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Abstract: This work is aimed at the direct and inverse analysis of hydrogen per-
meation in steels employing a novel anomalous diffusion model. For the inverse
analysis, experimental data for hydrogen permeation in a 13% chromium marten-
sitic stainless steel, available in the literature [Turnbull, Carroll and Ferriss (1989)],
was employed within the Bayesian framework for inverse problems. The compari-
son between the predicted values and the available experimental data demonstrates
the feasibility of the new model in adequately describing the physical phenomena
occurring in this particular problem.

Keywords: Anomalous diffusion, Hydrogen permeation, Bayesian inference, In-
verse problems.

1 Introduction

Diffusion processes are quite frequently modeled by the classic Fick’s Law for con-
servation of species. Even though this model is able to describe very satisfactorily
several processes, in some particular problems this approach fails to accurately de-
scribe the actual physical behavior [Bouchaud and Georges (1990)]. This anoma-
lous diffusion behavior is observed, for example, in the permeation of hydrogen
in metals, due to temporary and permanent retention, or even sources of hydrogen
atoms such as hydrade dissolution. Moreover, this process is strongly influenced
by the presence of hydrogen traps such as grain boundaries, dislocations, carbides,
and non-metallic particles [Turnbull, Carroll and Ferriss (1989)]. In most works
of the literature addressing this issue, the classical diffusion equation is adopted as
the basic governing equation, but with the arbitrary introduction of sink and source
terms to take into account these phenomena. For example, some works considered
hydrogen diffusion with trapping [McNabb and Foster (1963)], rapid equilibrium
between trapping and normal diffusion sites [Oriani (1970)], irreversible trapping
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[Iino (1982a); Iino (1982b)] or simultaneous reversible and irreversible trapping
[Leblond and Dubois (1983a); Leblond and Dubois (1983b)], besides models that
consider a varying degree of occupancy between reversible and irreversible trap-
ping [Turnbull, Carroll and Ferriss (1989)]. More general models, such as those
based on fractional derivative equations [Metzler and Klafter (2000)], have become
quite popular, with applications in several areas, such as diffusion in porous media,
turbulence and complex materials (colloids, emulsions, biomaterials, etc.), among
others, requiring the development of new numerical schemes for the solution of
this class of problems [Chen and Sun (2009); Ray (2015); Wang, Liu, Chen, Li-
u and Liu (2015)]. It should be highlighted that the understanding and adequate
modeling of hydrogen diffusion in metals remains of paramount importance in en-
gineering, since it significantly affects the mechanical behavior of steels [Tavares,
Bastos, Pardal, Montenegro and da Silva (2015); Santos, Béreš, Bastos, Tavares,
Abreu and da Silva (2015)].

Aiming at unifying all processes of diffusion with retention, Bevilacqua and co-
workers derived a new analytical formulation for the simulation of the phenomena
of anomalous diffusion [Bevilacqua, Galeão and Costa (2011a)], explicitly taking
into account the retention effect in the dispersion process. In this new model, given
by a fourth order differential equation, the blocking process is characterized by two
additional parameters that arise naturally in the model, besides the classical diffu-
sion coefficient. Some recent works investigated this new model from an inverse
analysis perspective [Silva, Knupp, Bevilacqua, Galeão and Silva Neto (2014)], but
to the best of our knowledge, a practical problem has not yet been analyzed through
this approach.

Therefore, this work is aimed at the direct and inverse analysis, employing this
new anomalous diffusion model, of the hydrogen diffusion in a 13% chromium
martensitic stainless steel, with experimental data obtained in [Turnbull, Carroll
and Ferriss (1989)] on successive hydrogen permeation tests. In order to estimate
the parameters appearing in the proposed model, the Bayesian inference is em-
ployed for the inverse problem formulation [Kaipio and Sommersalo (2004)], with
solution via Markov Chain Monte Carlo methods [Gamerman and Lopes (2006)].
As further detailed in the remaining of the paper, the Bayesian framework is par-
ticularly adequate for this problem because of the existence of prior information
regarding the lattice diffusion coefficient, as reviewed in [Kiuchi and McLellan
(1983)].

2 Problem Formulation

Following the derivation described with details by Bevilacqua and co-workers, the
anomalous diffusion model adopted in this work to describe the hydrogen con-
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centration in a given medium can be written as [Bevilacqua, Galeão and Costa
(2011a)]:

∂C(x, t)
∂ t

= βK2
∂ 2C(x, t)

∂x2 −β (1−β )K4
∂ 4C(x, t)

∂x4 , 0 < x < L, t > 0 (1a)

where C is the hydrogen concentration, K2 is the classical diffusion coefficient,
which can be interpreted as the lattice (“true”) diffusion coefficient, for which a
theoretical prior information is available in the literature (K2 = 7.2× 10−5cm2/s
at 23◦C) [Kiuchi and McLellan (1983)], as also used in the analysis performed in
[Turnbull, Carroll and Ferriss (1989)], β is the fraction of particles able to diffuse
at each time step, K4 is the complimentary coefficient related to the anomalous
diffusion processes, and L is the membrane thickness.

The diffusion process modeled by Eq. 1a is illustrated in Fig. 1. At each time step, a
fraction of the contents α pn of each nth cell is retained. The exceeding volume β pn,
where β = (1−α), is divided between the neighboring cells, each one receiving
0.5β pn for the case of symmetric distribution. If β = 0 the model corresponds
to the stationary solution, and for β = 1 the classic formulation of pure diffusion
is recovered. It should be highlighted that both additional parameters, β and K4,
can, in principle, vary with time. However, in this work it is considered the simplest
case, with constant coefficients, assuming all permanent hydrogen traps are already
filled.

For the case of hydrogen permeation in membranes investigated in this work, the
following boundary and initial conditions are considered:

C(0, t) =C0, t > 0 (1b)

C(L, t) = 0, t > 0 (1c)

∂ 3C(x, t)
∂x3

∣∣∣∣
x=0

= 0, t > 0 (1d)

∂ 3C(x, t)
∂x3

∣∣∣∣
x=L

= 0, t > 0 (1e)

C(x,0) =Ci, 0≤ x≤ L (1f)

where C0 is the hydrogen concentration prescribed at one side of the steel mem-
brane, x = 0, and Ci is the initial hydrogen concentration in the medium. It should
be highlighted that the initial concentration actually refers to the hydrogen atoms
able to diffuse, and therefore it is here considered zero even if in the second or third
permeation, since in this work it is assumed that the hydrogen trapped in the previ-
ous permeations refer to permanent retention, not taken into account by this model.
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Figure 1: Schematic representation of the symmetrical distribution with retention
α = (1−β )

The conditions Eq. 1d and Eq. 1e refer to null secondary flux at the boundaries
[Bevilacqua, Galeão and Costa (2011b); Bevilacqua, Galeão and Costa (2011a)],
i.e. it is assumed that there is no flux of retained hydrogen at the surfaces.

The problem given by Eq. 1a–Eq. 1f is solved with the NDSolve routine of the
Wolfram Mathematica system [Wolfram (2005)], under automatic absolute and rel-
ative error control. This automatic solution path has been previous covalidated in
previous works with the finite difference and finite element methods [Silva, Knupp,
Bevilacqua, Galeão, Simas, Vasconcellos and Silva Neto (2013)]. In order to calcu-
late the hydrogen concentrations, information is needed on the values of the model
parameters, K2, β and K4. As prior information is available for the lattice diffusion
coefficient, K2 [Kiuchi and McLellan (1983)], the critical objective is the estima-
tion of β and K4 from the available experimental data. In this work, the Bayesian
approach for inverse problems is adopted as the basic framework, which allows for
modeling the prior information regarding the parameter K2 into the inverse problem
formulation, as further discussed in the next section.

3 Inverse Analysis

Inverse problems are commonly classified as ill-posed problems, once the unique-
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ness of the solution is not guaranteed. Moreover, it is not stable with respect to
the input data, i.e., the experimental data, which contain the unavoidable measure-
ment noise. Therefore, the solution of an inverse problem is not a trivial task, and
many techniques have been proposed in the literature in order to overcome these
difficulties. The most known and used approach is the maximum likelihood pro-
cedure. If the experimental errors are additive and can be modeled by a normal
distribution with zero mean and constant standard deviation, and if the errors are
not correlated, the maximum likelihood procedure leads to the very well known or-
dinary least squares objective function [Ozisik and Orlande (2000)]. Even though
this procedure can be very useful in several situations, the maximum likelihood ap-
proach does not allow for the incorporation of prior information, which eventually
can be available for one or more parameters, such as the case of the lattice diffu-
sion coefficient, K2, appearing in Eq. 1a, which allows for modeling a theoretical
prior information, as discussed in [Kiuchi and McLellan (1983)]. In this scenario,
the Bayesian approach for inverse problems [Kaipio and Sommersalo (2004)] is
employed in this work.

The main purpose of the Bayesian approach is to calculate the posterior probability
distribution for the parameters, from the prior knowledge of their distributions,
aggregated with the available experimental data. The inverse problem is formulated
as a problem of statistical inference and it is based on four basic principles [Kaipio
and Sommersalo (2004)]: (i) All variables of the model are modeled as random
variables; (ii) The randomness describes the degree of information; (iii) The degree
of information is coded in probability distributions; (iv) The solution of the inverse
problem is the posterior probability distribution. Thus, in the Bayesian approach
all possible information is incorporated in the model, yielding a better uncertainty
assessment of the estimated parameters.

Considering the prior information available on the model parameters Z can be mod-
eled as a probability density πpr(Z), the Bayes theorem for inverse problems can
be expressed as [Kaipio and Sommersalo (2004)]:

πpost(Z) = π(Z|dexp) =
πpr(Z)π(dexp|Z)

π(dexp)
(2)

where πpost(Z) is the posterior probability density, πpr(Z) is the prior information
on the unknown parameters, modeled as a probability distribution, π(dexp) is the
marginal density and plays the role of a normalizing constant, and π(dexp|Z) is the
likelihood function. Considering the measurement errors related to the data dexp

are additive, uncorrelated, and have normal distribution, the probability density for
the occurrence of the measurements dexp with the given parameters values Z can
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be expressed as [Beck and Arnold (1977)]:

π (dexp|Z) = (2π)−Nd/2 |W|−1/2

exp
{
−1

2

[
dexp−dcalc (Z)

]T
W−1

[
dexp−dcalc (Z)

]} (3)

where W is the covariance matrix, related to the experimental data dexp, and dcalc

are the calculated data, obtained from the mathematical model solution employing
the parameters Z.

This methodology produces a distribution which might be explored in different
ways, using different methods. One of the most common approaches to obtain the
estimates is through the maximum a posteriori (MAP) estimator [Knupp, Silva,
Bevilacqua, Galeão and Silva Neto (2014)], but one way of directly exploring the
posterior probability distribution is through random sampling methods, such as the
Markov Chain Monte Carlo (MCMC) techniques [Kaipio and Sommersalo (2004);
Gamerman and Lopes (2006)].

The present work uses the Metropolis-Hastings algorithm [Kaipio and Sommersalo
(2004); Gamerman and Lopes (2006)] to implement the MCMC method. First, a
candidate-generating density function q(Zt ,Z∗) must be implemented. This func-
tion gives the probability of choosing a candidate Z∗ from the current state of the
chain, Zt . The following algorithm describes the procedure used in this work:

Step 1: Sample a candidate Z∗ from the current state Zt , employing the candidate-
generating density q(Zt ,Z∗)

Step 2: Calculate

α = min
[

1,
π (Z∗|dexp)q(Z∗,Zt)

π (Zt |dexp)q(Zt ,Z∗)

]
(4)

Step 3: If U (0,1)< α , then

Zt+1 = Z∗ (5)

else

Zt+1 = Zt (6)

where U(0,1) is a random number from a uniform distribution between 0 and 1.

Step 4: Return to Step 1 in order to generate the chain
{

Z1,Z2, . . . ,ZNMCMC
}

. It
should be mentioned that the first states of this chain must be discarded until the
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convergence of the chain is reached. These ignored samples are called the burn-in
period, whose length will be denoted by Nburn-in.

In the present work we have used a random walk process in order to generate the
candidates, so that Z∗ = Zt +η , where η follows the distribution q, which was
defined as a normal density in this work. In this case q is symmetric and q(Z∗,Zt)=
q(Zt ,Z∗), so Step 2 is simplified and Eq. 4 may be rewritten as:

α = min
[

1,
π (Z∗|dexp)

π (Zt |dexp)

]
(7)

4 Application

The experimental data used in the present work were directly obtained from the
permeation measurements performed in [Turnbull, Carroll and Ferriss (1989)], in
a 13% Cr martensitic stainless steel (AISI 410) commonly used for oil production
tubing. The steel was quenched and double-tempered as shown in Table 1.

Table 1: Chemical composition and heat treatment of AISI 410 stainless steel (mass
%) [Turnbull, Carroll and Ferriss (1989)]

C Si Mn S P Cr Ni Cu Mo Ti Fe
0.14 0.32 0.46 0.007 0.02 13.5 0.71 0.15 0.05 <0.01 Bal

Heat treatment
Austenization temperature 980◦C (oil quench)
First tempering temperature 700◦C (air cooling)
Second tempering temperature 630◦C (air cooling)

The permeation tests were performed using a Devanathan-Stachurski type cel-
l [Turnbull, de Santa Maria and Thomas (1989); Devanathan and Stachurski (1962)],
in which hydrogen is imposed at one side of the permeation membrane during ca-
thodic polarization, whereas the other side of the membrane is kept at a given an-
odic potential. The measured current in this cell gives the instantaneous rate of
hydrogen permeation through the membrane. The dimensionless current density
J/J∞, as a function of the dimensionless time τ , is shown in Fig. 2 for the third
permeation experiment performed in [Turnbull, Carroll and Ferriss (1989)], where
the steady state current J∞ is calculated as:

J∞ =
K2C0

L2 (8)

and the dimensionless time is given by:

τ =
K2t
L2 (9)
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where C0 = 1.3×1017 atom/cm3 is the hydrogen concentration at x = 0, and L =
50 mm is the steel membrane thickness of the sample employed in the mentioned
experiment [Turnbull, Carroll and Ferriss (1989)].

Regarding the model predictions, once the hydrogen concentration as function of
position and time is calculated, C(x, t), as the solution of Eq. 1a–Eq. 1f, the current
density, J, can be readily evaluated as:

J(t) =−K2F
L

∂C(x, t)
∂x

∣∣∣∣
x=L

(10)

where F is the Faraday constant.

The lattice diffusion, calculated with the classic Fick’s law (β = 1 in Eq. 1a), em-
ploying the lattice diffusion coefficient value, as obtained in [Kiuchi and McLellan
(1983)], is also plotted in Fig. 2, clearly demonstrating that the classical model is
not able to describe the real physical dispersion phenomena occurring in this appli-
cation.

Figure 2: Dimensionless current transients during permeation for AISI 410 stain-
less steel in acidified NaCl at 23◦C. Experimental data from [Turnbull, Carroll and
Ferriss (1989)]

5 Results and Discussion

In order to solve the inverse problem for the estimation of the model parameters
appearing in Eq. 1a with the MCMC method, described in Section 3, the current
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Table 2: Estimated parameters with the Bayesian inference via MCMC ([K2] ≡
cm2/s, [K4]≡ cm4/s)

# NMCMC % acc. Z Z0 Estimated 95% conf. int.
β 0.1 0.0836 [0.0745,0.0924]

1 5,000 36.23% K2 7.2×10−5 7.72×10−5 [7.17,7.23]×10−5

K4 1.0×10−8 1.04×10−8 [0.992,1.09]×10−8

β 0.02 0.00536 [0.00532,0.00541]
2 10,000 42.67% K2 7.2×10−5 7.2×10−5 [7.18,7.21]×10−5

K4 9.0×10−10 4.56×10−10 [3.12,5.95]×10−10

β 0.002 0.00536 [0.00532,0.00541]
3 20,000 29.75% K2 7.2×10−5 7.2×10−5 [7.18,7.21]×10−5

K4 3.0×10−10 4.44×10−10 [3.10,6.08]×10−10

density measurements for the third permeation test, presented in Fig. 2, are em-
ployed as the experimental data, dexp. These measurements were directly extracted
from [Turnbull, Carroll and Ferriss (1989)], and in the absence of further infor-
mation regarding the characterization of the experimental error, the measurement
fluctuations were considered to follow a normal distribution with zero mean, no
correlation, and constant standard deviation. Hence, the covariance matrix W, in
the likelihood function, Eq. 3, is constituted by a diagonal matrix with the ex-
perimental constant variance, σ2. In this case, considering the precision reported
in [Turnbull, Carroll and Ferriss (1989)], the experimental standard deviation was
considered as σ = 0.01. For the calculated values, dcalc(Z) in Eq. 3, once C(x, t) is
calculated, as the solution of Eq. 1a–Eq. 1f employing the values Z for the model
parameters, Eq. 10 is employed to calculate the current density, which is in fact the
desired quantity to compare with the experimental data.

For the prior information modeling, πpr(Z) in Eq. 2, it was considered for the pa-
rameter K2 a normal distribution with mean µK2 = 7.2× 10−5cm2/s [Kiuchi and
McLellan (1983); Turnbull, Carroll and Ferriss (1989)]. Since no uncertainty as-
sessment was reported for this value, it was here assumed a quite reliable prior
information, with σK2 = 10−7cm2/s (< 0.15% of µK2). For the parameters β and
K4 non-informative priors (uniform distributions) were employed. Tab. 2 summa-
rizes three runs of the MCMC algorithm, considering different initial states in the
Markov Chain for the parameters β and K4, for which prior information are not
available. For the parameter K2 the available prior information, µK2 , was consid-
ered as the initial state in all cases. The candidate-generating density q was chosen
as a normal distribution with mean given by the current state, and the standard de-
viation empirically adjusted as 2% of the initial state, 10−7, and 10% of the initial
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(a)

(b)

Figure 3: (a) Markov chain evolution and (b) inferred histogram of the posterior
probability density function for the parameter β

state for β , K2 and K4, respectively, in order to roughly achieve a 30% acceptance
ratio. From the first run, constructed with a total of 5,000 states with the first 1,000
states discarded as the burn-in, to the second, constructed with a total of 10,000
states with the first 2,000 states discarded as the burn-in, it is clear, from the di-
vergent estimated confidence intervals, that the chains were still not converged for
NMCMC = 5,000. On the other hand, comparing the second and third runs, con-
structed with 10,000 and 20,000 states, respectively (both with the first 2,000 s-
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(a)

(b)

Figure 4: (a) Markov chain evolution and (b) inferred histogram of the posterior
probability density function for the parameter K2

tates discarded as the burn-in), employing different initial states, one can clearly
observe that the chains are converged, with the estimated 95% confidence intervals
being remarkably similar for all three parameters.

Fig. 3 to Fig. 5 depict the Markov chain evolution for the third run presented in
Tab. 2 as well as the inferred histogram of the posterior probability density func-
tion for all three parameters β , K2 and K4, respectively. These results clearly
demonstrate that the chains achieve the equilibrium distributions quite rapidly in
the present case, clearly illustrating that the first 2,000 states, discarded as the
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(a)

(b)

Figure 5: (a) Markov chain evolution and (b) inferred histogram of the posterior
probability density function for the parameter K4

burn-in, is more than enough to achieve the equilibrium of the chains. Moreover,
from the histograms, one observes that the posterior probability density functions
of all three parameters tend to normal distributions.

After confirming the good convergence behavior of the Markov chains constructed
through the inverse problem solution, we now investigate the solution behavior of
the anomalous diffusion model, Eq. 1a to Eq. 1f, regarding the hydrogen concentra-
tion distribution within the steel membrane, employing the estimated parameters.
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Figure 6: Calculated dimensionless hydrogen concentration in the stainless steel
membrane for different instants (3rd permeation test)

Fig. 6 depicts the calculated dimensionless hydrogen concentration along the stain-
less steel plate, from x = 0 to x = L, at different instants. It is interesting to notice
that at the early stages, the predicted hydrogen concentration is below zero at some
positions. As reported in the careful numerical study carried out by Bevilacqua and
co-workers [Bevilacqua, Galeão and Costa (2011b)], this phenomenon is associated
with a counter-flux process when the decaying speed of the concentration exceeds
the one corresponding to the classical diffusion equation. This solution is physical-
ly compatible if there is a local stock able to supply particles. Indeed, it can be the
case in the particular problem of hydrogen permeation in a medium with reversible
traps, since during the third permeation here considered it is expected that a frac-
tion of hydrogen atoms is trapped within the metal structure, being able to supply
this flux. It should be recalled that the zero concentration level, here imposed as the
initial condition, actually refers to hydrogen atoms not permanently trapped within
the membrane. On the other hand, if a sufficient supply is not available, the model
would be no longer valid and, physically, the concentration continuity would be
broken, yielding instability in the diffusion process. This can be the case in the
earlier permeations, and could explain, at least in part, the embrittlement caused by
hydrogen diffusion in steels, since the permanent hydrogen-metal interaction can
cause mechanical damage.

Finally, the current density as calculated with Eq. 10 with the predicted hydrogen
concentration, C(x, t), is compared with the experimental measurements obtained
in [Turnbull, Carroll and Ferriss (1989)]. These results are depicted in Fig. 7, il-



26 Copyright © 2015 Tech Science Press CMC, vol.49-50, no.1, pp.13-29, 2015

Figure 7: Calculated current density after the inverse problem solution and com-
parison against experimental data [Turnbull, Carroll and Ferriss (1989)]

lustrating an excellent adherence of the predicted values, as calculated from the
anomalous diffusion model here employed, with the experimental data, demon-
strating the feasibility of this model in accurately describing the diffusion process
in hydrogen permeation.

6 Conclusions

The hydrogen permeation process within a medium has been investigated by means
of a new anomalous diffusion model. In order to estimate the model parameters, the
Bayesian framework for inverse problems was adopted, employing experimental
data available in the specialized literature for a 13% chromium martensitic stainless
steel [Turnbull, Carroll and Ferriss (1989)]. The new model was demonstrated to
accurately describe the real physical phenomena, bringing a new perspective to the
analysis of hydrogen permeation in steels. A counter-flux behavior was predicted
in the early stages of successive permeation, indicating that the concentration conti-
nuity may be broken in some circumstances, if the stock of hydrogen trapped in the
medium is not enough to supply this demand, yielding instability of the diffusion
process. This phenomenon is not predicted in diffusion models that only consider
the Fickian flux of hydrogen, even in successive permeations.
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