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A Macro Element Method to Improve Computational
Efficiency in Large-scaled Nonlinear Analysis

Huan Wang1, Weifeng Yuan2,3 and Fei Jia2

Abstract: Compared with dealing with a linear system, solving a nonlinear sys-
tem equation in numerical simulation requires generally more CPU time since it-
erative approach is usually used in the latter. To cut down the computing cost, a
direct way is to reduce the degree of freedoms (DOF) of the problem under inves-
tigation. However, this kind of treatment may result in poorer accuracy. In this
manuscript, a macro element method is proposed to improve computational effi-
ciency in large-scaled nonlinear analysis. When this concept is incorporated into
finite element analysis (FEA), all the members in the linear zones of a structure
can be grouped into just one macro element. By using weak member approach, the
stiffness matrix of this macro element can be evaluated through unit force method.
Numerical examples prove that the proposed macro element method can increase
the computational efficiency significantly without obvious negative influence on
accuracy.
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1 Introduction

FEA is an important numerical tool to analyze various problems. It is well known
that the computing cost in a FEA modelling is dependant on the number of degree
of freedoms (DOF) in the FEA model under investigation. In numerical simu-
lations, some algorithms including multi-domain method [Miao, Chen, Wang and
Zhu (2014)] and static condensation method [Eom, Ahn, Baek, Kim and Na (2007)]
are usually employed to achieve DOF reduction. In a large-scaled problem, a direct
way to improve the computational efficiency is to limit the number of elements.
However, some important details of the structural response may be sacrificed since

1 School of Applied Technology, Southwest University of Science and Technology, China.
2 School of Manufacturing Science and Engineering, Southwest University of Science and Technol-

ogy, China.
3 Corresponding author. E-mail: yuanweifeng@swust.edu.cn



32 Copyright © 2015 Tech Science Press CMC, vol.47, no.1, pp.31-43, 2015

fewer elements may cause poorer accuracy [Lin and Donaldson (1969); Finnveden
(1994)]. Alternatively, superelement method is also widely used in FEA analyses
for various problems [Lukasiewics (1987); Song (2004); Birgersson, Finnveden and
Nilsson (2005); Dong, Atluri (2012), (2013)]. The original idea of superelement
was introduced by aerospace engineers in the early 1960s to carry out a first-level
breakdown of complex systems such as an entire airplane [Przemieniecki (1968)].
Briefly, the basic concept of superelement method is to treat structural members
as a continuous body and then discretize this body into superelements defined as
any cluster of contiguous elements [Cao (1992); Jiang and Olson (1994)]. In this
way, each superelement may consist of different types of members which may have
various shapes, materials properties and boundary conditions.

As a hallmark of practical application, superelement technique was incorporated
into NASTRAN in the 1970s. The capability of superelement method was then
tested and further developed [Zemer (1979); Jacobsen (1983)]. Because of the
most attractive advantage to significantly improve the computational efficiency, su-
perelement method has been employed to analyze various problems in recent years.
In summary, the problem characteristics which are suitable for the application of
superelement can be summarized into three distinguishing features, viz. iterative
computational tasks, localized nonlinearity and a large number of finite elements
in the numerical models for applications in dynamics. At present, the methods
to construct superelements are usually based on substructure and static condensa-
tion techniques [Wilson (1979); Chen and Pan (1988)]. However, inconvenience
may be caused in the conventional superelement techniques. For instance, to ap-
ply static condensation, many nodes in the mesh have to be renumbered, or the
rows and the columns in the stiffness matrix have to be swapped to make the DOF
associated with the superelement to lie in the upper left sub-matrix in the system
stiffness matrix. Therefore, a macro element method based on superelement con-
cept is proposed in this manuscript to overcome the limitations of the conventional
superelement formulation. To implement this approach, an entire structure has to
be divided into several linear and nonlinear zones according to the requirement of
numerical investigation and the behavior of the structure. The main novelties of
the proposed approach include (i): the algorithm is very simple to implemented,
and (ii): the whole members in all linear zones can be grouped into just one super
element, even in the case that the linear zones are not connected.
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2 Methodology

2.1 Concept

Fig. 1 shows a linear elastic system which contains two nodes A and B. Three load
cases are discussed below:

Case 1: in Fig. 1(a), a force p1 is applied at node A along direction x1. At node B,
the displacement vector induced by p1 is denoted by [u11 u21]

T .

Case 2: in Fig. 1(b), a force p2 is applied at node A along direction x2. At node B,
the displacement vector induced by p2 is denoted by [u12 u22]

T .

Case 3: In Fig. 1(c), two arbitrary forces, P1 and P2 are applied at node A simul-
taneously. At node B, the displacement vector induced by P1 and P2 is denoted by
[U1 U2]

T .

According to the theory of linear system, [U1 U2]
T , the displacement vector in

Case 3 can be evaluated based on Case 1 and Case 2.

Taking the forces at node A as input and the displacements at node B as output, Eq.
1 can be used to describe the linear system.

κκκPPP =UUU (1)

where κκκ is a 2× 2 system matrix, UUU and fff PPP are 2× 1 force and displacement
vectors, respectively.

According to the theory of linear system, 
TUU ][ 21 , the displacement vector in Case 3 
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where κ  is a 22  system matrix, U  and P  are 12  force and displacement vectors, 

respectively.  

 

Figure 1:  Illustration of force-displacement relationship in a linear elastic system 
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Figure 1: Illustration of force-displacement relationship in a linear elastic system.
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From Case 1 and Case 2, one obtains:
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In Eq. 2 and 3, uuu1 and uuu2 are induced by two unit forces applied at A, along
direction x1 and x2, respectively. Based on Eq. 2 and 3, one can further obtain:
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(4)

Therefore, for Case 3, U1 and U2 can be carried out:(
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)(
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)( P1
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(5)

Define KKK = κκκ−1, Eq. 1 can be rewritten as:

KKKUUU = PPP (6)

where KKK performs as a stiffness matrix.

From Eq. 1 to Eq. 6, one finds that KKK can be obtained by unit force method.

2.2 Derivation

In Fig. 2(a), a structure with restraints LCi (i = 1,2,3, · · · ,mL) and NC j ( j =
1,2,3, · · · ,mN) is subjected to external loads LPPPk (k = 1,2,3, · · · ,nL) and NPPPl (l =
1,2,3, · · · ,nN). For finite element modelling, the structural domain is normally dis-
cretized into a cluster of elements, each element contains several nodes. Without
loss of generality, it is assumed that there are five nodes on the boundary between
the linear and nonlinear zones. In the linear zone, there is a typical node R that has
ND DOF. The following four steps describe how to group the entire linear zone into
a macro element.

1) Focus on the simulant structure of the original one

Fig. 2(b) is the simulant structure of the one in Fig. 2(a). Compared with the
original structure, the simulant structure is under the same loadings and restraints.
However, the nonlinear zone in Fig. 2(a) is replaced by the overlapped zone in
Fig. 2(b). The overlapped zone consists of two parts, viz. the virtual weak part
and the original nonlinear zone. The virtual weak part is the same as the original
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Figure 2:  The procedure to group the linear zone into a macro element 

 

1) Focus on the simulant structure of the original one 

R 

1 

5 

N
Pl 

N
Cj 

2 
3 4 

  

x2 x1 

 

x3 

 
(e) 

R 

5 

N
Cj 

1 
2 

3 4 

x2 x1 

 

x3 

 

(d) 

L
Pk 

L
Ci 

R 

5 
Linear 

N
Cj 

Virtual weak part 

1 
2 

3 
4 

x2 x1 

 

x3 

 
(c) 

x2 x1 

 

x3 

 
(b) 

L
Pk 

L
Ci 

R 

5 
Linear 

N
Cj 

N
Pl 1 

2 
3 

4 

Overlapped Nonlinear 

Linear 

L
Pk 

N
Pl 

N
Cj 

L
Ci 

R 

1 
2 

3 
4 

5 

x2 x1 

 

x3 

 
(a) 

Figure 2: The procedure to group the linear zone into a macro element.

nonlinear zone in geometry, but the members in the virtual weak part are assumed
to be elastic, with very low elastic modulus.

2) Define a macro element

The original nonlinear zone and NPPPl (l = 1,2,3, · · · ,nN) are all removed from Fig.
2(b) to create Fig. 2(c). In Fig. 2(c), the linear zone and the virtual weak part form
a fictitious linear structure. The system equation of a FEA model for the fictitious
structure can be expressed by Eq. 7:

KKK fUUU f = PPP f or UUU f = KKK−1
f PPP f (7)



36 Copyright © 2015 Tech Science Press CMC, vol.47, no.1, pp.31-43, 2015

In this equation, the subscript “ f ” denotes “fictitious”. KKK f is the global stiffness
matrix of the fictitious structure. UUU f and PPP f are the displacement and force vectors,
respectively. Since the entire fictitious structure is elastic, Eq. 7 is a linear equation.

It should be noted that the entire fictitious structure restrained by LCi and NCi

(i = 1,2,3, · · · ,m) performs as a stable linear system. Therefore, one can treat
this structure as a continuous elastic body and convert it into a macro element. It
should be noted that both the linear zone and the virtual weak part are modelled by
a cluster of node-based elements in a numerical model. However, only six nodes
are selected to form the macro element. The six nodes include R, the reference
node, and the five joints shared by the linear and the virtual weak parts (Fig. 2(d)).

3) Evaluate the stiffness matrix of the macro element.

As mentioned, the macro element contains six nodes. Each node has ND DOF in
the original FEA model for the fictitious structure. However, in the macro element,
the DOF of the reference node R is set to 1 due to its special role. Each of the
other five nodes still has ND DOF. Hence, the total DOF of the macro element is
5ND +1. Denoted by KKKm, the stiffness matrix of the macro element should satisfy
the following equation:

KKKmUUUm = PPPm (8)

In Eq. 8, the subscript “m” represents “macro”. UUUm and PPPm are the displacement
and force vectors, respectively. They are all (5ND +1)×1 vectors. KKKm is a (5ND +
1)× (5ND + 1) matrix. Based on Eq. 7, KKKm can be evaluated using unit force
method.

Firstly, for convenience, define a load case L0 which indicates that LPPP1
/

λ , LPPP2
/

λ ,
. . .,LPPPn

/
λ are applied to the macro element simultaneously. The scalar coefficient

λ is used to adjust the magnitudes of the forces. In this study, it is recommended

that λ =

√
n
∑
j=1

∣∣LPPP j
∣∣2. The superscript of L0 denotes the load case number. From

Eq. 7, the corresponding displacement vectors at the five joints induced by L0 are
denoted by UUU1,0

f , UUU2,0
f , UUU3,0

f , UUU4,0
f and UUU5,0

f , respectively. Obviously, UUU1,0
f ∼UUU5,0

f
are all ND×1 vectors. In the superscript, the letter in front of the comma indicates
the identity of the node, while the number behind the comma is for load case.
For instance, UUU3,0

f means the displacement vector at node 3 due to load case L0.

Similarly, the displacement at node R induced by L0 is denoted by UUUR,0
f . In this

study, the reason why R is selected to be “the reference node” is that UUUR,0
f has a

nonzero component. Without loss of generality, it is assumed that this nonzero
component’s direction is along the Jth DOF (1≤ J ≤ ND) and it can be denoted by
uuuR,0

f (a 1×1 vector). Although the load case L0 involves n forces, it is assumed that
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these forces are represented symbolically by a single unit force PPP0
f , which is applied

at node R along the direction of the Jth DOF. It is also defined that the displacement
vectors at the five joints induced by PPP0

f are UUU1,0
f , UUU2,0

f , UUU3,0
f , UUU4,0

f and UUU5,0
f .

Secondly, a unit load is applied along the first DOF direction at node 1 to create the
load case L1. The corresponding displacement vectors at R and the five joints can
be obtained. They are defined to be uuuR,1

f , UUU1,1
f , . . ., UUU3,1

f , UUU4,1
f and UUU5,1

f , respectively.
Similarly, a unit force is applied to node 1 along its second DOF to generate the load
case L2 and obtain the corresponding uuuR,2

f , UUU1,2
f , . . ., UUU3,2

f , UUU4,2
f and UUU5,2

f . Repeat
this procedure till a unit force is applied to node 5 along its last DOF. During this
procedure, a typical load case Lk is created and uuuR,k

f , UUU1,k
f , . . ., UUU3,k

f , UUU4,k
f and UUU5,k

f
(k = 1,5ND) can be calculated using Eq. 7.

Thirdly, considering all the load cases (L0 ∼ L5ND) and the corresponding displace-
ments, one can obtain:

KKKm


uuuR,0

f uuuR,1
f uuuR,5ND

f

UUU1,0
f UUU1,1
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f

...
... · · ·

...
UUU5,0

f UUU5,1
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f
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1 000
000 III

]
(9)

Based on Eq. 9, KKKm can be evaluated:

KKKm =


uuuR,0

f uuuR,1
f uuuR,5ND

f
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... · · ·
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UUU5,0
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(10)

where KKKm is a (5ND +1)× (5ND +1) matrix.

As shown in Fig. 2(e), the macro element and the nonlinear zone form a simplified
structure. The macro element contains six nodes, viz. node R and nodes 1∼5. In
this structure, the real external loads LPPP j ( j = 1,2,3, · · · ,n) are replaced by a ficti-
tious force with a magnitude λ acting at node R while the boundary conditions in
the linear zone are ignored since their effects have been considered in the stiffness
matrix of the macro element. In the nonlinear zone, both the original boundary
conditions and the external loads remain unchanged. Since the stiffness matrix of
macro element is known, the global stiffness matrix of the simplified structure can
be assembled easily using conventional FEA approach.

It should be noted that the structure shown in Fig. 2(e) represents a nonlinear sys-
tem. Compared with that of the original structure (Fig. 2(a)), the DOF of the
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fictitious structure (Fig. 2(e)) is much less, so the computational cost for the orig-
inal structure can be reduced. However, it must be mentioned that the numerical
result based on Fig. 2(e) is an approximation to that obtained from Fig. 2(a). The-
oretically, from the energy point of view, the difference between the two kinds of
results can be limited by setting the stiffness of the weak part very small.

3 Examples

3.1 Demonstration of constructing a macro element

As shown in Fig. 3, a very simple plane frame is taken as an example to demon-
strate the procedure of constructing a macro element. The frame is evenly divided
into 20 2-node two-dimensional beam elements. Each node of a beam element has
three DOF, viz. two translations and one rotation. Two pointed forces and a bend-
ing moment are applied at nodes 3, 9 and 21, respectively. It is assumed that in
such a structure, the elements between node 6 and node 21 are within a nonlin-
ear zone, while those elements between node 1 and node 11 are in a linear zone.
This example shows how the elements in the linear zone are merged into a macro
element.

In Fig. 4, the elements in the nonlinear zone, including the bending moment applied
at node 21, remain as what they are in the original FEA model. All the rest is
replaced by a macro element which contains two nodes, viz. nodes 6 and 8. It
should be mentioned that node 6 must be a node of the macro element since it is
shared by the nonlinear and linear zones. Node 8 is chosen to be another node of
the macro element, just because its displacement in x direction is not zero when P1

and P2 are applied simultaneously. The value of λ is given as λ =

√
|P1|2 + |P2|2.

The stiffness matrix of the macro element can be evaluated by Eq. 10.

Based on the model shown in Fig. 4, both linear and nonlinear analyses can be
conducted using conventional FEA algorithms. The DOF of the macro element is
4, so the total DOF of the modified FEA model is 34, which is much less than 63,
the DOF of the original model. Therefore, by macro element method, the compu-
tational efficiency can be improved.

In this example, the dimension of the cross-section of each beam is set to 0.05×0.05.
The Young’s modulus and the Poisson’s ratio are 1×106 and 0.3, respectively. The
loads applied to the original frame are P1 = P2 = 1 and P3 = 0.1. The deformation
of the frame is calculated by the present macro element method and the conven-
tional FEA, through generalized displacement approach. During the analyses, both
λ and P3 increase gradually and the load-displacement curves are depicted in Fig.
5. The analysis stops when the load factor is up to 40.
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Figure 4:  A two-dimensional frame with a macro element 
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Figure 5:  Comparison between two kinds of load-displacement curves 
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From Fig. 5 it can be seen that the results obtained by the two methods have very
good agreement. However, as the load factor increases, the variation between the
two types of results becomes larger. This is because the nonlinearity behaviour of
the beam members involved in the macro element becomes obvious when the load
factor is large enough. Actually, such a situation conflicts with the basic assumption
of the linearity in the macro element method.

3.2 Investigation on the computational efficiency

A two-storey steel frame is described in Fig. 6. The dimension of the cross-section
of each member is set to be 0.1m×0.1m. Without macro element, the entire struc-
ture is divided into 40 3-dimensional 3-node fibre-beam elements [Spacone, Fil-
ippou and Taucer (1996)]. Each beam cross-section is divided into 100 segments.
The loads applied on the original frame is P0 = 100kN. The material properties are
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as follows.

Young’s modulus: E = 2.1×1011Pa;

Shear modulus: G = 8.1×1010Pa;

Yield limit: fy = 2.75×108Pa

Hardening modulus: H ′ = 2.1×1010Pa.

Fig. 6 also shows that the first storey of the original structure is grouped into a
macro element. Since the two storeys have only two joints, viz. nodes B and C,
the macro element consists of three nodes. Without loss of generality, node A is
selected to be the reference node. For this example, two types of nonlinear sim-
ulation for the original and simplified FEA models are conducted on a Pentium
Dual-Core PC (CPU E6700 @ 3.20GHz), based on the generalized displacement
approach. During the analyses, both geometrical and material nonlinearities are
taken into account. The maximum number of the steps for load increment is set to
be 1000. The numerical test proves that the computational efficiency can be im-
proved significantly by using the proposed macro element method. The CPU time
consumed in the analysis with macro element is only 25% (2771ms vs. 11095ms)
of that used in the analysis without macro element. Further comparison is depicted
in Fig. 7. It is observed that the deflection at node M increases as the external load
becomes larger. The two load-deflection curves are very close which means that the
result obtained by the proposed macro element method is accurate if the members
grouped into the macro element do not in the first place behave nonlinearly, or the
extent of nonlinear response is limited.
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Figure 6:  A two-storey frame is analyzed using macro element method 

 

Fig. 6 also shows that the first storey of the original structure is grouped into a macro 

element. Since the two storeys have only two joints, viz. nodes B and C, the macro 

element consists of three nodes. Without loss of generality, node A is selected to be the 

reference node. For this example, two types of nonlinear simulation for the original and 

simplified FEA models are conducted on a Pentium Dual-Core PC (CPU E6700 @ 

3.20GHz), based on the generalized displacement approach. During the analyses, both 

geometrical and material nonlinearities are taken into account. The maximum number of  

the steps for load increment is set to be 1000. The numerical test proves that the 

computational efficiency can be improved significantly by using the proposed macro 

element method. The CPU time consumed in the analysis with macro element is only 

25% (2771ms vs. 11095ms) of that used in the analysis without macro element. Further 

comparison is depicted in Fig. 7. It is observed that the deflection at node M increases as 

the external load becomes larger. The two load-deflection curves are very close which 

means that the result obtained by the proposed macro element method is accurate if the 

members grouped into the macro element do not in the first place behave nonlinearly, or 

the extent of nonlinear response is limited. 
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Figure 6: A two-storey frame is analyzed using macro element method.
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Figure 7:  Comparison between the displacements at node M 

4 Conclusions 

This paper proposes a macro element method to simply nonlinear FEA analysis. Using 

the present method, the DOF of a large-scaled structure can be reduced significantly. 

Through the definition of virtual weak part, the structural members in the linear zones 

can be grouped into just one macro element regardless whether the linear zones are 

connected or not. Numerical examples demonstrate the construction of a macro element 

and verify the correctness of the proposed method. It can be concluded that the macro 

element method is easy to be implemented and it has great potential in the simulation of 

large-scaled complex structures. It must be mentioned that the two examples given in this 

paper are all geometrical nonlinearity problems. However, the formulation presented in 

this study is applicable to material nonlinearity problems as well. Unlike that of a 

conventional FEA model, the stiffness matrix of a macro element may not be symmetric. 

This may cause additional requirement for CPU time. On the other hand, the overall 

calculation may still be much more efficient since the total DOF of the original FEA 

model can be reduced significantly by the current macro element method. 
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4 Conclusions

This paper proposes a macro element method to simply nonlinear FEA analysis.
Using the present method, the DOF of a large-scaled structure can be reduced sig-
nificantly. Through the definition of virtual weak part, the structural members in
the linear zones can be grouped into just one macro element regardless whether
the linear zones are connected or not. Numerical examples demonstrate the con-
struction of a macro element and verify the correctness of the proposed method. It
can be concluded that the macro element method is easy to be implemented and
it has great potential in the simulation of large-scaled complex structures. It must
be mentioned that the two examples given in this paper are all geometrical nonlin-
earity problems. However, the formulation presented in this study is applicable to
material nonlinearity problems as well. Unlike that of a conventional FEA model,
the stiffness matrix of a macro element may not be symmetric. This may cause ad-
ditional requirement for CPU time. On the other hand, the overall calculation may
still be much more efficient since the total DOF of the original FEA model can be
reduced significantly by the current macro element method.
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