 0. (21)

Where, A1 = (a2−ω2), A2 = 1+b∗a2, A3 = iag, A4 = a2a1−ω2,

A5 = ε1 + iε2ω− τtω
2−b∗ω2[1+ iτqω−

τ2
q

2!
ω

2],

A6 = (ε1a2 + iε2ωa2− τtω
2a2)+(ω2 +a2

ω
2b∗)[1+ iτqω−

τ2
q

2!
ω

2],

A7 = ε3ω
2[1+ iτqω−

τ2
q

2!
ω

2].

Eliminating φ ∗ and ψ∗ between Eqs. (19) - (21), we get

[D6−AD4 +BD2−C]{q∗(z),φ ∗(z),ψ∗(z)}= 0. (22)

Where,

A =
A4A7b∗+b∗a2a1A7−a1A2A7−A4A5−a1A6−a1A5A1

b∗a1A7−a1A5
,

B =
−a1A1A6−A1A4A5−A4A6 +A2A7a2a1 +A2A4A7 +b∗A4A7a2−A3A3A5

b∗a1A7−a1A5
,

C =
−A1A4A6 +A2A4A7a2−A3A3A6

b∗a1A7−a1A5
, D =

d
dz
.

The solution of Eq. (22) has the form

q∗ =
3

∑
n=1

Mne−knz, (23)
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ψ
∗ =

3

∑
n=1

H1nMne−knz, (24)

φ
∗ =

3

∑
n=1

H2nMne−knz, (25)

T ∗ =
3

∑
n=1

H3nMne−knz. (26)

Where, Mn (n = 1,2,3) are some constants, k2
n are the roots of the characteristic

equation of Eq. (22).

Dimensionless variables of the stress components yields the following,

σxx = u,x +(1− 2
β 2 )w,z−T, (27)

σzz = w,z +(1− 2
β 2 )u,x−T, (28)

σxz = a1[u,z +w,x]. (29)

Using Eq. (14) and Eqs. (23)-(26) in (27)-(29)

u =
3

∑
n=1

H4nMnei(ωt+ax)−knz, (30)

w =
3

∑
n=1

H5nMnei(ωt+ax)−knz, (31)

σxx =
3

∑
n=1

H6nMnei(ωt+ax)−knz, (32)

σzz =
3

∑
n=1

H7nMnei(ωt+ax)−knz, (33)

σxz =
3

∑
n=1

H8nMnei(ωt+ax)−knz, (34)

T =
3

∑
n=1

H3nMnei(ωt+ax)−knz. (35)

Where,

H1n =
A3

(a1k2
n−A4)

, H2n =
−A7(k2

n−a2)

(A5k2
n−A6)

, H3n = H2n[1−b∗(k2
n−a2)],
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H4n = (ia+ knH1n), H5n = (− kn + iaH1n),

H6n = [iaH4n− (1− 2
β 2 )knH5n +H3n],

H7n = [− knH5n + iaH4n(1−
2

β 2 )−H3n],

H8n =
1

β 2 (− knH4n + iaH5n).

4 Boundary conditions

The boundary conditions on the plane surface z = 0 are:

σxx(x,0, t) = σxz(x,0, t) = 0, T = Pei(ωt+ax). (36)

Using Eqs. (32), (34) and (35) in boundary conditions (36), we get three equations
in three constants Mn (n = 1,2,3) as:

3

∑
n=1

H6nMn = 0, (37)

3

∑
n=1

H8nMn = 0, (38)

3

∑
n=1

H3nMn = P. (39)

Solving Eqs. (37)-(39) the constants Mn (n = 1,2,3) are defined as follows:

M1 =
∆1

∆
, M2 =

∆2

∆
, M3 =

∆3

∆
.

Where,

∆ = H61(H82H33−H83H32)−H62(H81H33−H83H31)+H63(H81H32−H82H31),

∆1 = P(H83H62−H63H82), ∆2 = P (H63H81−H61H83),

∆3 = P(H61H82−H62H81).
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5 Numerical results

To study the effect of gravity and two-temperature, we now present some numerical
results. For this purpose, copper is taken as the thermoelastic material for which
we take the following values of the different physical constants.

λ = 7.7×1010N.M−2, µ = 3.86×1010Kg.m−1.s−2, K = 300 w.m−1.K−1,

αt = 1.78×10−5K−1, ρ = 8954Kg.m−3, ce = 383.1 J.Kg−1K−1,

T0 = 293K, a = 2.5, ω = ω0 + iξ , ω0 =− 3, ξ = 3.6,

K∗ = 2.97×10∧13, x = 0.5, t = 0.3, P = 0.05,

τv= 0.2 , τt= 0.6 , τq= 0.8.

The numerical technique, outlined above, was used for the distribution of the real
part of the temperature T , the displacement components u, w and the stress com-
ponents σxx, σzz, σxz for the problem. There are three lines expressing theories are,
the "solid line" expresses the 3PHL theory, the "cross line" expresses the L-S the-
ory, and the "dashed line" expresses the G-N III theory. Figs. 1(a,b)-6(a,b) show
the distribution of the physical quantities based on L-S, G-N III and 3PHL in the
case of g = 0,9.8 respectively. Fig. 1(a,b) depict that the displacement component
u increases with the increase of gravity in the three theories. In the absence and
presence of gravity (i.e. g = 0,9.8), u begins to increase then smooth decreases and
takes the form of wave and try to return to zero. Fig. 2(a,b) exhibit that the dis-
placement component w increases with the decrease of gravity, and takes the form
of a wave until it develops to zero, that’s mean that the displacement w is inversely
proportional with gravity. Fig. 3(a,b) demonstrate that the behavior of temperature
T decreases for g = 0,9.8 and takes the form of a wave until it develop to zero. Fig.
4(a,b) show that the stress component σxz increases with the increase of gravity g
in L-S, and decreases with the decrease of the gravity in G-N III and 3PHL and
takes the form of the wave until it develop to zero. Fig. 5(a,b) depict that the stress
component σxx begins from the value zero and satisfies the boundary condition at
z = 0 in the three theories. The stress component σxx decreases with the increase of
gravity in L-S and 3PHL, and decreases during the period 0≤ z≤ 1, then increas-
ing and takes the form of the wave until it develop to zero at g = 9.8 in G-N III,
while increases in the period 0 ≤ z ≤ 1, then decreasing and takes the form of the
wave until it develop to zero at g = 0 in G-N III. Fig. 6(a,b) explain that the stress
component σzz decreases in the case of g = 0,9.8 and decays to zero.

Figs. 7(a,b)-12(a,b) exhibit the distribution of the physical quantities based on L-S,
G-N III and 3PHL in the case of b = 0, 0.1. Fig. 7(a,b) show that the displacement
component u increases with the increase of b in G-N III and L-S theories, while,



212 Copyright © 2015 Tech Science Press CMC, vol.45, no.3, pp.203-219, 2015

it decreases with the increase of b in 3PHL theory, and try to return to zero at
infinity in three theories. Fig. 8(a,b) demonstrate that the displacement component
w increases at b = 0.1, in three theories, in the range 0 ≤ z ≤ 1, while decreases
at b = 0, in 3PHL theory, then, increases at b = 0, in the range 0 ≤ z ≤ 0.5, in
G-N III and L-S theories, and takes the form of the wave until it develop to zero
in three theories. Fig. 9(a,b) explain that the temperature satisfies the boundary
conditions at z = 0 and decreases, in the three theories to a minimum value in the
range 0≤ z≤ 1, at b = 0.1, while, increases for z≥ 0.75, at b = 0, then, it decays to
zero in the two cases. Fig. 10(a,b) explain that the stress component σxz decreases
at b = 0.1, in the range 0 ≤ z ≤ 0.5 of the three theories, while decreases in the
range 0 ≤ z ≤ 0.5 for b = 0 in the two theories L-S and 3PHL, but it increases for
b = 0 in G-N III, and takes the form of the wave until it develop to zero in L-S
and G-N III and 3PHL theories. Fig. 11(a,b) show that the stress component σxx

satisfies the boundary condition and decreases to a minimum value in the range
0 ≤ z ≤ 1, and increases in the range 1 ≤ z ≤ 2, but, decays to zero in the three
theories, for b = 0.1, while, increases in the range 0 ≤ z ≤ 0.5 for b = 0 in 3PHL
and G-N III theories and decays to zero, then, decreases in the range 0 ≤ z ≤ 0.5
for b = 0, and increases in the range 0.5≤ z≤ 1 for b = 0 until it develop to zero in
L-S theory. Fig. 12(a,b) show that the stress component σzz decreases for b = 0.1,
in the three theories, and it decreases for b = 0, in L-S and G-N III, but increases
for b = 0, in 3PHL then, decays to zero.
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Figure 12: Distribution of the stress component σzz in the presence and absence of
b.

6 Conclusion

By comparing the figures obtained under the three theories, important phenomena
are observed:

1. Analytical solutions based upon normal mode analysis of the thermoelastic prob-
lem in solids have been developed.

2. The method that is used in the present article is applicable to a wide range of
problems in hydrodynamics and thermoelasticity.

3. There are significant differences in the field quantities under GN-III, 3PHL and
L-S theories.

4. The presence of the gravitational field and two-temperature plays a significant
role on all physical quantities.
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5. The comparison of the three theories of thermoelasticity, Lord-Shulman theory,
three-phase-lag model and Green-Naghdi III is carried out.

6. The value of all the physical quantities converges to zero, and all the functions
are continuous.
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