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Prediction of Concrete Cubic Compressive Strength Using
ANN Based Size Effect Model

Q.W. Yang1, S.G. Du1,2

Abstract: Size effect is a major issue in concrete structures and occurs in con-
crete in any loading conditions. In this study, size effect on concrete cubic com-
pressive strength is modeled with a back-propagation neural network. The main ad-
vantage in using an artificial neural network (ANN) technique is that the network
is built directly from experimental data without any simplifying assumptions via
the self-organizing capabilities of the neural network. The proposed ANN model
is verified by using 27 experimental data sets collected from the literature. For the
large specimens, a modified ANN is developed in the paper to further improve the
forecast accuracy. The results demonstrate that the ANN-based size effect model
has a strong potential to predict the cubic compressive strength of concrete.

Keywords: concrete; size effect; compressive strength; artificial neural network
back-propagation.

1 Introduction

The size effect is a problem of scaling, which is central to every physical theo-
ry [Bazant (1999); Hoover and Bazant (2013); Chiroiu, Munteanu, and Delsanto
(2010); Mustapha (2014)]. The size effect in solid mechanics is understood as the
effect of the characteristic structure size (dimension) on the nominal strength of
structure when geometrically similar structures are compared. Size effect is a ma-
jor issue in concrete structures and occurs in concrete in any loading conditions.
Kani (1967) was one of the first to demonstrate the size effect in concrete struc-
tures. It has been shown that the shear strength of similar concrete beams decreases
with increasing beam depth. Manic, Taric, Serifi, and Ristovski (2015) analyzes
research on the formula proposed by Bazant, where the existence of size effect is
shown. Alam, Kotronis, Loukili (2013) present the experimental and numerical
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investigations on the influence of size effect on crack opening, crack length and
crack propagation. An isotropic non-local strain softening damage model is adopt-
ed for the numerical model. Sinaie, Heidarpour, Zhao, and Sanjayan (2015) carry
out an experimental program to investigate the relation between size and the cyclic
response of cylindrical concrete samples. The results show that diameter and the
aspect ratio of the sample have the most influence on the reloading strength and
reloading tangent of the cyclic response. Mahmud, Yang, and Hassan (2013) inves-
tigate the size effects on flexural strength of similar notched ultra high performance
steel fibre reinforced concrete (UHPFRC) beams under three-point bending tests.
Both numerical and experimental studies have showed that the size effect on the
nominal flexural strength of these beams up to 150mm depth is very little. Kalfat
and Mahaidi (2014) present the first comprehensive experimental program into the
size effect fiber reinforced polymer patch anchors. A series of uniaxial tension ex-
periments has been conducted by van Vliet and van Mier (2000) to investigate the
size effect on strength and fracture energy of concrete and sandstone. Depending on
the material and the curing conditions a stronger or weaker size effect on the nom-
inal strength occurred in the tests. The observed size effect has to be attributed to a
combination of statistical size effect and strain gradients in the cross section of the
specimens, which were caused by the specimen shape, load eccentricity and mate-
rial inhomogeneity. Syroka-Korol and Tejchman (2014) carried out the laboratory
tests on concrete beams with longitudinal bars and without shear reinforcement.
A pronounced size effect was measured in these concrete beams. Ray and Kishen
(2011) proposed an analytical model for estimating the fatigue crack growth in con-
crete by using the concepts of dimensional analysis. It is shown that the proposed
fatigue law is able to capture the size effect in plain concrete and agrees well with
different experimental results. Through a sensitivity analysis, it is shown that the
structural size plays a dominant role followed by loading ratio and the initial crack
length in fatigue crack propagation. Ashour and Kara (2014) present test results
of six concrete beams reinforced with longitudinal carbon fiber reinforced polymer
(CFRP) bars and without vertical shear reinforcement. A simplified, empirical e-
quation accounting for size effect as well as all other shear design parameters was
developed in their work based on the well-known design-by-testing approach. Kar-
ihaloo, Abdalla, and Xiao (2003) carry out an experimental investigation into the
size effect in the strength of hardened cement paste (nominal compressive strength
40 MPa) and high strength concrete (nominal compressive strength 110 MPa) as
measured in three point bending. Improvements to Karihaloo’s size effect formu-
la have been proposed in this study. Belgin and Şener (2008) present the results
of full-scale failure of singly reinforced four-point-bend beams of different sizes
containing deformed longitudinal reinforcing bars. The results revealed the exis-
tence of a significant size effect, which can approximately be described by the size
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effect law previously proposed by Bazant. The size effect is found to be stronger
in two-dimensional similarities than for one and three-dimensional similarities. N-
guyen, Kim, Ryu, and Koh (2013) study the size effect on the flexural behavior of
ultra-high-performance hybrid fiber-reinforced concrete (UHPHFRC). Both UHP-
HFRCs demonstrated clear size effect on flexural strength, normalized deflection,
and normalized energy absorption capacity. Furthermore, the flexural behavior of
UHP-HFRC1, with its lower tensile ductility, was more sensitive to the size of
the specimen. In order to investigate the size effect of concrete cubic compressive
strength, Su and Fang (2014) performed a series of compression tests on 135 groups
of cubic specimens with three different strength grades and three different aggre-
gate mixtures. Test and analysis results show that the strength grade influences the
size effect of concrete cubic compressive strength greatly.

The size effect in concrete is a result influenced by multi-factors, such as wa-
ter/cement ratio, cement content, water content, sand ratio, maximum aggregate
size, aggregate type, and other mix design parameters. According to the existing
experiments, we can deduce several functions which can describe the size effect in
concrete as shown in the above literatures. However, considering that the factors
are too complex to be modeled and solved by classical mathematic and traditional
processes, artificial neural network (ANN) may be a promising tool to accurately
describe the size effect in concrete. The main benefit of an ANN-based method is
that the ANN is built directly from the experimental test data without any simpli-
fying assumptions. This paper thoroughly investigates to evaluate whether ANN
can be used to forecast the size effect of concrete cubic compressive strength cor-
rectly. The ANN model is constructed, trained and tested using 27 available sets
of experimental data obtained from the reference of Su and Fang (2014). The data
used in ANN model are arranged in a format of seven input parameters that cover
the cement (C), silica fume (SF), fine aggregate (FA), coarse aggregate (CA), wa-
ter (W), superplasticizer (SP), and side length of specimen (L). The ANN model,
which performs in Matlab, predicts the cubic compressive strength of the concrete.
It will be shown that the ANN-based size effect model on concrete cubic compres-
sive strength is reliable and very promising.

2 ANN-based size effect model

2.1 Background for ANN

ANN is a mathematical or computational model that tries to simulate the structure
or functional aspects of biological neural networks. The first advantage of ANN
is its capability of learning directly from examples, i.e. the relationships between
input and output variables are generated by the data themselves. The other ad-
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vantages of ANN are its accurate response to incomplete tasks, its extraction of
information from noisy or poor data, and its production of generalized results from
the new examples [Arslan and Ince (1996)]. Due to the above features, ANN has
successfully been used in many engineering problems over the last two decades.
Ince (2004) presented a fracture model based on ANN to predict fracture param-
eters of cementitious materials. It has been shown that the fracture model based
on ANN predictions is more reliable than the Two-Parameter model based on re-
gression analysis. Öztaş, Pala, Özbay, Kanca, Çaǧlar, and Bhatti (2006) used a
back-propagation neural network to predict the compressive strength and slump
of high strength concrete. The results showed that ANN has strong potential as
a feasible tool for predicting compressive strength and slump values. Li and Yang
(2008) developed a method of damage identification for beam using artificial neural
network based on statistical properties of structural dynamic responses. Mehrjoo,
Khaji, Moharrami, and Bahreininejad (2008) proposed a method for estimating the
damage intensities of joints for truss bridge structures using a back-propagation
neural network. Duan, Kou, and Poon (2013) employed an artificial neural net-
work to predict the compressive strength of recycled aggregate concrete. Yan, Ren,
Xia, Shen, and Gu (2015) developed two models to predict the two fracture pa-
rameters in the scale effect model of concrete using the artificial neural network
methodology. Wang, Man, and Jin (2015) developed the artificial neural network
for predicting the free expansion strain of self-stressing concrete under wet curing
conditions.

Among various ANN models, the most fundamental and widely used architecture
is the back-propagation neural network, which will be used in this study. As shown
in Figure 1, a typical structure of the back-propagation neural network consists of
an input layer, one or more hidden layers and an output layer, and each layer con-
sists of numerous neurons. The ANN-based modeling process involves four main
aspects [Duan, Kou, and Poon (2013); Yan, Ren, Xia, Shen, and Gu (2015)]: (1) da-
ta acquisition, analysis and problem representation; (2) architecture determination;
(3) training of the network; and (4) validation and test of the trained network for
generalization evaluation. The training process of ANN is divided into two phases.
In the first phase (feed-forward), the input layer neurons pass the input pattern val-
ues onto the hidden layer. Subsequently each of the hidden layer neurons computes
a weighted sum of its input, and passes the sum through its activation function
and gives the activation value to the output layer. Following the computation of
a weighted sum of each neuron in the output layer, the sum is passed through its
activation function, resulting in one of the output values for the network. In the sec-
ond stage (back-propagation), the error between actual output and target output can
be calculated layer by layer in recursion and the weights are accordingly adjusted
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until the expectant output is obtained in the out layer. More details on construction
of ANN can be found in the references [Grossberg (1988); Hornik, Stinchcombe,
and White (1989); Hornik (1991); Hornik, Stinchcombe, and White (1990); Gal-
lant and White (1992); Oishi and Yoshimura (2007); Kerh, Lai, Gunaratnam, and
Saunders (2008)].

Figure 1: The architecture of the ANN model

2.2 Input and Output of the ANN

In this research, the size effect of concrete cubic compressive strength was predict-
ed using the ANN model. Table 1 presents the experimental data taken from the
existing size effect tests in the reference of Su and Fang (2014). In this experi-
mental study, the overall dimensions of the specimens tested are as follows: 100
× 100 × 100, 150 × 150 × 150, and 200 × 200 × 200mm. From table 1, the
seven parameters, i.e., cement (C), silica fume (SF), fine aggregate (FA), coarse
aggregate (CA), water (W), superplasticizer (SP), and side length of specimen (L),
are chosen as the input variables for ANN. Whereas the statistical average value of
28day compressive strength ( fcu) is chosen as the output variable of ANN.

2.3 Construction of the ANN

A back-propagation ANN architecture was employed in this study. As described in
section 2.2, the ANN model used in this study has seven neurons (variables) in the
input layer (ni = 7) and one neuron in the output layer (no = 1). So far as know,
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Table 1: The experimental data taken from reference Su and Fang (2014) for ANN

Specimen
number

C
(kg/m3)

SF
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

W
(kg/m3)

SP
(kg/m3)

L
(mm)

fcu

(MPa)
1–100 1140 0 0 0 661 0 100 22.10
2–100 451 0 1290 0 262 0 100 23.98
3–100 275 0 786 1179 160 0 100 25.17
4–100 1314 0 0 0 486 0 100 41.64
5–100 659 0 1098 0 244 0 100 43.30
6–100 432 0 723 1085 160 0 100 47.23
7–100 1304 238 0 0 261 26.1 100 62.21
8–100 717 129 1010 0 143 14.3 100 62.31
9–100 470 85 704 1056 94 9.4 100 70.47
10–150 1140 0 0 0 661 0 150 21.68
11–150 451 0 1290 0 262 0 150 23.48
12–150 275 0 786 1179 160 0 150 24.14
13–150 1314 0 0 0 486 0 150 40.72
14–150 659 0 1098 0 244 0 150 42.30
15–150 432 0 723 1085 160 0 150 44.21
16–150 1304 238 0 0 261 26.1 150 60.65
17–150 717 129 1010 0 143 14.3 150 60.57
18–150 470 85 704 1056 94 9.4 150 65.18
19–200 1140 0 0 0 661 0 200 21.30
20–200 451 0 1290 0 262 0 200 23.07
21–200 275 0 786 1179 160 0 200 23.18
22–200 1314 0 0 0 486 0 200 40.10
23–200 659 0 1098 0 244 0 200 41.48
24–200 432 0 723 1085 160 0 200 41.23
25–200 1304 238 0 0 261 26.1 200 59.66
26–200 717 129 1010 0 143 14.3 200 59.26
27–200 470 85 704 1056 94 9.4 200 60.18

there are no reasonable theory for determining the optimum number of hidden lay-
ers and the optimum number of neurons in each hidden layer. In this research, a
single hidden layer is used in the ANN, since many investigations [Arslan and Ince
(1996); Ince (2004); Öztaş, Pala, Özbay, Kanca, Çaǧlar, and Bhatti (2006); Li and
Yang (2008); Mehrjoo, Khaji, Moharrami, and Bahreininejad (2008)] have showed
that ANN with one hidden layer is sufficient to simulate most of engineering prob-
lems. As for the number of neurons in the hidden layer, too few neurons will not
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allow the network to produce accurate maps from the input to the desired output,
while too many neurons will result in difficulties dealing with new types of input
patterns. In practice, the neuron number range of a hidden layer can be calculated
by the following equation [Yan, Ren, Xia, Shen, and Gu (2015); Wang, Man, and
Jin (2015)]:

nh =
√

ni +no +a (1)

where nh, ni and no are the neuron number of hidden, input and output layers,
respectively, and a is a fixed value ranging from 0 to 10. According to equation (1),
the number of hidden layer neurons in this research can be between 3 and 13. In
this research, the optimum number of neurons in the unique hidden layer is set to
11 (nh = 11). The following discussion will show that when more neurons in the
hidden layer are used, the network would not converge. If the network was smaller,
it would not converge either.

2.4 Training and testing of the ANN

As stated before, back-propagation training algorithm is used in this ANN model.
The program of the ANN model is developed and performed under MATLAB.
Training and testing data of this model came from experimental results as shown in
Table 1. To test the generalization ability of the ANN model, we select 9 samples
with the same size as the test set, while the remaining 18 samples are used to train
the network. Thus the three cases will be studied in the following.

2.4.1 Case 1: the samples with the side length of 150mm are used as the test set.

Case 1 is used to show the performance of the ANN when the test sample size
ranges from the minimum size to the maximum size of the training samples. Table
2 shows the R-square results of ANN training and testing data when the neuron
number of the hidden layer varies from 3 to 13. One can see from table 2 that
the R-square values are both the largest when the neuron number of the hidden
layer is 11 for the training and testing sets. Therefore, the neuron number of the
unique hidden layer is set to 11 in this research (nh = 11). As shown in figure
2, the training phase of the ANN for case 1 took 6 epochs using the given data.
Figures 3 and 4 present all the experimental data, as well as the training and testing
results obtained from the ANN model. The linear optimized fitted straight together
with its function and the R value is shown in these figures. In addition, the mean
of squared error (MSE) between the predicted value and the experimental value is
also given in the title of the figure. Table 3 presents the comparison of experimental
compressive strength with ANN predicted compressive strength for the testing set.
From these results, one can see that the compressive strength values predicted by
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the ANN model are very closer to the experimental values. It has been shown that
the proposed ANN model is very accurate for predicting the compressive strength
of those samples whose sizes range from the minimum size to the maximum size
of the training samples.

Figure 2: Variations of overall error against number of iterations for Case 1

Figure 3: Performance of training set for Case 1 (MSE = 4.0629 × 10−22)
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Figure 4: Performance of testing set for Case 1 (MSE = 0.1733)

Table 2: The R-square values for case 1 when the neuron number of the unique
hidden layer changes

Neuron number of
the hidden layer

R-square value
of training set

R-square value
of testing set

3 0.991 0.998
4 1 0.985
5 1 0.993
6 1 0.989
7 1 0.999
8 1 0.992
9 1 0.99
10 1 0.998
11 1 1
12 1 0.986
13 1 0.969

2.4.2 Case 2: the samples with the side length of 200mm are used as the test set.

Case 2 is used to show the performance of the ANN when the test sample size
is greater than the maximum size of the training samples. As shown in figure
5, the training phase of the ANN for case 2 took 7 epochs using the given data.
Figures 6 and 7 give the results for case 2 by using the ANN model. Obviously, the
results show better fit in the training set than in the testing set. Table 4 presents the
comparison of experimental values with ANN predicted values for the compressive



226 Copyright © 2015 Tech Science Press CMC, vol.47, no.3, pp.217-236, 2015

Table 3: Comparison of experimental compressive strength with ANN predicted
compressive strength for testing set (Case 1)

Specimen
number

Experimental
values (MPa)

ANN predicted
values (MPa)

Relative
error (%)

10–150 21.68 21.5771 −0.47
11–150 23.48 22.9093 −2.43
12–150 24.14 23.3179 −3.41
13–150 40.72 40.9951 0.68
14–150 42.3 42.3366 0.09
15–150 44.21 43.6915 −1.17
16–150 60.65 60.8221 0.28
17–150 60.57 60.9778 0.67
18–150 65.18 65.2543 0.11

strength of testing set. Compared with the results in case 1, the prediction accuracy
of the ANN for case 2 decreases. It has been shown that the generalization ability
of the ANN will weaken when the test sample size is greater than the maximum
size of the training samples.

Figure 5: Variations of overall error against number of iterations for Case 2

2.4.3 Case 3: the samples with the side length of 100mm are used as the test set.

Case 3 is used to show the performance of the ANN when the test sample size
is less than the minimum size of the training samples. Figures 8–10 present the
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Figure 6: Performance of training set for Case 2 (MSE = 6.5914 × 10−29)

Figure 7: Performance of testing set for Case 2 (MSE = 3.4525)

training phase of the ANN and the results predicted by ANN. Table 5 presents the
comparison of experimental values with ANN predicted values for this case. From
these results, one can see that the generalization ability of the ANN also weakened
when the test sample size is less than the minimum size of the training samples.
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Table 4: Comparison of experimental compressive strength with ANN predicted
compressive strength for testing set (Case 2)

Specimen
number

Experimental
values (MPa)

ANN predicted
values (MPa)

Relative
error (%)

19–200 21.3 22.5717 5.97
20–200 23.07 25.5604 10.8
21–200 23.18 25.817 11.38
22–200 40.1 40.3964 0.74
23–200 41.48 41.8211 0.82
24–200 41.23 43.4881 5.48
25–200 59.66 59.534 0.21
26–200 59.26 61.2736 3.4
27–200 60.18 62.8117 4.37

Figure 8: Variations of overall error against number of iterations for Case 3

2.5 Improvement of the ANN-base size effect model

As stated previously, the ANN is very accurate in predicting the compressive strength
of the sample whose size ranges from the minimum size to the maximum size of
the training samples, but not enough accurate for the other sample whose size is
out of range. However, it is the most important to predict the size effect for scale
ranges which can not be tested under laboratory conditions, especially for the sam-
ple whose size is far greater than the maximum size of the training samples. In
view of this, a modified ANN is developed in this section to improve the forecast
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Figure 9: Performance of training set for Case 3 (MSE = 1.4796 × 10−28)

Figure 10: Performance of testing set for Case 3 (MSE = 7.3963)

accuracy for the large specimens. According to the existing theories, the size effect
in concrete will significantly decline with an increase in the specimen size. Using
this principle, the original ANN model in case 2 can be improved to obtain more
accurate predicted values of the compressive strength for the samples with the side
length of 200mm. The modifications of ANN include the following respects. First,
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Table 5: Comparison of experimental compressive strength with ANN predicted
compressive strength for testing set (Case 3)

Specimen
number

Experimental
values (MPa)

ANN predicted
values (MPa)

Relative
error (%)

1–100 22.1 24.684 11.69
2–100 23.98 27.9708 16.64
3–100 25.17 30.3451 20.56
4–100 41.64 40.7734 2.08
5–100 43.3 45.1748 4.33
6–100 47.23 50.0111 5.89
7–100 62.21 63.5408 2.14
8–100 62.31 61.3434 1.55
9–100 70.47 68.8964 2.23

Table 6: The nine suppositional oversized specimens

Specimen
number

C
(kg/m3)

SF
(kg/m3)

FA
(kg/m3)

CA
(kg/m3)

W
(kg/m3)

SP
(kg/m3)

L
(mm)

CR
(%)

28–1400 1140 0 0 0 661 0 1.4 × 103 0
29–1400 451 0 1290 0 262 0 1.4 × 103 0
30–1400 275 0 786 1179 160 0 1.4 × 103 0
31–1400 1314 0 0 0 486 0 1.4 × 103 0
32–1400 659 0 1098 0 244 0 1.4 × 103 0
33–1400 432 0 723 1085 160 0 1.4 × 103 0
34–1400 1304 238 0 0 261 26.1 1.4 × 103 0
35–1400 717 129 1010 0 143 14.3 1.4 × 103 0
36–1400 470 85 704 1056 94 9.4 1.4 × 103 0

in addition to all the 100×100×100 and 150×150×150 specimens, nine suppo-
sitional oversized specimens as shown in table 6 with the side length of 1400mm
are added to the training set in the modified ANN. Second, the change rate (CR) of
the compressive strength is used as the new output variable in the modified ANN,
which is defined as the following equation:

CRL =
fcu,L−50− fcu,L

fcu,L
×100% (2)

where CRL is the change rate of the compressive strength for the L×L×L spec-
imen, fcu,L is the cubic compressive strength of the sample with the side length
of L (mm), and fcu,L−50 is the cubic compressive strength of the sample with the
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Figure 11: Variations of overall error against number of iterations for Case 2 using
the modified ANN

Figure 12: Performance of training set for Case 2 using the modified ANN (MSE
= 1.1954 × 10−27)

side length of (L− 50). For the 100× 100× 100 specimens, the fcu,50 used in the
calculation of CR100 is obtained by the original ANN model. For the suppositional
oversized specimens, the CR1400 can be set to 0 because that the size effect can be
ignored for these oversized specimens. Figures 11–13 present the training phase
of the modified ANN and the results predicted by the modified ANN. From figure
11, the training phase of the modified ANN for case 2 took 50 epochs using the
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Figure 13: Performance of testing set for Case 2 using the modified ANN (MSE =
1.7069)

Table 7: Comparison of experimental values with predicted results obtained by the
original and modified ANN models (Case 2)

Specimen
number

fcu-by experiment
(MPa)

fcu-by original
ANN (MPa)

fcu− by modified ANN (MPa)

19–200 21.30 22.5717 22.527
20–200 23.07 25.5604 24.8406
21–200 23.18 25.817 25.7229
22–200 40.10 40.3964 39.3762
23–200 41.48 41.8211 42.2209
24–200 41.23 43.4881 41.8953
25–200 59.66 59.534 60.6922
26–200 59.26 61.2736 59.0148
27–200 60.18 62.8117 61.4507

given data. Table 7 and figure 14 give the comparisons of the experimental values
and the predicted ones by using the original ANN and modified ANN for these
200×200×200 specimens. One can see that the predicted values obtained by the
modified ANN have less error compared with the results obtained by the original
ANN. In other words, the modified ANN is more accurate than the original ANN
in predicting the compressive strength of the large concrete specimen.
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Figure 14: Comparison of the relative errors between the predicted values and ex-
perimental values by the original and modified ANN models (Case 2)

3 Conclusion

In this study, the ANN-based size effect model is assessed to see whether it can be
used to predict the cubic compressive strength of the concrete. From the investiga-
tion, it can be seen that:

(1) The proposed ANN model is very accurate for predicting the compressive
strength of those samples whose sizes range from the minimum size to the
maximum size of the training samples.

(2) The generalization ability of the ANN will weaken when the test sample size
is greater than the maximum size of the training samples (or less than the min-
imum size of the training samples).

(3) The modified ANN is more accurate than the original ANN in predicting the
compressive strength of the large concrete specimen.

In conclusion, the ANN-based size effect model has strong potential as a feasible
tool for predicting the concrete cubic compressive strength in spite of some imper-
fections in the study of case 3. The inaccuracy in case 3 may be mainly due to a lack
of enough experimental data. Therefore, the performance of ANN-based size effect
model can still be improved if more experimental parameters can be considered.
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