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Finite Element Multi-mode Approach to Thermal
Postbuckling of Functionally Graded Plates

W. Xia1, Y.P. Feng2 and D.W. Zhao3

Abstract: Postbuckling analysis of functionally graded ceramic-metal plates un-
der temperature field is presented using finite element multi-mode method. The
three-node triangular element based on the Mindlin plate theory is employed to ac-
count for the transverse shear strains, and the von-Karman nonlinear strain-displace-
ment relation is utilized considering the geometric nonlinearity. The effective ma-
terial properties are assumed to vary through the thickness direction according to
the power law distribution of the volume fraction of constituents. The temperature
distribution along the thickness is determined by one dimensional Fourier equations
of heat conduction. The buckling mode shape solved from eigen-buckling analysis
is adopted as the assumed mode function to reduce the degrees of freedom of non-
linear postbuckling equilibrium equations. The postbuckling response is obtained
by solving the nonlinear equilibrium equations, and compared with the Newton-
Raphson numerical results. The effects of boundary conditions, material gradient
index and temperature distribution on postbuckling behavior are examined.

Keywords: Functionally graded plates, thermal postbuckling, geometric nonlin-
earity, finite element method.

1 Introduction

Functionally graded materials (FGMs) are believed to be ideal high-heat-resistant
composites because the continuous varied material composition eliminates the sharp
local thermal stress concentration which is often encountered in the interface be-
tween two constitutive materials. The most common FGM structures are ceramic-
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metal plates (or shells) with the through-the-thickness material distribution, where
the ceramic-rich top has good thermal resistance and the metallic-rich bottom has
superior fracture toughness. Functionally graded (FG) plates are easy to deflect
when subjected to thermal load because the plate is asymmetric about the middle
plane. Therefore, the thermo-mechanical behavior of functionally graded plates,
including thermal stresses, stabilities, buckling and postbuckling, becomes an es-
sential problem in FGMs applications.

A survey on the modeling and analysis of FGM structures was given by Birman
and Byrd (2007), and the literature on homogenization theories and the thermo-
mechanical analysis of FG plates was recently reviewed by Jha, Kant and Singh
(2013). The classical plate theory (CPT) and Sander’s assumption were adopted
to derive equilibrium and stability equations for rectangular simply supported FG
plates, and the closed-form solution of critical buckling temperature was presented
by Javaheri and Eslami (2002). The first-order shear deformation theory (FSDT)
and the third-order shear deformation theory (TSDT) accounting for the transverse
shear strain and rotary inertia were also used to analyze the thermo-elastic bending
of FG plates [Reddy and Chin (1998); Reddy (2000)]. The mechanical models of
circular FG plates based on CPT, FSDT and TSDT were compared, and the FSDT
was proved to be suitable in buckling analysis for the axisymmetric bending of FG
plates [Ma and Wang (2004)]. The FSDT was utilized in stability analysis for sim-
ply supported rectangular FG plates under thermal load [Wu (2004)]. The thermal
postbuckling behavior of FG skew plates was investigated utilizing nonlinear von
Karman strain-displacement relations [Prakash, Singha, and Ganapathi (2008)].
The shear deformable finite element approach was further developed to analyze
the influence of neutral surface position on the postbuckling deformation of FG
plates [Prakash, Singha, and Ganapathi (2009a)]. The strain energy equations con-
sidering non-uniform shear stresses were established to derive the shear correction
factor for FSDT of FG plates [Singha, Prakash, and Ganapathi (2011)]. Many com-
putational methods developed for the linear and nonlinear analysis of plate/shell
structures are applicable in FG plates. For example, Tessler and Hughes (1985),
Ibrahim, Tawfik and Al-Ajmi (2008) developed displacement plate elements based
on Kirchhoff or Mindlin theories. Dong, El-Gizawy, Juhany and Atluri (2014)
proposed a mixed-collocation C0 finite element for modeling the thick-section FG
plates instead of higher-order or layer-wise zig-zag plate theory. Cai and Atluri
(2012) employed the drilling degrees of freedom in plate/shell elements to avoid
the problem of singularity in the stiffness matrix, and proposed a triangular plate
element using co-rotational frames and the von Karman nonlinear theories. The
static and dynamic stability of FG panels in supersonic airflow were studied us-
ing finite element method [Sohn and Kim (2008)]. The finite element model for
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FG panels under thermal and aerodynamic loads was established on the base of
FSDT, von-Karman strain-displacement relations and the first-order piston theory
aerodynamics. The thermal postbuckling and aeroelastic flutter of damped FG pan-
els were investigated by Lee and Kim (2010). A three-dimensional finite element
method was developed to determine the thermal buckling boundary of clamped FG
plates. In the three-dimensional method, an 18-node solid element was employed
to simulate the material distribution and non-uniform temperature field [Na and
Kim (2004)]. The thermal postbuckling behavior of FG plates considering initial
geometric imperfection was further studied by many investigators [Shen (2007);
Li, Zhang, and Zhao (2007); Yang, Liew, and Kitipornchai (2006)].

The studies on the nonlinear postbuckling behavior of FG plates revealed that the
postbuckling deformation of FG plates is similar to that of asymmetric laminates,
because the neutral surface does not coincide with the geometric mid-plane for both
structures. The influence of bending-extension coupling on the instability of bifur-
cation type was examined for FG plates under in-plane load [Aydogdu (2008)],
and for FG plates with initial geometric imperfection [Yang, Liew and Kitiporn-
chai (2006)]. The eigen-buckling analysis was proved to be inaccurate because
the bending-extension coupling does not properly take into account. The nonlinear
method based on the Newton-Raphson iterative technique was widely used but only
the postbuckling deflection amplitude was obtained. Due to the geometric nonlin-
earity and bending-extension coupling, the postbuckling of FG plates may exhibit
more than one equilibrium states which are asymmetry about the mid-plane. The
snap-through phenomenon between two of the equilibriums was recently reported
in theoretical analysis and numerical simulations [Prakash, Singha, and Ganapathi
(2009b); Singha, Prakash, and Ganapathi (2011)], but to the authors’ knowledge,
the thorough analysis of asymmetrical postbuckling equilibriums of FG plates has
not been reported in any major international journal.

The present work proposes a finite element multi-mode approach to investigate
nonlinear postbuckling equilibriums of FG plates. The material properties are as-
sumed to vary continuously and smoothly through the thickness according to the
power law distribution of the constituent volume fraction. A three-node triangular
Mindlin plate element based on the first-order shear deformation theory and the
von-Karman nonlinear strain-displacement relation is utilized to establish the fi-
nite element model accounting for transverse shear strains, moderate rotations and
geometric nonlinearities. The temperature field is considered to vary through the
thickness direction alone and determined by nonlinear Fourier equations of heat
conduction. The Euler type thermal buckling is analyzed by eigen-buckling anal-
ysis. The postbuckling response is obtained by the Newton-Raphson numerical
procedure and the multi-mode method. In the multi-mode method, the buckling
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mode shapes solved from eigen-buckling analysis are adopted as the assumed mode
functions. The current formulation is verified by comparison between present re-
sults and available solutions, and the influence of plate boundary condition, plate
length-to-thickness ratio, material gradient index and non-uniform temperature dis-
tribution on the postbuckling response of FG plates is discussed.

2 Formulations

Fig. 1 shows a ceramic-metal FG plate measuring with length l, width b and thick-
ness h. A coordinate system (x,y,z) is established on the middle plane of the plate.
We will consider the nonlinear postbuckling behavior of the FG plate subject to
thermal load, which involves the structure stretching and bending coupling. Based
on two-dimensional plate theory, the displacement field includes three displace-
ments (u,v,w in x, y, z directions, respectively) and two rotations (ϕx and ϕy around
the x and y axes, respectively).

The material constitution is assumed to vary continuously through the plate thick-
ness according to the following simple power law distribution.

Vc =

(
z
h
+

1
2

)n

,
(
−h
/

2 ≤ z ≤ h
/

2
)

(1a)

Vm = 1−Vc (1b)

where n is the gradient index (n ≥ 0), Vc and Vm denote the volume fractions of
ceramic and metal, respectively. Applying the linear rule of mixture, the effective
material property distribution is determined as follows:

P(z) = Pc Vc +Pm Vm (2)

where P represents the effective material properties, including Young’s modulus E,
Poisson’s ratio υ , thermal expansion α and heat conductivity κ; Pc and Pm denote
the properties of ceramic and metal, respectively.

According to the Mindlin plate theory, the displacement field can be determined by
mid-plane displacements and rotations as follows:

u(x,y,z) = u0(x,y)+ zϕy(x,y)

v(x,y,z) = v0(x,y)+ zϕx(x,y)

w(x,y,z) = w0(x,y)

(3)

where u0, v0 and w0 denote the mid-plane displacements in x, y and z directions,
respectively; while ϕx and ϕy denote the transverse normal rotations around the
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Figure 1: Schematic of a functionally graded plate.

x and y axes, respectively. Because the rotations ϕx and ϕy are independent of
displacements (u,v,w) in the Mindlin plate theory, the finite element model requires
only C0-continuity. The displacement field is then approximated as a polynomial
which is a function of the element degrees of freedom (DOFs) by applying a three-
node triangular Mindlin (MIN3) plate element [Tessler and Hughes (1985)].

u0(x,y) = Huŵm , v0(x,y) = Hvŵm

w0(x,y) = Hwŵb +Hw θ ϕ̂

ϕx(x,y) = Hθxϕ̂ , ϕy(x,y) = Hθyϕ̂

(4)

where ŵm, ŵb and ϕ̂ denote the membrane, bending and rotation element DOFs,
respectively; while Hu, Hv, Hw, Hwθ , Hθx, Hθy are element interpolation func-
tions. The detailed derivation of MIN3 element interpolation functions are given by
Tessler and Hughes (1985). The geometric nonlinearity is considered by applying
von Karman strain-displacement relations. The in-plane strains are then expressed
in terms of mid-plane displacements as

εεε = εεε0 + zκκκ =


∂u0
∂x
∂v0
∂y

∂u0
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where εεε =
[

εx εy γxy
]T is the in-plane strains, while εεε0 and κκκ denote the in-

plane strains at the mid-plane and the curvature strains, respectively. Additionally,
the transverse shear strains are given by

γγγ =

{
γyz

γzx

}
=

{
ϕx +

∂w0
∂y

ϕy +
∂w0
∂x

}
(6)

The constitutive relations are expressed as
σx

σy

σxy

=
E

1−υ2

 1 υ 0
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0 0 1−υ

2
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γxy

−


1
1
0
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 (7a)

{
σyz

σzx

}
=

E
2(1+υ)

[
1 0
0 1

]{
γyz

γzx

}
(7b)

where ∆T is the temperature change from a stress-free state (room temperature).
The material properties vary along the thickness direction for the FG plate, and the
effective properties (E, υ and α) are functions of z according to Eq.2. The in-plane
force, moment and transverse shear force resultants are defined, respectively, by

N =


Nx

Ny

Nxy

=
∫ h/2

−h/2


σx

σy

σxy

dz (8a)

M =


Mx

My

Mxy

=
∫ h/2

−h/2


σx

σy

σxy

zdz (8b)

Q =

{
Qyz

Qzx

}
=
∫ h/2

−h/2

{
σyz

σzx

}
dz (8c)

In matrix form, the relation between the stress resultants and the strains is written
as{

N
M

}
=

[
A B
B D

]{
εεε0
κκκ

}
−
{

NT

MT

}
(9a)

Q = Sγγγ (9b)

where NT and MT denote the thermal force and moment resultants, respectively,
and are given by

(NT ,MT ) =
∫ h/2

−h/2
(1 ,z)E


1
1
0

α∆T dz (10a)
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E =
E (z)

1−υ2

 1 υ 0
υ 1 0
0 0 1−υ

2

 (10b)

The matrices A, B, D, and S denote the in-plane, bending-stretching coupling,
bending, and transverse shear stiffness, respectively, which are defined by

(A ,B ,D) =
∫ h/2

−h/2

(
1 ,z ,z2)Edz (11a)

S = κs

∫ h/2

−h/2
E (z)

2(1+υ)

[
1 0
0 1

]
dz (11b)

where κs is the shear correction coefficient of MIN3 element.

The strain energy stored in the plate is

U =
1
2

∫
Sur

(
εεε

T
0 Aεεε0 + εεε

T
0 Bκκκ +κκκ

T Bεεε0 +κκκ
T Dκκκ − εεε

T
0 NT −κκκ

T MT + γγγ
T Sγγγ

)
dS (12)

By applying the finite element discretization using MIN3 element, the potential
energy is expressed in terms of the structural DOFs as

U =
1
2

{
wb
wm

}T{([ kb kbm
kbm km

]
−
[
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]
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1
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}
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}}
(13)

where wm and wb denote the membrane and bending structural DOFs, respectively;
pm∆T and pb∆T denote the membrane and bending thermal loads, respectively;
km, kbm, kb denote the linear membrane, bending-stretching coupling, and bend-
ing stiffness matrices, respectively; k∆T is the thermal stiffness matrix; n1b, n1bm
denote the first-order nonlinear bending and bending-stretching coupling stiffness
matrices, respectively; n2b is the second-order nonlinear bending stiffness matrix.

The equilibrium equations are then derived by minimization of total potential en-
ergy as([
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(14)
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3 Solution procedure

3.1 Thermal analysis

The temperature field in the plate is assumed to vary only along the thickness di-
rection, and the temperature distribution is governed by one dimensional Fourier
equation of heat conduction as follows.

d
dz

[
κ (z)

dT
dz

]
= 0 (15)

where T is the temperature distribution in the plate. If we define room temperature
as T0, the temperature change in Eq.7 is expressed as ∆T = T − T0. Consider-
ing thermal boundary conditions as T

(
h
/

2
)
= Tc, T

(
−h
/

2
)
= Tm, the solution of

Eq.15 gives the temperature distribution function as

T (z) = Tm +(Tc −Tm)η (z) (16)
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C = 1− κcm
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κ4
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m
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κcm = κc −κm (17c)

3.2 Buckling analysis

The thermal buckling equations are derived from Eq.14 by solving the partitioned
equations for wm, and reducing the equilibrium equations in terms of the bending
deflection wb as follows.(

k0 +kG −k∆T +
1
2

n1+
1
3

n2
)

wb = p∆T (18)
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where

k0 = kb −kbmk−1
m kbm (19a)

kG =
1
2

n1bmk−1
m pm∆T (19b)

n1 = n1b −kbmk−1
m n1bm −n1bmk−1

m kbm (19c)

n2 = n2b −
3
4

n1bmk−1
m n1bm (19d)

p∆T = pb∆T −kbmk−1
m pm∆T (19e)

The equilibrium equations in Eq.18 can be rewritten in a residual form as

ΨΨΨb =

(
k0 +kG −k∆T +

1
2

n1+
1
3

n2
)

wb −p∆T (20)

For the linear Euler type buckling problem, the nonlinear terms in Eq.20 can be
neglected. The critical buckling temperature is obtained by solving the following
eigenvalue problem.

δΨΨΨb = (k0 +λkG (∆T1)−λk∆T (∆T1))δwb = 0 (21)

where ∆T1 is the unit temperature rise,
[

λ1 λ2 λ3 ...
]

denote the positive
real eigenvalues solved by Eq.21, and λ1 is the minimal one of eigenvalues. The
critical buckling temperature rise is defined by

∆Tcr = λ1∆T1 (22)

3.3 Postbuckling analysis

For the postbuckling problem, the nonlinear equilibrium equation in Eq.18 can be
solved numerically by applying either a conventional Newton-Raphson procedure,
or a modified Newton’s procedure in conjunction with various iterative strategies
that permit the load parameter to vary during equilibrium iterations. Because the
incremental-iterative solution represents only one of the equilibrium states of the
plate for a given initial condition, it cannot show the asymmetrical postbuckling
behavior of the FG plate. But it is difficult to give analytical solutions to Eq. 18.
Therefore, the current work will introduce a multi-mode approximated method to
analyze the asymmetrical postbuckling equilibriums of the FG plate based on the
finite element model.

Since the number of structural node DOFs of wb is usually very large, this turns out
to be computationally costly. An efficient solution procedure is to transfer Eq. 18
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into modal coordinates with a modal reduction. Firstly, the structural deflection is
assumed to be expressed as a linear combination of known functions as

wb = ∑
n
i=1 ϕϕϕ iqi = ΦΦΦqqq (23)

where q = [q1,q2, ...,qn]
T is the mode coordinate vector; ΦΦΦ = [ϕϕϕ 1,ϕϕϕ 2, ...,ϕϕϕ n] is

the mode shape matrix, the ith mode ϕϕϕ i is the selected eigenvector from Eq. 21 and
further normalized with the maximum component to unity. Secondly, the nonlinear
stiffness terms in Eq. 18 are determined by the buckling mode shapes and modal
coordinates as

n1 = ∑
n
i=1 n1(i)qi (24a)

n2 = ∑
n
i=1 ∑

n
j=1 n2(i, j)qiq j (24b)

where the linearized matrices n1(i) and n2(i, j) have the same forms as n1 and n2
except they use normalized eigenvectors ϕϕϕ i and ϕϕϕ j in evaluating the corresponding
element matrices. Thirdly, the finite element equilibrium equation is transformed
into modal coordinates as(

K0 +KG −K∆T +
1
2 ∑

n
i=1 qiN1(i)+

1
3 ∑

n
i=1 ∑

n
j=1 qiq jN2(i, j)

)
q = P∆T (25)

where the modal stiffness K, N1 and N2, and the modal force P∆T are defined,
respectively, by

K0 = ΦΦΦ
T k0ΦΦΦ,KG = ΦΦΦ

T kGΦΦΦ, K∆T = ΦΦΦ
T k∆T ΦΦΦ, N1(i) = ΦΦΦ

T n1(i)ΦΦΦ,

N2(i, j) = ΦΦΦ
T n2(i, j)ΦΦΦ, P∆T = ΦΦΦ

T p∆T
(26)

The DOFs of the finite element equation are reduced by the use of modal coordi-
nate transformation. Therefore, the nonlinear equation can be studied by analytical
approach. Meanwhile a class of problems involving material behavior, temperature
distribution, plate geometry and boundary condition are convenient to take into ac-
count in this multi-mode approach because the actual buckling mode shapes are
employed as the assumed mode functions.

4 Results and Discussion

In this section, the buckling stabilities and postbuckling responses of a ceramic-
metal FG plate under thermal loads are investigated. The FG plate considered here
comprises silicon nitride (Si3N4) and stainless steel (SUS304). The properties of
each constituent, including the Young’s modulus E, thermal expansion coefficient
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α and heat conductivity κ , are given in Tab. 1. The reference room temperature is
assumed to be 300K (27◦), and the Poisson’s ratio is chosen as 0.3 for simplicity.
The geometry of the plate is l × b= 0.3m×0.3m, and the length-to-thickness ratio
is chosen as l

/
h=100 if not specially defined. A 288-element full-plate mesh is

utilized to model the plate. When uniform temperature distribution is considered,
the critical buckling temperature rise is ∆Tcr=29.72K for the clamped FG plate and
∆Tcr=11.15K for the simply supported FG plate. The corresponding buckling mode
shapes of clamped and simply supported FG plates are shown as contour plots in
Fig. 2.

Table 1: Properties of the functionally graded material constitution.

Material E (GPa) α ×106 (/ K ) κ (W/m/K)
Si3N4 322.27 7.47 10.12

SUS304 207.79 15.32 12.14
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Figure 2: Thermal buckling mode shapes of FG plates.

4.1 Clamped FG plates

Before proceeding for the detailed study, the formulation developed herein is val-
idated against the thermal-mechanical analysis of clamped FG plates with various
values of length-to-thickness ratio l

/
h. The Si3N4/ SUS304 FG plates with gradient

index n =1 are clamped at the edges with the assumption that the in-plane displace-
ments are immovable. The length-to-thickness ratios are chosen as l

/
h=60, 80 and
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100. Tab. 2 presents the resulting buckling temperature rise obtained by the finite
element eigen-buckling analysis with different mesh sizes, along with results from
present multi-mode method.

Table 2: Resulting buckling temperature rise compared with finite element solu-
tions.

l
/

h
Finite element solution (K) Multi-mode

4×4×2 6×6×2 8×8×2 12×12×2 16×16×2 solution (K)
60 88.55 82.58 82.46 82.28 82.21 84.86
80 49.94 46.55 46.49 46.39 46.35 47.83
100 32.00 29.82 29.78 29.72 29.69 30.64

It is seen from Tab. 2 that MIN3 element employed here has a good convergence
property, and the 288-element mesh (12×12×2 elements) is found to be adequate
to model the FG plate. Thus, the mesh size of 12×12×2 elements is utilized in con-
structing the multi-mode model. Furthermore, the nonlinear postbuckling equations
in modal coordinates are utilized to investigate the critical buckling temperature by
solving a linearized eigenvalue problem. The multi-mode solutions are obtained
using the first buckling mode as assumed mode function, and verified by compar-
ing with the finite element results (3% error with 288-element mesh results). Fig.
3 shows the resulting thermal buckling mode shapes obtained by the finite element
eigen-buckling analysis and the present multi-mode method. By comparing the
thermal buckling mode shapes along the center line of the FG plate, the multi-mode
solution shows good agreement with the finite element results.

The thermal postbuckling paths of a typical clamped FG plate with gradient index n
=1 under uniform temperature elevation are further analyzed using the multi-mode
method. Fig. 4 shows the variation in non-dimensional central plate deflection w

/
h

against temperature change for clamped FG plates with length-to-thickness ratios
as l
/

h=60, 80 and 100. The solid, dashed and dashdot lines denote the results for
three deformed configurations solved from the multi-mode equilibrium equations.
It is seen from Fig. 4 that no transverse deflection (only zero solution P0) occurs
at low temperature rise (∆T ≤ ∆Tcr), while two non-zero values of postbuckling
deflection (positive solution P1 and negative solution P2) occur after ∆T > ∆Tcr. It
proves to be a typical bifurcation buckling in this case. Because the non-zero values
of postbuckling deflection (P1 and P2) are almost symmetric about the mid-plane
of the plate, either of the two deflection branches can represent the postbuckling
amplitude of the clamped FG plate. The numerical results obtained by Lee and
Kim (2010) are also depicted in Fig. 4, and good agreement with present multi-
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mode solutions is discovered, regardless of the length-to-thickness ratios.
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Figure 3:  Thermal bucking mode shapes along plate center line of the clamped FG plate 
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Figure 5:  Thermal postbuckling paths of clamped FG plates with various gradient 
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Figure 4: Thermal postbuckling paths of clamped FG plates with various length-
to-thickness ratios.



138 Copyright © 2015 Tech Science Press CMC, vol.46, no.2, pp.125-144, 2015

T / K

n
o

n
-d

im
en

si
o

n
a

l
d

ef
le

ct
io

n

0 50 100 150
-3

-2

-1

0

1

2

3

Lee & Kim

Present 0P

Present 1P

Present 2P

l / h=100, 80, 60

l / h=100, 80, 60

 

Figure 4:  Thermal postbuckling paths of clamped FG plates with various length-to-

thickness ratios 

T / K

n
o

n
-d

im
en

si
o

n
a

l
d

ef
le

ct
io

n

300 350 400 450
-4

-3

-2

-1

0

1

2

3

4

n=  , 5, 1, 0.2, 0

n =  (steel), 5, 1, 0.2, 0 (ceramic)

 

Figure 5:  Thermal postbuckling paths of clamped FG plates with various gradient 

indexes 

 

Fig. 5 shows the variation in non-dimensional central plate deflection w h  against 

temperature change for clamped FG plates with gradient indexes as n = 0, 0.2, 1, 5 and ∞. 

As defined in Eq.1, the plate with gradient index n = 0 corresponding to the pure ceramic 

plate, while gradient index n = ∞ refer to the pure metal plate. The solid and dashed lines 

Figure 5: Thermal postbuckling paths of clamped FG plates with various gradient
indexes.

Fig. 5 shows the variation in non-dimensional central plate deflection w
/

h against
temperature change for clamped FG plates with gradient indexes as n = 0, 0.2, 1, 5
and ∞. As defined in Eq.1, the plate with gradient index n = 0 corresponding to the
pure ceramic plate, while gradient index n = ∞ refer to the pure metal plate. The
solid and dashed lines in Fig. 5 denote the non-zero and zero results solved from the
multi-mode equilibrium equations, respectively. The non-zero solutions represent
the thermal postbuckling deflections. Typical bifurcation buckling is observed in
Fig. 5 for clamped FG plates, regardless of the gradient indexes. With the gradient
index of FG plates decreasing the critical buckling temperature increases, while the
postbuckling deflection decreases. As depicted in Eq.1, the volume fraction of the
ceramic increases with the gradient index decreasing. Also considering the elastic
modulus of the ceramic is larger than that of the metal, but the thermal expansion
coefficient of the ceramic is smaller than that of the metal. It is concluded that the
ceramic-metal FG plate with more ceramic constituent is more stiffen and not ease
to buckle with temperature elevation.

4.2 Simply supported FG plates

The thermal buckling and postbuckling behavior of simply supported FG plates are
further discussed. Fig. 6 shows the variation in critical buckling temperature rise
∆Tcr against the gradient index n for simply supported Si3N4/ SUS304 FG plates
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with length-to-thickness ratios as l
/

h=30, 60 and 100. It proves that the criti-
cal buckling temperature increases with the decrease of the gradient index (more
ceramic constituent) and the length-to-thickness ratio (thicker plate). For a given
length-to-thickness ratio, the critical buckling temperature of the pure ceramic plate
(n = 0) is the highest, while the critical buckling temperature of the pure metal plate
(n = ∞) is the lowest.
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Figure 6:  Variation of critical buckling temperature with gradient index 
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Figure 6: Variation of critical buckling temperature with gradient index.

Fig. 7 shows the variation in non-dimensional central plate deflection w
/

h against
temperature change for a simply supported Si3N4/ SUS304 FG plate based on the
multi-mode method. The uniform temperature elevation is assumed and the gradi-
ent index is chosen as n = 1. The solid and dashed lines in Fig. 7 denote the non-
zero and zero results solved from the multi-mode equilibrium equations, respec-
tively. By contrasting Fig. 7 and Fig. 4, it is discovered that the simply supported
FG plate under thermal load exhibits quite different prebuckling and postbuckling
behavior from that of the clamped FG plate. For the simply supported FG plate, the
transverse deflection occurs no matter how small the temperature rise. Therefore,
there is no bifurcation buckling in this case. It is also seen in Fig. 7 that two dif-
ferent non-zero solution branches of the temperature-deflection curve (P1 and P2)
exist for the simply supported FG plate, which appear quite similar to the behavior
corresponding to imperfect structures [Iooss and Joseph (1980)]. Then the simply
supported FG plate may have three different values of deflection (P0, P1 and P2)
corresponding to a given temperature, that is, three deformed configurations may
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mode method. The uniform temperature elevation is assumed and the gradient index is 

chosen as n = 1. The solid and dashed lines in Fig. 7 denote the non-zero and zero results 

solved from the multi-mode equilibrium equations, respectively. By contrasting Fig. 7 

and Fig. 4, it is discovered that the simply supported FG plate under thermal load exhibits 

quite different prebuckling and postbuckling behavior from that of the clamped FG plate. 

For the simply supported FG plate, the transverse deflection occurs no matter how small 

the temperature rise. Therefore, there is no bifurcation buckling in this case. It is also 

seen in Fig. 7 that two different non-zero solution branches of the temperature-deflection 

curve (
1P  and 

2P ) exist for the simply supported FG plate, which appear quite similar to 

the behavior corresponding to imperfect structures [Iooss and Joseph (1980)]. Then the 

simply supported FG plate may have three different values of deflection (
0P , 

1P  and 
2P ) 

corresponding to a given temperature, that is, three deformed configurations may exist for 

a simply supported FG plate for a given thermal load. The numerical results using 

Newton-Raphson iteration based on the finite element model are also depicted in Fig. 7 

with symbol ‘ ’. For a given temperature and initial condition, the Newton-Raphson 

iteration gives only one solution of plate deflection, but good agreement between the 

numerical iterative result and the multi-mode solution is discovered. 
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Figure 7:  Asymmetrical postbuckling paths of a simply supported FG plate 
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Figure 8:  Thermal postbuckling paths of simply supported FG plates with various 
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Figure 9:  Thermal postbuckling paths of a simply supported FG plate under different 

temperature distribution 
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Figure 8: Thermal postbuckling paths of simply supported FG plates with various
gradient indexes.
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exist for a simply supported FG plate for a given thermal load. The numerical re-
sults using Newton-Raphson iteration based on the finite element model are also
depicted in Fig. 7 with symbol ‘�’. For a given temperature and initial condition,
the Newton-Raphson iteration gives only one solution of plate deflection, but good
agreement between the numerical iterative result and the multi-mode solution is
discovered.

Fig. 8 shows the variation in non-dimensional central plate deflection w
/

h against
temperature change for simply supported FG plates with gradient indexes as n =
0, 0.2, 1, 5 and ∞. It is seen that asymmetrical postbuckling branches of the
temperature-deflection curve exist for most simply supported FG plates. But bi-
furcation buckling behavior reappears for FG plates with gradient indexes as n = 0
and ∞, which refer to the pure ceramic and pure metal plate, respectively. It is also
shown in Fig. 8 that the postbuckling deflection decreases with the gradient index
of FG plates decreasing (more ceramic constituent).

deflection decreases with the gradient index of FG plates decreasing (more ceramic 

constituent). 
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Figure 9: Thermal postbuckling paths of a simply supported FG plate under differ-
ent temperature distribution.

The thermal postbuckling paths of the simply supported FG plate with non-uniform
temperature distributions are further investigated. The temperature distribution
along the plate thickness is governed by Eq.16, and the top/bottom temperature
rise ratio is chosen as ∆Tc

/
∆Tm= 1, 2 and 4. Fig. 9 shows the variation in non-

dimensional central plate deflection w
/

h against temperature change for simply
supported FG plates with the gradient index as n = 1 under different temperature
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field. It is seen in Fig. 9 that postbuckling branches of the temperature-deflection
curve under non-uniform temperature distribution with top/bottom temperature rise
ratios as ∆Tc

/
∆Tm= 2 and 4 are quite different from the postbuckling branch under

uniform temperature distribution (∆Tc
/

∆Tm= 1). Because the negative value of de-
flection is larger than the positive value of deflection for FG plate under uniform
temperature distribution, the negative deflection branch (bending to the metal-rich
side) represents the postbuckling amplitude of the simply supported plate. But for
non-uniform temperature distribution of ∆Tc

/
∆Tm= 2 and 4, the positive value of

deflection is larger than the negative value. Thus the positive deflection branch
(bending to the ceramic-rich side) represents the postbuckling amplitude of the FG
plate. For a given temperature at the top side of the plate (Tc), the value of post-
buckling deflection decreases with the top/bottom temperature rise ratio increasing.

5 Conclusions

Thermal buckling and postbuckling behavior of FG plates has been investigated
using an approximated multi-mode method. Numerical studies are conducted to
examine the effect of boundary condition, material distribution and temperature
distribution on the postbuckling response of ceramic-metal FG plates. The follow-
ing conclusions are reached: (1) MIN3 element has good convergence property in
modeling the FG plate and performing the thermal buckling analysis. The multi-
mode method based on the finite element model provides an efficient and accu-
rate approach to study the asymmetrical postbuckling behavior of the FG plate.
(2) Typical bifurcation buckling phenomenon is found in the clamped FG plate,
regardless of the length-to-thickness ratio and the gradient index variation. The
ceramic-metal FG plate with more ceramic constituent is more stiffen and not ease
to buckle (higher critical buckling temperature and lower postbuckling deflection)
with temperature elevation. (3) Three deformed configurations may exist for a sim-
ply supported FG plate under given thermal load, and the transverse deflection oc-
curs no matter how small the temperature rise. Then no bifurcation buckling occurs
for the simply supported FG plate. For uniform temperature distribution, the bend-
ing deflection branch to the metal-rich side represents the postbuckling amplitude
of the simply supported FG plate. While for non-uniform temperature distribution,
the bending deflection branch to the ceramic-rich side represents the postbuckling
amplitude of the simply supported ceramic-metal FG plate.
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