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Modeling the Axial Splitting and Curling of Metal Tubes
under Crush Loads

W.Xu1 and A.M. Waas2

Abstract: Plastic deformation and splitting are two important mechanisms of
energy dissipation when metal tubes undergo axial crushing. Isotropic J2 plasticity
theory combined with a failure criterion is used to model axial splitting and curling
of metal tubes undergoing axial crush. The proposed material model is imple-
mented within a finite element (FE) framework using the user material subroutine
VUMAT option available in the commercial code ABAQUS. Experimental results
from literature are used to validate the model. The predicted splitting and curling
patterns as well as the load-displacement response agree well with the experimen-
tal observations. The present material model is also used to predict the number of
axial cracks in splitting the tube.

Keywords: Splitting, Curling , Energy absorption , Plasticity and fracture , Crack
number prediction.

1 Introduction

Energy absorbing devices are designed to protect human life in a variety of practical
applications. In automobiles, thin walled tubes are used as crush cans to absorb and
dissipate energy transmitted to a vehicle undergoing a front end collision. Various
shapes of thin-walled metal structures have been proposed to achieve high energy
absorption capability [Huang, Lu, and Yu (2002); Lu and Yu (2003)]. The main
energy-dissipating mechanisms for thin-walled metal structures are plastic defor-
mation, tearing and friction [Reid (1993)]. Many studies have been carried out on a
metal tube subjected to compression between two flat platens, [Lu and Yu (2003);
Reid (1993); Guillow, Lu, and Grzebieta (2001); Hanssen, Langseth, and Hopper-
stad (2000)]. Axial buckling and material folding were observed as the most sig-
nificant deformation mechanisms in these experiments. The main energy absorb-
ing mechanism of this type of metal tube is plastic deformation. The rigid-plastic
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analytical model proposed by Alexander [Alexander (1960)] was used and modi-
fied [Abramowicz and Jones (1984)] to predict the crushing load-displacement re-
sponse. Meanwhile, great effort has been expended to study dynamic crushing be-
havior of tubes by using computer simulations aided by the finite element method.
A historical review of the development of the finite element method for solving
dynamic crushing problems was given in [Belytschko, Liu, and Moran (2000)]. In
general, the use of finite element simulations has been shown to be versatile in cap-
turing the salient features of tube crush, either as single or multiple collections of
tubes, see for example, [Bathe, Walczak, Guillermin, Bouzinov, and Chen (1999);
Galib and Limam (2004); Tarigopula, Langseth, Hopperstad, and Clausen (2006);
D’Mello, Guntupalli, Hansen, and Waas (2012)].

Another crushing experiment is that of a tube subjected to compression between a
flat plate and a shaped die. A typical experimental set-up is shown in Fig. 2a. The
energy-dissipating mechanisms of this type of crushing are plastic deformation,
tearing and friction. The observed collapse mode of this test is splitting and curl-
ing, which is schematically shown in Fig. 2b. This collapse mode has long stroke
of over 90% of the initial tube length [Reid (1993); Reddy and Reid (1986)]. The
steady load of this kind of tube is always much lower than the same tube subjected
to compression between two flat plates. However, from the viewpoint of energy
absorption, it is an efficient energy absorption device. Besides the experimental
work and findings, approximate analytical methods were proposed to predict the
number of cracks, the curling radius and the steady load. These analytical methods
[Huang, Lu, and Yu (2002); Reid (1993); Reddy and Reid (1986)] are useful to
understand the behavior of the splitting and curling of the tubes. They have some
limitations as well. For example, prior analytical work cannot predict the splitting
and curling process and the load-displacement response. The splitting and curl-
ing process are very complex, which involves contact, material nonlinearity, crack
initiation and propagation. Therefore, an approach that uses a FE based frame-
work, suitably tailored to study axial splitting and curling is presented in this paper.
There are many methods developed to model crack initiation and propagation [Be-
lytschko and Black (1999); Silling (2000); Dong and Atluri (2013); Han and Atluri
(2014a,b)]. However, to the author’s knowledge, there are no prior numerical stud-
ies reported in the open literature that simultaneously considers the interaction of
the splitting and curling deformation mechanisms.

In this paper, we propose a method to predict the splitting and curling process by
using the FE method. Isotropic, elastic-plastic J2 flow theory with an associated
yield criterion, combined with a fracture criterion is used to model the material
nonlinear and cracking behavior of the metal tubes. The proposed material model
is implemented through ABAQUS/EXPLICIT user material subroutine VUMAT.
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The experimental study reported in [Huang, Lu, and Yu (2002)] is used to validate
the present approach. Our results show that the present numerical approach is able
to predict the splitting and curling process quite well. Furthermore, the predict-
ed curling radius and load-displacement response are found to compare well with
the corresponding experimental results. Having obtained confidence in the mate-
rial model, the number of cracks in the axial splitting of the tube is predicted and
reasonable results are obtained.
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(a) Experimental setup

p
(b) Splitting and curling pattern

Figure 1: Experiment setup and fracture pattern of metal tubes,Ref.(Huang et al.,
2002)

2 Overview of the explicit finite element method

The well-known equation of equilibrium governing the dynamic response of a sys-
tem of finite elements is

M ü+C u̇+K u = R(t) (1)

where M,C, and K are the mass, damping and stiffness matrices; R(t) is the vec-
tor of externally applied loads, which is a function of time t. Here, u ,u̇ and ü
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are the displacement, velocity and acceleration vectors of the finite element n-
odes. To solve the above equations, the explicit dynamics analysis procedure in
ABAQUS/Explicit is used [ABAQUS (2011); Bathe (1996)]. This procedure is
based on the implementation of an explicit integration rule together with the use of
diagonal or ′lumped′ element mass matrix. The central difference integration rule
is used to approximate the acceleration and velocity.

üt =
1

∆t2

(
ut−∆t −2ut +ut+∆t) (2a)

u̇t =
1

2∆t
(ut+∆t −ut−∆t) (2b)

Substituting Eq. (2a) and Eq. (2b) into Eq. (1), the displacement at time (t +∆ t) is
obtained by the following equation.

(
1
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1

2∆t
C)ut+∆t = Rt − (K− 2

∆t2 M)ut − (
1
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2∆t

C)ut−∆t (3)

For simplicity, let the damping matrix equal the null matrix. We have,

1
∆t2 M ut+∆t = Rt (4)

where,
Rt = Rt −K ut +

1
∆t2 M (2ut −ut−∆t) (5a)

K ut = ∑
e

Ke ut
e = ∑

e
F t

e = ∑
e

∫
V e

Be
T

σe dVe (5b)

where, B is the strain-displacement matrix, which is the derivation of the shape
function. In Abaqus/Explicit, lumped mass technique is used to obtain diagonal
mass matrix M. As a result, the displacement components are easy to obtain by
using the following equation, once the effective load vector is determined.

ut+∆t
i =

∆t2

mii
Rt

i (6)

where ut+∆t
i and Rt

i denote the ith components of the vectors ut+∆t and Rt respec-
tively, mii is the ith diagonal element of the global mass matrix. To determine the
effective load vector Rt , the stresses at the integration points (material points) re-
quired in Eqs. (5) are determined by using the constitutive relation introduced in
the following section 3 and the appendix.
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3 A plasticity and cracking material model

There are many elastic-plastic constitutive models [Souza Neto, Peric, and Owen
(2008); Gurson (1977); Tvergaard and Needleman (1984)] and failure criteria [Wi-
erzbicki, Bao, Lee, and Bai (2005); Xue (2007); Bai and Wierzbicki (2010)] devel-
oped to study the deformation and fracture of ductile materials. Recent examples of
using some of these models to predict the crack path, load displacement response of
the Sandia fracture challenge can be found in Ref. [Boyce, Kramer, Fang, and et al
(2014)]. In general, the contemporary plasticity models perform very well, due to
their capability of considering the effect of stress triaxiality or(and) the Lode an-
gle [Pack, Luo, and Wierzbicki (2014); Gross and Ravi-Chandar (2014); Nahshon,
Miraglia, Cruce, Defrese, and Moyer (2014)]. These modern material models are
important to enhance ductile fracture predictability.

In practice, the selection of a certain material model is not only dependent on its
accuracy, but also dependent on its availability and affordability. Besides the con-
stitutive model and failure criterion, the associated material properties are required
as well to predict the response of a structure. Except the simple dog bone tensile
test to obtain the engineering stress-strain relation, more tests are required to de-
termine the material constants appearing in contemporary constitutive models and
failure criteria,[Pack, Luo, and Wierzbicki (2014); Gross and Ravi-Chandar (2014);
Nahshon, Miraglia, Cruce, Defrese, and Moyer (2014)]. Even when the required
material constants are available, it is still not easy to predict the deformation and
cracking behavior of ductile materials in a structure, because of the computation-
al complexity. To successfully adopt advanced material models, very fine three
dimensional elements are required to obtain accurate stress and strain fields at the
crack tip [Gross and Ravi-Chandar (2014); Nahshon, Miraglia, Cruce, Defrese, and
Moyer (2014)]. For example, the smallest element size and total element number
used in Ref. [Gross and Ravi-Chandar (2014)] for the Sandia fracture challenge
were 31.75 µm and 2.25 million, respectively. The corresponding computational
demand was 2000h cpu time [Gross and Ravi-Chandar (2014)]. As a result, it is
still a challenge for engineers and researchers to use limited material properties and
computation resources to simulate and predict ductile fracture of a structure.

Based on these considerations, in this paper, the isotropic J2 plasticity model com-
bined with a failure criterion is used to model the splitting and curling of a metal
tube. The splitting behavior is captured by using a failure criterion. The tube is
assumed to be split when the strain and stress in the hoop direction exceed critical
values. That is{

εh ≥ εcr (7a)

σh ≥ σcr (7b)
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where, εcr and σcr are the critical strain and stress, respectively, which are material
dependent. It is noteworthy that the strain in Eq. (7) is not the equivalent plastic
strain, which is widely used as a failure parameter. The critical equivalent plastic
strain is not a constant, but a function of the stress triaxiality and Lode angle [Bai
and Wierzbicki (2010)]. Due to the limited material properties presented in [Huang,
Lu, and Yu (2002)], this function is not available. However, if constant critical
hoop strain is used, the actual equivalent plastic strain at failure is dependent on the
stress state. The determination of the critical parameters are given in section 4.3.
The stress criterion is used to eliminate unrealistic results, if only the present strain
criterion is used. This aspect will be discussed in section 5.

Once the strain and stress at a material point (integration point) meet this require-
ment, Eq. (7), element deletion is used [ABAQUS (2011)]. One of the advantages
of using explicit finite element method is that the material properties can be de-
graded without introducing numerical divergence problems which usually occurs
in implicit finite element schemes when material softening or cracking is involved.
The disadvantage of explicit finite element method for solving quasi-static prob-
lem is computational time. However, the explicit method does not require storing
the global stiffness matrix and performing large matrix algorithm calculations, as
shown in Eq. (6). Furthermore, the computer clock speeds continue to become
faster, and efficient. It is practical to run quasi-static simulations by using an ex-
plicit finite element method. Another advantage of using explicit finite element
method is that once the present method is validated, it can be extended to ana-
lyze the impact crushing, where rate effects may be required to be considered. For
the dynamic impact, the total time is always very short(10−3s), the computation
demand is far less than that needed in the quasi-static simulations.

The practical implementation of the present model into ABAQUS/EXPLICIT user
material subroutine VUMAT is given in the appendix.

4 Crushing experiment and finite element model

The aluminum and mild steel tubes tested in [Huang, Lu, and Yu (2002)] are used
to validate the capability of the proposed material model. A short overview of the
experiment is given below.

4.1 Overview of the crushing experiment

The axial splitting and curling behavior of metal tubes were experimentally studied
by Huang et al. [Huang, Lu, and Yu (2002)], who tested various circular tubes.
Figure 2a shows the experimental setup. The variables in the tests were: the angle
of the die, the thickness, the diameter and material of the tube. Three different
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angles, α =45◦, 60◦ and 75◦, were designed for the conical die. The dies were made
of mild steel and heat-treated to harden the surface. The tested tubes were 200mm
long with the ratio of the diameter d to the thickness t ranging from 15 to 50. Eight
uniformly spaced saw-cuts were made for all the specimens to obtain splitting and
curling modes while preventing other collapse modes. The initial length of the saw-
cuts was 5mm, while the width was not reported. A short cylindrical mandrel inside
the tube shown in Fig.1a was used to prevent the tube from tilting. The cross-head
of the test machine compressed the tube at a constant speed of 0.0333mm/s.

At the beginning, the strips between the initial saw-cuts buckled and flared as guid-
ed by the die, which resulted in the circumferential stretch of the tube. When the
stretch reached a certain level, cracks initiated from some initial saw-cuts and prop-
agated along the axial direction due to the continuous ductile tearing. The formed
strip rolled up into curls. The curls were observed to be almost constant radius,
which was dependent on the tie angle, tube dimension and material. A typical s-
plitting and curling pattern is shown in Fig. 2b [Huang, Lu, and Yu (2002)]. The ex-
perimental radius of the curls, splitting and curling patterns and load-displacement
curve will be used to validate the findings of the present model.

4.2 Finite element model

Extensive results for the aluminum tube with diameter d =77.9mm and thickness
t =1.95mm and mild steel tube with diameter d =74mm and thickness t =2.0mm
were presented in Ref.[Huang, Lu, and Yu (2002)]. These experimental results will
be used to validate the present method. A typical finite element model is shown in
Fig.2. In the experiment, eight cracks were uniformly cut along the top of the tube.
Since no more detailed information is given for the crack, the width of the crack is
assumed to equal to the element length, see Fig. 2(b). Two types of elements, the
shell element S4R and solid elements C3D8R in ABAQUS/EXPLICIT, are used to
model the metal tube. The element size is about 1mm. For the shell element S4R,
five Simpson,s integration points through the thickness are used. The boundary
conditions are: the bottom of the tube is fixed, ux = uy = uz = 0, general contact in
ABAQUS/EXPLICIT is used to model the relation between the tube and die. The
die is modeled as an analytical rigid body, which presses down at a constant veloc-
ity of 600mm/s. The magnitude of the velocity should not be too large to effect the
quasi-static simulation result. Meanwhile, it should not be too small to make the
computation demand unaffordable. The friction coefficient between the aluminum
and conical die is 0.2, which was used [Huang, Lu, and Yu (2002)].The friction
coefficient between the mild steel and conical die is 0.09. The value is selected
based on: 1) Two mild steel tubes with and without lubrication were tested.It was
observed that there was slight difference between the load-displacements obtained
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from these two test conditions. It implies that the friction is very small. 2) The fric-
tion coefficient for hard steel on hard steel is 0.03-0.12 under sliding and lubricated
condition. For mild steel on mild steel, it is 0.09-0.19 [Appliedcom (2015)]. In
the present case, the tube was made of mild steel, while the conical die was made
of mild steel and heat-treated to harden the surface. The low value 0.09 is used in
the present study. The density of aluminum is 2.7g/cm3. In the present simula-
tion, 8g/cm3 is used to increase the computational time increment. The equivalent
plastic strain-stress relations determined from the following section are used for the
aluminum and mild steel tubes.

(a) Global finite element model (b) Initial saw cut

Figure 2: A typical three dimensional finite element model

4.3 Determination of plastic strain-stress relationship

The experimental stress-strain curves for the aluminum and mild steel used for the
tubes were obtained from standard coupon test for each tube thickness. For the
same material, the experimental curves were close [Huang, Lu, and Yu (2002)].
The average value given in Ref. [Huang, Lu, and Yu (2002)] is plotted in Fig. 3.
Both hardening and softening are observed from these curves. The softening is due
to the local necking. Once necking has occurred, stress and strain are no longer
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uniformly distributed within the gauge section. Therefore, the engineering stress-
strain curve after necking cannot be used to describe the material behavior. Inverse
finite element method is widely [Kamaya and Kawakubo (2011); Joun, Choi, Eom,
and Lee (2007)] used to obtain the equivalent plastic strain-stress response for duc-
tile material. The procedure is given as follows.

• 1. Tensile test to determine the engineering stress strain curve
The engineering stress-strain curve is obtained by conducting tension test fol-
lowing the ASTM standard. The geometrical dimensions of tensile specimen
is shown in Fig. 4. The engineering strain is calculated from the displace-
ment measured between the gauge length.

• 2. Finite element simulation
In the finite element simulation, only one quarter of the longitudinal cross-
section in the gauge length(shown in Fig. 4b) is modeled. The specimen
is modeled to be slightly thinner in the middle than the ends (as shown in
Fig. 4) to trigger local necking. Symmetrical boundary conditions are ap-
propriately prescribed. On the right end, uniform displacement is applied
on its surface. The model is meshed by using three dimensional elemen-
t C3D8R in ABAQUS. The element size is 1mm×1mm×1mm, which will
be used for modeling the tube. The elastic modulus measured from the ten-
sion test are used. The Possion’s ratio 0.3 is used for both aluminum and
mild steel. An assumed equivalent plastic strain-stress relation is used for
the elastic-plastic simulation. Geometric nonlinearity is used in the finite
element analysis. The resulted engineering strain stress curve, which is cal-
culated from the load-displacement response, is used to compare with the
experimental results. The assumed equivalent plastic strain-stress relation is
iteratively changed until the resulting engineering strain stress response can
match the experimental result well.

After many iterations, the equivalent plastic strain stress relations for aluminum
and mild steel are determined as shown in Fig. 5. The stresses are kept constant at
236.5MPa and 593.0MPa when the equivalent plastic strains are larger than 0.095
and 0.13 for aluminum and mild steel, respectively. These values are also used
for the cracking criterion, which are εh ≥ 0.095,σh ≥ 236.5MPa for aluminum
tube and εh ≥ 0.13,σh ≥ 593.0MPa for mild steel tube. The comparison of the
predicted and experimental engineering strain stress relation are shown in Fig. 3.
The predicted result agrees very well with the experiment for the mild steel. For the
aluminum, there is some difference between the predicted and experimental result
as shown in Fig. 3. The reason may be that in the real experiment, damage and
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Figure 3: Experimental and predicted engineering stress-strain curves
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cracking may occur in the necking location. While, these effects are not considered
in the isotropic J2 plasticity model.
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5 Results and discussions

5.1 Element type effect

Solid and shell elements are used to study the splitting and curling behavior of the
aluminum tube. Using the procedure given in the appendix, the predicted splitting
and curling modes obtained from the solid and shell element are shown in Figs. 6
and 7, respectively. The contours shown in these figures (top view of the tube) are
the contact force between the rigid body and the metal tube. The corresponding
load displacement responses are shown in Fig. 9. For comparison purpose, the
corresponding experimental results given in Ref. [Huang, Lu, and Yu (2002)] are
shown in Figs. 8 and 9. It is observed that the result for the tube pressed by α = 75◦

die is over-predicted. For this case, very high equivalent plastic strain is found in
the curls, which exceeds the capability of the equivalent plastic strain stress curve
given in section 4.3 to describe the material behavior accurately. In general, the
predicted load displacement responses compare well with the experimental results.

It is observed there are some differences in the load-displacement responses ob-
tained from the shell and solid elements. These differences are introduced by the
different assumptions and simplifications used in these elements. The advantage
of using shell elements is its computational efficiency. The computation time for
the solid element model is about 160h CPU time. If the element size is 0.5mm, it
requires about 2560h (=160×24) CPU time. For the same tube, the computational
demand of the shell element model is half of that of the solid finite element model.
The shortcomings of the shell element for the present study are 1) The transverse
shear is not well captured, see Appendix B: for detail, while, the present splitting
crack is a complex mixed mode crack where transverse shear is important; 2)The
strip displays coupled bending and twisting deformation, which is a challenge for
simple quad shell element to capture. The contact area obtained from the shell ele-
ment as shown in Fig. 7c does not capture the experimental observations well. The
experimental contact area is indicated by the wear and tear in the strips as shown
in Fig. 8c [Huang, Lu, and Yu (2002)].As shown in Fig. 7c (shell element), the
contact areas are observed at the edges of the strips. However, in the experiment,
contact area is also observed in the middle of the strips shown in Fig. 8c. The
contact area is well predicted by the solid element, which can be observed by com-
paring Fig. 6 and Fig. 8; and 3) The radius of the curling strip is relatively small
compared with the thickness, which may invalidate the thin (or middle) thickness
assumption in the shell element. This may also be a reason for the difference in
the load-displacement response obtained from the shell and solid elements for the
α = 75◦ case, where the ratio between the radius to thickness of the strip is about
4. For the mild steel tube, solid elements are used.
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As shown in Figs. 6 and 8, the edges of the strips are in contact with the rigid
die. The hoop strain in the contact location may exceed the critical value. If only
the strain criterion is used, these elements will be deleted as shown in Fig. 10. To
prevent deletion, the hoop stress criterion is proposed.

(a) 45◦ (b) 60◦ (c) 75◦
Figure 6: Predicted fracture patterns of aluminum tubes from solid element.

5.2 Results for steel tubes

The experimental and predicted load-displacement responses for the mild steel
tube pressed by three different die angles α = 45◦,60◦ and 75◦ are given in Fig.
11. The corresponding splitting and curling patterns are shown in Figs. 12 and
13,respectively. It is shown that the predicted responses compare well with the ex-
periment result in general. Compared to the aluminum tube, the predicted results
for mild steel are more accurate. It is observed from Fig. 3a and 3b that the equiva-
lent plastic strain-stress relation given in Fig. 5 for the mild steel is better than that
of the aluminum for characterizing the material behavior. This may be the reason
for that the prediction for the mild steel is better than that of the aluminum tube.

For comparison purpose, the predicted and experimental average loads Favg and
curl radius Ravg are summarized in Table 1. In general, the solid element gives a
better prediction than that of the shell element. The predicted average load by using
solid element is within 10% of the corresponding experimental result, except the
aluminium tube pressed by α = 75◦ conical die.
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(a) 45◦ (b) 60◦ (c) 75◦
Figure 7: Predicted fracture patterns of aluminum tubes from shell element.

Figure 8: Experimental fracture patterns of aluminum tubes,Ref. [Huang, Lu, and
Yu (2002)].
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Figure 9: Comparison of the load-displacement responses obtained from solid and
shell elements with the corresponding experimental results for aluminum tubes

Figure 10: Predicted fracture patterns, if only the strain criterion is used
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Table 1: Comparisons between the predicted and experimental average loads and
curl radius [Huang, Lu, and Yu (2002)].

Specimen ID
Favg,KN Ravg,mm

Prediction Test Error,% Prediction Test Error,%
Al shell,α = 45◦ 7.6 8.5 -10.6 17.2 21.6 -20.4
Al shell,α = 60◦ 11.0 11.0 0.0 10.8 15.1 -28.5
Al shell,α = 75◦ 18.0 13.0 38.5 6.1 10.9 -44.0
Al Solid,α = 45◦ 8.7 8.5 2.4 16.0 21.6 -25.9
Al Solid,α = 60◦ 11.5 11.0 4.5 11.5 15.1 -23.8
Al Solid,α = 75◦ 16.0 13.0 23.1 8.2 10.9 -24.8

Steel,α = 45◦ 21.0 23.3 -9.9 14.5 17.9 -19.0
Steel,α = 60◦ 26.5 27.0 -1.9 10.6 11.5 -7.8
Steel,α = 75◦ 35.0 33.8 3.6 7.8 8.3 -6.0
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Figure 11: Comparison of the predicted and experimental load-displacement re-
sponses for mild steel tubes.
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(a) 45◦ (b) 60◦ (c) 75◦
Figure 12: Predicted fracture patterns of mild steel tubes from solid element

Figure 13: Experimental load-displacement responses for mild steel tubes, Ref.
[Huang, Lu, and Yu (2002)]
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5.3 Prediction of splitting crack number

An interesting question is that if there is no pre-saw cut, how many cracks will be
formed. Atkins [Atkins (1987)] proposed an analytical method to predict the num-
ber of cracks by using bounding analysis associated with work dissipation rate.
Theoretically, the hoop strain and stress are uniformly distributed. Infinite number
of cracks will be predicted for any stress or strain based criterion. However, this
does not happen in reality, because the real tube is not perfect. That is, the tube
material properties are not ideally homogenous, and there must also be some vari-
ations in the geometries of the tube and shaped die as well. Numerically, even for
a perfect tube, the determined stress and strain in the hoop direction of the tube are
not uniform, especially when the explicit finite element method is used. A typical
hoop stress variation is shown in Fig. 14, where σh and σm are the hoop stress and
the mean value of the hoop stress of the elements at the top of the tube. This result is
obtained from the simulation of a perfect aluminum tube pressed by a α = 60◦ die
by using J2 plasticity implemented in ABAQUS/EXPLICIT. The stress variation
is caused by the discrete FE model and associated numerical method. Therefore,
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Figure 14: A typical relative hoop stress variation, α = 60◦.
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the strain/stress variation and the imperfection of the tube should be considered in
the finite element simulation, to bring results closer to agreement with reality. To
predict the number of cracks, one element with ’weak’ critical properties is used to
model the imperfection. The critical strain and stress of the weak element should
be less than (1− p)εcr and (1− p)σcr, respectively, to decrease the strain variation
effect. p is the maximum relative deviation of the stress and strain, as shown in Fig.
14 for an example. For simplicity, p = 0.9 is used in the present prediction for the
aluminum tube pressed by a α = 60◦ die.

(a) Crack initiation (b) The second crack initiated (c) Multiple cracks initiat-
ed

(d) Some cracks stop growing (e) Cracks stably grow (f) Cracks stably grow

Figure 15: Splitting and curling process, without initial saw-cut
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α=60, simulation, 8 saw−cuts
α=60, simulation, one weak element

Figure 16: Comparison of the predicted load-displacement responses for aluminum
tubes with and without saw-cuts, α = 60.

As the die presses down, the weak element will fail at first as shown in Fig. 15a.
The failure of this element will lead to stress redistribution and stress gradients,
which then localizes the failure event. The next failure will happen at the element
which satisfies the failure criterion given in Eq. (7). A new crack is shown in Fig.
15b. It is observed from Fig. 15b that the maximum hoop direction strain occurs
at the element closest to the crack. Actually, there is a contact force acting at this
element. If only the strain criterion is used, this element will be deleted, since the
hoop strain(0.103 as shown in Fig. 15b) exceeds the critical value(0.095). The
stress criterion in Eq. (7) is used to prevent the deletion of this element.

As the die presses down, more cracks are initiated as shown in Fig. 15c. It is ob-
served that some cracks are closely spaced. The reason for the unexpected closely
spaced cracks may be from the explicit finite element method and the discrete fi-
nite element model. In the explicit finite element method as introduced in section
2, the weak form is solved rather than the strong form equation for the system. It
implies the stress equilibrium is not exactly satisfied. Furthermore, when crack is
initiated (element deletion), there is a small disturbance and transients are intro-
duced in the system. Physically, it takes time to achieve equilibrium. However, in
the explicit finite element simulation, element deletion kicks in prior to attaining
equilibrium. However, after a while, some of the closely spaced cracks stop grow-
ing. Eleven cracks are formed and stably propagated. A typical cracking, splitting
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and curling process is shown in Fig. 15.The cracks are not uniformly spaced. The
load-displacement response is given in Fig. 16. Also shown in this figure is the
predicted load-displacement response for the eight initial saw-cut tube. The aver-
age load for the eight saw-cut tube is higher than that of the tube without initial
saw-cut.

6 Conclusions

In this paper, finite strain J2 plasticity combined with a strain and stress based crite-
rion is used to model the splitting and curling process of a circular tube crushed by
different angled dies. The material model is implemented in the commercial finite
element software ABAQUS/EXPLICIT through its user material subroutine VU-
MAT. Solid and shell elements are used to predict the splitting and curling behavior.
It is found that the solid element is better than shell element for this problem. The
splitting, curling and the load displacement responses predicted by using the solid
elements are found to compare well with the corresponding experimental results.
The present method is also used to predict the number of cracks for a ’perfect’ tube
pressed by shaped die, and, reasonable results are obtained. The proposed method
can be extended to analyze the splitting and curling process of tubes subjected to
dynamic impact.

Appendix A: Isotropic elasto-plasticity for the solid

The isotropic J2 elastic-plastic theory, with associated hardening and Von Mises
yield criterion is used to obtain the stress, which is required in Eq. (6). The method
for solving the plasticity equations described in [Souza Neto, Peric, and Owen
(2008)] is used in this study. This elastic-plastic behavior are described by the
following set of equations,

ε = ε
e + ε

p (8a)

σ = Dε
e (8b)

φ =
√

3J2(s)−σy(ε p) (8c)

ε̇ p =
√

3/2 ε̇ p s/‖ s ‖ (8d)

ε̇ p ≥ 0;φ ≤ 0; ε̇ p ·φ = 0 (8e)

The total strain ε is additively decomposed into elastic strain εe and plastic strain ε p

in Eq. (8a), using an assumption of small strain. If the elastic strain is known, the
stress is updated by using the elastic constitutive equation given in Eq. (8b), where
D is the elastic constitutive matrix. The yield function given in Eq. (8c) is used to
check for the plasticity flow rule, where J2 is the equivalent Von Mises yield stress,



186 Copyright © 2015 Tech Science Press CMC, vol.46, no.3, pp.165-194, 2015

and σy(ε p) is the plastic hardening law which is obtained from a coupon tension
test. The normality hypothesis of plasticity is used to determine the direction of
the flow. It states that the direction of the incremental plastic strain is normal to
the yield surface. Based on this assumption and some mathematical derivation, the
relation between the plastic strain increment and the deviatoric stress s is given in
Eq. (8d), where ε̇ p is the equivalent plastic strain increment. The last equation Eq.
(8e) is used to determine the load state, loading or unloading.

The single variable radial return method is used to solve the above equations. The
inputs are: the stress, elastic/plastic strain and equivalent plastic strain at the nth

increment as well as the strain increment. These variables at (n+ 1)th increment
are required to be updated. First, assume there is no plastic strain in the strain
increment, thus, a trial stress, strain and plastic strain are:

ε
trial = ε

e
n +∆ε (9a)

σ
trial
n+1 = σn +∆σ

trial (9b)

∆σ
trial = D∆ε (9c)

ε
p
n+1 = ε

p
n (9d)

φ =
√

3J2(strial
n+1)−σy(ε

p
n ) (9e)

if φ < 0, the material point is elastic or unloading. The elastic strain and stress are
updated by Eqs. (9a) and (9b), respectively. Otherwise, some plastic strain is in-
cluding in the strain increment. According to Eq. (8d), the plastic strain increment
is,

ε̇ p =
√

3/2ε̇ psn+1/‖ sn+1 ‖ (10)

and, the elastic strain is,

ε̇e = ε̇−
√

3/2ε̇ psn+1/‖ sn+1 ‖ (11)

using the plasticity incompressibility assumption,
3
∑

i=1
(ε̇ p

ii )= 0, the volumetric (εe
v n+1)

and deviatoric (εe
d n+1) strain increments are:{

ε
e
v n+1 = ε

trial
v (12a)

ε
e
d n+1 = ε

trial
d −

√
3/2ε̇ psn+1/‖ sn+1 ‖ (12b)

using the elastic constitutive law, the hydrostatic stress p and deviatoric stress s are:{
pe

n+1 = ptrial (13a)

sn+1 = strial− ε̇ p ·2G
√

3/2sn+1/‖ sn+1 ‖ (13b)
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It is found that the flow vector at the trial and updated stress state coincide by
rewriting, Eq.(13b).{

(1+2G
√

3/2ε̇ p/‖ sn+1 ‖)sn+1 = strial
n+1 (14a)

sn+1/‖ sn+1 ‖= strial
n+1/‖ strial

n+1 ‖ (14b)

Rearranging Eq.(14), the deviatoric stress of the (n+1)th increment is

sn+1 = (1−2G
√

3/2ε̇ p/‖ strial
n+1 ‖)strial

n+1 (15)

substituting the above Eq.(15) into the yield surface equation Eq.(8c), leads to

φ =
√

3J2(strial
n+1)−3Gε̇ p−σy(ε

p
n ) = 0 (16)

The plasticity equations are reduced to the above single variable equation. The
equivalent plastic strain increment in Eq. (16) can be solved by using Newton-
Raphson iteration method. Once it is determined, the current stress, elastic and
plastic strain and the equivalent plastic strain can be updated by using the following
equations.

sn+1 = [1−3Gε̇ p/
√

3J2(strial
n+1)]s

trial
n+1 (17a)

σn+1 = sn+1 + ptrial
n+1I (17b)

ε
e
n+1 = sn+1/(2G)+1/3ε

trial
v (17c)

ε
p
n+1 = ε

p
n + ε̇ p (17d)

Appendix B: Isotropic elasto-plasticity for plane stress

Shell elements are used to study the splitting and curling of the metal tube. The in-
plane behavior of a shell element is composed of several plane stress elements. The
number of plane stress elements correspond to the number of integration points in
the thickness direction of the shell element, which is defined by the user [ABAQUS
(2011)]. Using the constant shear strain assumption, the transverse shear stress of
the shell element is determined by kGγ , where, G,k and γ are the shear modulus,
shear stress correction factor and shear strain, respectively. The assumption of con-
stant transverse shear is not accurate since the shear stress is known to be parabolic
for simple plate geometries [Timoshenko and Goodier (1970)]. To account for the
inaccuracy in the shear strain, a shear stress correction factor is applied. For rect-
angular cross-section, k is 5/6. The transverse shear force will be automatically
updated by ABAQUS/EXPLICIT, once the user provides the G,k and the thickness
of the shell [ABAQUS (2011)]. While the inplane stresses are updated by the user
through the user material subroutine VUMAT.
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The assumption of plane stress is that the stress components related to the thickness
direction are assumed to be zero to first order, that is,

σ33 = σ13 = σ23 = 0 (18)

substituting the above relation into the three dimensional constitutive equation, E-
q.(8b), we have

ε
e
33 =−ν/(1−ν)(εe

11 + ε
e
22);ε

e
13 = 0;ε

e
23 = 0 (19)

According to Eqs.(18) and (19), we have

ε
p
13 = ε

p
23 = 0 (20)

Considering the plastic incompressibility assumption, yields

ε
p
33 =−(ε

p
11 + ε

p
22) (21)

Therefore, the out of plane strain components can be completely defined by the
in-plane values. In summary, the out of plane strain and stress are given as follows.

ε13 = ε
p
13 + ε

e
13 = 0 (22a)

ε23 = ε
p
23 + ε

e
23 = 0 (22b)

ε33 =−ν/(1−ν)(εe
11 + ε

e
22)− (ε p

11 + ε
p
22) (22c)

σ33 = σ13 = σ23 = 0 (22d)

The in plane stress σ and strain ε are: σ = [σ11,σ22,σ12]
T and ε = [ε11,ε22,ε12]

T .

Substituting Eq. (22) into the three dimension plasticity equation, Eq. (8), the
equations for plane stress isotropic plasticity are obtained.

ε = ε
e + ε

p (23a)

σ = Dε
e (23b)

φ =
√

3/2σT Pσ −σy(ε p) (23c)

ε̇ p =
√

3/2ε̇ p Pσ√
σT Pσ

(23d)

D =
E

1−ν2

1 ν 0
ν 1 0
0 0 (1−ν)/2

 (23e)

P =
1
3

 2 −1 0
−1 2 0
0 0 6

 (23f)

ε̇ p ≥ 0; φ ≤ 0; ε̇ p ·φ = 0 (23g)
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A quadratic form yield surface is used to derive a single variable equation for solv-
ing the above equations, which is

φ = 1/2σ
T Pσ −1/3σ

2
y (ε

p) (24a)

ε̇p = γ̇
∂φ

∂σ
=
√

3/2ε̇ pPσ (24b)

ε̇p = γ̇

√
2/3σT Pσ (24c)

Accordingly, the elastic strain, equivalent plastic strain and the yield surface func-
tion at the (n+1)th increment are:

ε
e
n+1 = ε

etrial
n+1 − γ̇Pσn+1 (25a)

ε
p
n+1 = ε

p
n + γ̇

√
2/3σT Pσ (25b)

1/2σ
T
n+1Pσn+1−1/3σ

2
y (ε

p
n+1) = 0 (25c)

where, εetrial
n+1 = εn+∆ε , εn and ε

p
n are the elastic strain and equivalent plastic strain

at the nth increment. Using Eq. (23b), Eq. (25a) can be rewritten as{
D−1

σn+1 = ε
etrail
n+1 − γ̇Pσn+1 (26a)

σn+1 = (D−1 + γ̇P)−1D−1
σ

trial
n+1 (26b)

Substituting Eq. (26b) into the yield function, Eq. (25c), a single variable function
is established as follows.

1/2[(D−1 + γ̇P)−1D−1
σ

trial
n+1 ]

T P[(D−1 + γ̇P)−1D−1
σ

trial
n+1 ]

−1/3σ
2
y (ε

p
n + γ̇

√
2/3σT Pσ) = 0

(27)

The equivalent plastic strain increment can be obtained by solving the above single
variable equation. Subsequently, the stress, elastic strain and equivalent plastic
strain are updated by using Eqs. (26b),(25a) and (25b),respectively.

It is observed that the transverse shear stresses are not included in the J2 plasticity
equations for plane stress, due to the assumptions used in the shell element. If the
transverse shear is comparable with the in-plane stress, then solid elements are a
better choice for modeling the tube.

Appendix C: Practical implementation in VUMAT

The plasticity model introduced in Appendix A: and Appendix B: is for small s-
train, small deformation problems. For the present tube, large deformation was ob-
served in the experiment. The hypoelastic-plastic constitutive model is used in the
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present numerical study. However, by using the Green-Naghdi corotational stress
formulation, which is used in ABAQUS/EXPLICIT, the numerical architecture of
the small strain plasticity can be fully retained [Belytschko, Liu, and Moran (2000);
ABAQUS (2011); Healy and Dodds Jr. (1992)]. In the hypoelastic-plasticity model,
the rate of deformation tensor is used in the constitutive model. The practical appli-
cation of the hypoelastic-plastic constitutive model through ABAQUS/EXPLICIT
user material subroutine VUMAT [ABAQUS (2011)] will be introduced in this
section. The information at the beginning of a increment such as the stress, defor-
mation gradient, and, strain increment are supplied by VUMAT. In addition, the
user is allowed to use the stateNew in VUMAT to define any required parameters,
for example, the equivalent plastic strain, and, the total elastic/plastic strain. The
stateNew at the beginning of the increment stateOld is also supplied. The compu-
tation procedure is given as follows:

• 1. Initial conditions:
σn,∆ε,εn,ε

p
n

where σn and ∆ε are the stress vector and strain increment supplied by VU-
MAT through the variables stressold and straininc . For hypoelastic-plastic
model, the strain increment is obtained from the corotational rate of defor-
mation. The equivalent plastic strain ε p and the total strain εn at the previous
increment are passed through stateOld in VUMAT. The unknown equivalent
plastic strain increment at the current increment are required to be solved.

• 2. Elastic predictor:
Assign and compute the trial state variable
ε

p
n+1 = ε

p
n , σ trial

n+1 = σn +D∆ε

Check the yield condition by using Eq. (9e) for solid element and Eq. (24a)
for shell element.If φ trial < 0, the material is either remaining linear elastic
or unloading, then go to step 4. Otherwise, go to step 3.

• 3. Newton-Raphson radial return
The incremental equivalent plastic strain for solid element is obtained by
solving Eq. (16). While, for shell element, Eq. (27) is used instead. Subse-
quently, the stress and equivalent plastic strain are updated by Eq. (17) for
the solid element. For shell element, Eqs. (26b) and (25a) are used.

• 4. Update stateNew and element deletion
The total strain is updated through stateNew in VUMAT by stateNew =
∆ε + stateOld. Once the stress and strain components in the hoop direction
(for the present tube) exceed their critical values, the material point is delet-
ed by setting the corresponding state variable in stateNew to be zero. For
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shell elements, the strain increment in the thickness direction is required to
be updated by using the following equations. If the material is elastic or un-
loading,
∆ε33 =−ν/(1−ν)(∆ε(1)+∆ε(2))
Otherwise,
∆ε33 =−ν/(1−ν)(∆εe

11 +∆εe
22)− (∆ε

p
11 +∆ε

p
22)

where the elastic and plastic strain increments(∆εe and ∆ε p) are byproducts
of step 3.

The above procedure is coded into a VUMAT. Several examples are used to test
the reliability of the plasticity code. The results obtained from the VUMAT code
are found to compare very well with the ABAQUS implemented isotopical material
model.
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