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Reflection of Plane Waves from
Electro-magneto-thermoelastic Half-space with a

Dual-Phase-Lag Model

A. M. Abd-Alla1,2,3, Mohamed I. A. Othman1,4, S. M. Abo-Dahab1,5

Abstract: The aim of this paper is to study the reflection of plane harmonic waves
from a semi-infinite elastic solid under the effect of magnetic field in a vacuum.
The expressions for the reflection coefficients, which are the relations of the ampli-
tudes of the reflected waves to the amplitude of the incident waves, are obtained.
Similarly, the reflection coefficient ratio variations with the angle of incident under
different conditions are shown graphically. Comparisons are made with the results
predicted by the dual-phase-lag model and Lord-Shulman theory in the presence
and absence of magnetic field.

Keywords: Reflection; Generalized thermoelasticity; Magnetic field; Dual-phase-
lag model.

1 Introduction

Biot (1956) introduced the theory of coupled thermoelasticity to overcome the first
shortcoming in the classical uncoupled theory of thermoelasticity where it predicts
two phenomena not compatible with physical observations. First, the equation of
heat conduction of this theory does not contain any elastic terms. Second, the
heat equation is of a parabolic type, predicting infinite speeds of propagation for
heat waves. The governing equations for the Biot theory are coupled, eliminating
the first paradox of the classical theory. However, both theories share the second
shortcoming since the heat equation for the coupled theory is also parabolic.

Thermoelasticity theories that predict a finite speed for the propagation of ther-
mal signals have aroused much interest in the last three decades. These theories
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are known as generalized thermoelasticity theories. The first generalization of the
thermo-elasticity theory is due to Lord and Shulman (1967) who introduced the the-
ory of generalized thermoelasticity with one relaxation time by postulating a new
law of heat conduction to replace the classical Fourier’ law. This law contains the
heat flux vector as well as its time derivative. It contains also a new constant that
acts as a relaxation time. The heat equation of this theory is of the wave-type, ensur-
ing finite speeds of propagation of heat and elastic waves. The remaining governing
equations for this theory, namely, the equations of motion and the constitutive re-
lations remain the same as those for the coupled and the uncoupled theories. This
theory was extended by Dhaliwal and Sherief (1980) to general anisotropic media
in the presence of heat sources.

A generalization of this inequality was proposed by Green and Laws (1972). Green
and Lindsay obtained another version of the constitutive equations in (1972). The
theory of thermoelasticity without energy dissipation is another generalized theory
and was formulated by Green and Naghdi (1993). It includes the thermal displace-
ment gradient among its independent constitutive variables, and differs from the
previous theories in that it does not accommodate dissipation of thermal energy.

Tzou (1995a, 1996) proposed the dual-phase-lag (DPL) model, which describes the
interactions between phonons and electrons on the microscopic level as retarding
sources causing a delayed response on the macroscopic scale. For macroscopic
formulation, it would be convenient to use the (DPL) model for investigation of the
micro-structural effect on the behavior of heat transfer. The physical meanings and
the applicability of the (DPL) model have been supported by the experimental re-
sults [Tzou (1995)]. The dual-phase-lag proposed by Tzou (1995b) is such a mod-
ification of the classical thermoelastic model in which the Fourier law is replaced
by an approximation to a modified Fourier law with two different time translations:
a phase-lag of the heat flux τq and a phase-lag of temperature gradient τθ . A Tay-
lor series approximation of the modified Fourier law, together with the remaining
field equations leads to a complete system of equations describing a dual-phase-lag
thermoelastic model. The model transmits thermoelastic disturbance in a wavelike
manner if the approximation is linear with respect to τq and τθ , and 0≤ τθ < τq; or
quadratic in τq and linear in τθ , with τq > 0 and τθ > 0. This theory is developed
in a rational way to produce a fully consistent theory which is able to incorporate
thermal pulse transmission in a very logical manner.

Some researches in the past have investigated different problems of rotating media.
In a paper by Schoenberg and Censor (1973), the propagation of plane harmon-
ic waves in a rotating elastic medium without a thermal field has been studied.
It was shown there that the rotation causes the elastic medium to be depressive
and anisotropic. Chand, Sharma, and Sud (1990) presented an investigation of
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the distribution of deformation, stresses and magnetic field in a uniformly rotating
homogeneous isotropic, thermally and electrically conducting elastic half-space.
Clarke and Burdness (1994); Destrade (2004); Othman (2005); Othman (2004) s-
tudied the effect of rotation on elastic waves. Sharma and Thakur (2006); Sharma,
Walia, and Gupta (2008) discussed the effect of rotation on different types of wave
propagating in a thermoelastic medium. Othman and Song (2009) discussed the
effect of rotation in a magneto-thermoelastic medium. Abo-Dahab and Mohamed
(2010) discussed the influence of magnetic field and hydrostatic initial stress on
reflection phenomena of P and SV waves from a generalized thermoelastic solid
half-space. Abo-Dahab, Mohamed, and Singh (2011) investigated the rotation and
magnetic field effect on the P wave reflection from stress-free surface elastic half-
space with voids under one thermal relaxation time. Abo-Dahab (2011) discussed
the reflection of P and SV waves from stress-free surface elastic half-space under
the influence of magnetic field and hydrostatic initial stress without energy dissipa-
tion. Singh and Tomer (2011) studied the effect of rotation on propagation of plane
waves in generalized thermoelasticity. Othman and Said (2012) investigated the
effect of rotation on the two-dimensional problem of fiber-reinforced thermoelastic
with one relaxation time.

In the classical theory of elasticity, the gravity effect is generally neglected. The
effect of gravity in the problem of propagation of waves in solids, in particular
on an elastic globe, was first studied by Bromwich (1898). Subsequently, an in-
vestigation of the effect of gravity was considered by Love (1911) who showed
that the velocity of Rayleigh waves is increased to a significant extent by gravi-
tational field when wavelengths are large. De and Sengupta (1974,1976) studied
the effect of gravity on the surface waves, on the propagation of waves in an e-
lastic layer. Das, Acharya, and Sengupta (1992) investigated surface waves under
the influence of gravity in a non-homogeneous elastic solid medium. Abd-Alla,
Yahia, and Abo-Dahab (2003) discussed the reflection of the generalized magneto-
thermo-viscoelastic plane waves. Ailawalia and Narah (2009) depicted the effects
of rotation and gravity in the generalized thermoelastic medium. Abo-Dahab and
Singh (2013) explained rotational and voids effects on the reflection of P waves
from stress-free surface of an elastic half-space under a magnetic field, initial stress
and without energy dissipation. Allam, Rida, Abo-Dahab, Mohamed, and Kilany
(2014) studied (GL) model of reflection of P and SV-waves from the free surface of
thermoelastic diffusion solid under influence of the electromagnetic field and ini-
tial stress. Abo-Dahab, Abd-Alla, and Gohaly (2014) pointed out the reflection of
plane elastic wave problem at a free surface under the initial stress, magnetic field
and temperature field. Abo-Dahab and Elsagheer (2014) investigated the reflection
of thermoelastic boundary half-space with the magnetic field and rotation. Oth-
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man and Lotfy (2013) studied the effect of magnetic field and a rotation of the 2-D
problem of a fiber-reinforced thermoelastic under three theories with influence of
gravity. Abo-Dahab, Gohaly, and El-Malki (2015) studied the rotation effect on the
reflection of plane elastic waves at a free surface under the initial stress, magnetic
field and temperature field.

In this paper, the generalized thermoelastic theory is applied to study the reflection
of plane wave under the effect of magnetic field on a half-space elastic media near-
by a vacuum. The reflection coefficient ratios of various reflected waves with the
angle of incidence have been obtained from (DPL) model and LS theory. Also the
effects of magnetic field is discussed numerically and illustrated graphically.

2 Formulation of the problem and basic equations

We consider an isotropic, homogeneous, linear, thermally, and electrically conduct-
ing thermoelastic half-space (x ≥ 0,−∞ ≤ z ≤ ∞) and x-axis pointing vertically
inwards as shown in the geometry of the problem. The surface (x = 0) of the half-
space is taken to be traction free and subjected to mechanical and thermal loads.
All considered functions are assumed to be bounded as x→ ∞. The whole body is
at a constant temperature T0. We consider that the orientation of the primary mag-
netic field HHH = (0,H0,0) is towards the positive direction of y−axis. Due to the
application of this magnetic field, there arise in the medium an induced magnetic
field hhh and an induced electric field EEE as shown in Fig. 1
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Figure 1: Schematic of the problem.

The variation of the magnetic and electric fields are perfectly conducting slowly
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moving medium and are given by Maxwell’s equations:

curl hhh = JJJ+ ε0ĖEE, (1)

curl EEE =−µ0ḣhh, (2)

EEE =−µ0(u̇uu×HHH), (3)

div hhh = 0. (4)

From the above equations, we can obtain

EEE = µ0H0(ẇ,0,−u̇), (5)

hhh = (0,−H0e,0), (6)

JJJ = (−h,z− ε0µ0H0ẅ,0,h,x + ε0µ0H0ü). (7)

The equations of motion have the form

σ ji, j +Fi = ρ üi, i, j = 1,2,3. (8)

Where Fi is the Lorentz force and is given by:

Fi = µ0(JJJ×HHH)i. (9)

From Eqs. (7) and (9), we obtain

FFF = (Fx,Fy,Fz) = (µ0H2
0 e,x− ε0µ

2
0 H2

0 ü,0,µ0H2
0 e,z− ε0µ

2
0 H2

0 ẅ). (10)

The strain-displacement relation

ei j =
1
2
(ui, j +u j,i). (11)

The constitutive laws

σi j = 2µei j +[λe− γT ]δi j. (12)

Substituting Eq. (10) into Eq. (8) we obtain

µui, j j +(λ +µ)u j,i j +µ0(JJJ×HHH)i− γT,i = ρ üi. (13)

The Chandrasekaraiah and Tzou theory (DPL) Othman, Hasona, and Abd-Elaziz
(2014) have such a modified of classical thermoelasticity model in which the Fouri-
er law is replaced by an approximation of the equation

qi(x, t + τq) =−KT,i(x, t + τθ ). (14)
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Where, qi is the heat flux vector.

The model transmits thermoelastic disturbances in a wave-like-manner if Eq. (5) is
approximated by

(1+ τq
∂

∂ t
)qi =−K(1+ τθ

∂

∂ t
)T,i. (15)

Here 0 ≤ τθ < τq, hence, we get the heat conduction equation in the context of
(DPL) model in the form

K(1+ τθ

∂

∂ t
)T,ii = (1+ τq

∂

∂ t
)(ρCE

∂T
∂ t

+ γT0
∂e
∂ t

). (16)

Moreover, if we put τθ = 0 and τq = τ (the first relaxation time), then the funda-
mental equations will be possible for the L-S theory.

Where λ ,µ are Lame’s constants, T is the temperature distribution, γ = αt(3λ +
2µ),αt is the coefficient of linear thermal expansion, K is the thermal conductivity,
T0 is the reference temperature, σi j are the components of the stress tensor, δi j is
the Kronecker delta, ρ,CE are the density and specific heat respectively, τq is the
phase-lag of the heat flux and τθ is the phase-lag of temperature gradient.

Substituting from Eq. (10) into Eq. (13), we obtain the equations of motion in the
form

µ∇
2u+(λ +µ +µ0H2

0 )e,x− γT,x = ρ(1+
ε0µ2

0 H2
0

ρ
)ü, (17)

µ∇
2w+(λ +µ +µ0H2

0 )e,z− γT,z = ρ(1+
ε0µ2

0 H2
0

ρ
)ẅ. (18)

K(1+ τθ

∂

∂ t
)∇2T = ρCE(1+ τq

∂

∂ t
)Ṫ + γT0(1+ τq

∂

∂ t
)ė. (19)

The constitutive relations can be written as

σxx = (λ +2µ)u,x +λw,z− γT, (20)

σyy = λe− γT, (21)

σzz = λu,x +(λ +2µ)w,z− γT, (22)

σxz = µ(u,z +w,x), σxy = σyz = 0. (23)

For simplifications, we shall use the following non-dimensional variables:

{x′i,u′i}=
ω∗

c0
{xi,ui}, θ

′ =
γ

ρc2
0
(T −T0), {t ′,τ ′T ,τ ′ν ,τ ′q}= ω

∗{t,τT ,τν ,τq},
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h′ =
h

H0
, H ′ =

H
H0

, (σ ′i j, τ
′
i j) =

(σi j,τi j)

γT0
, (24)

ω
∗ = ρCEc2

0/K and c2
0 = (λ +2µ)/ρ i, j = 1,2,3.

In terms of non-dimensional quantities defined in Eq. (24), the above governing
Eqs. (17)–(19) reduce to (dropping the dashed for convenience)

µ

ρc2
0

∇
2u+

(λ +µ +µ0H2
0 )

ρc2
0

∂e
∂x
− ∂θ

∂x
= (1+

ε0µ2
0 H2

0
ρ

)ü, (25)

µ

ρc2
0

∇
2w+

(λ +µ +µ0H2
0 )

ρc2
0

∂e
∂ z
− ∂θ

∂ z
= (1+

ε0µ2
0 H2

0
ρ

)ẅ, (26)

(1+ τθ

∂

∂ t
)∇2

θ = (1+ τq
∂

∂ t
)θ̇ +

γ2T0

ρKω∗
(1+ τq

∂

∂ t
)ė. (27)

3 Solution of the problem

To separate the dilatational and rotational components of strain, we introduce dis-
placement potentials Φ and Ψ defined by the following relations

u =
∂Φ

∂x
− ∂Ψ

∂ z
, v =

∂Φ

∂ z
+

∂Ψ

∂x
. (28)

Substituting from Eq. (28) into Eqs. (25) and (26) we get(
C2

1 +C2
s +R2

H
)

∇
2
Φ−T = (1+ εT )Φ̈ , (29)

C2
s ∇

2
Ψ = (1+ εT )Ψ̄ . (30)

Where, C2
1 =

λ +µ

ρc2
0
,C2

s =
µ

ρc2
0
,R2

H =
µ0H2

0

ρc2
0

and εT =
ε0µ2

0 H2
0

ρ
are the dilatational

and secondary vertically wave velocities, Alfven speed, coupled electromagnetic

and ∇2 =
∂ 2

∂x2 +
∂ 2

∂y2 is the Laplace operator.

Using Eq. (28) in Eq. (27), we get

(1+ τθ

∂

∂ t
)∇2T = (1+ τq

∂

∂ t
)[Ṫ +R∇

2
Φ̇ ]. (31)

Where, R =
γ2T0

ρKω∗
.

We assume now the solution of Eqs. (29)–(31) takes the following form

{Φ ,Ψ ,T}=
{

Φ̄ ,Ψ̄ , T̄
}

exp[iξ (xsinθ + zcosθ))− iωt]. (32)



70 Copyright © 2016 Tech Science Press CMC, vol.51, no.2, pp.63-79, 2016

Where, v =
ω

ξ
.

Substitute from Eq. (32) into Eqs. (29)–(31), we get

[−ξ
2(C2

1 +C2
s +R2

H)+(1+ εT )ω
2]Φ̄− T̄ = 0, (33)

[C2
s ξ

2− ((1+ εT )ω
2)]Ψ̄ = 0, (34)[

iωξ
2tqR

]
Φ̄ +

[
ξ

2tθ − iωtq
]

T̄ = 0. (35)

where, tq = 1− iωτq, tθ = 1− iωτθ .

Equation (34) indicates that the reflected SV-waves do not affect by the thermal
filed, then Eq. (34) has the following solution

Ψ = Ψ̄ exp[iξ3 (xsinθ + zcosθ)− iωt] (36)

Where, ξ3 =
ω√

C2
s /(1+ εT )

.

Equations (33) and (35) have a nontrivial solution if and only if the determinant
vanished, so∣∣∣∣−ξ 2(C2

s +C2
1 +R2

H)+(1+ εT )ω
2 −1

iωξ 2Rtq ξ 2tθ − iωtq

∣∣∣∣= 0 (37)

This yields an algebraic equation on ξ 2 =
ω2

v2 , where, v is the coupled wave veloc-
ity.

Aξ
4 +Bξ

2 +C = 0. (38)

Where,

A =−tθ (C2
s +C2

1 +R2
H),

B = tθ ω
2(1+ εT )+ iωtq(C2

s +C2
1 +R2

H)+ iωRtq,

C =−iω3tq(1+ εT )

Eq. (38) indicates that there are two reflected waves; T-wave and p-wave.

4 Solution of the problem

Where, Eq. (38) has two roots in ξ 2
i ,(i= 1,2), there are two coupled waves T -wave

and p-wave with two different velocities and SV-wave with ξ 2
3 . Assuming that the

radiation in vacuum is neglected, when a coupled wave falls on the boundary z = 0
from within the thermoelastic medium, it will make an angle θ with the negative
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direction of the z-axis, and three reflected waves that will make angles θ and θi

(i = 2,3) with the same direction as shown in Fig. 1.

The displacement potentials Φ , Ψ and T will take the following forms:

Φ = A0 exp[iξ1(xsinθ + zcosθ))− iωt]+
2

∑
j=1

A j exp[iξ j(xsinθ j− zcosθ j))− iωt]

(39)

Ψ = B0 exp[iξ1 (xsinθ+zcosθ))−iωt]+B1 exp[iξ3 (xsinθ3−zcosθ3))−iωt] (40)

T = ϑ1A0 exp[iξ1 (xsinθ + zcosθ))− iωt]

+
2

∑
j=1

ϑ jA j exp[iξ j (xsinθ j− zcosθ j))− iωt] (41)

where

ϑ j =−(C2
s +C2

1 +R2
H)ξ

2
i +(1+ εT )ω

2, j = 1,2 (42)

The ratio of the amplitudes of the reflected waves and amplitude of the incident

wave,
A j

A0
, j = 1,2, give the corresponding reflection coefficient ratio. Also, it may

be noted that the angle θ , θ j( j = 1,2), and the corresponding wave numbers, ξ j, j =
1,2,3, are to be connected by the following relations according to Snell’s law as
follows

ξ1 sinθ = ξ1 sinθ1 = ξ2 sinθ2 = ξ3 sinθ3 (43)

5 Boundary conditions

(1) A mechanical boundary condition that the surface of the half-space is traction
free

σxx(x,0, t)+ τxx(x,0, t) = σxz(x,0, t)+ τxz(x,0, t) = 0. (44)

Where,

τi j = µ0
[
Hihj +Hjhi−Hk.hkδij

]
(45)

Substitute from Eqs. (35)–(37) into Eq. (44), we get

[
ξ

2
1
{

λ +µ0H2
0 +2µ sin2

θ
}
+ γϑ1

]
A0 +

2

∑
j=1

[
ξ

2
j
{

λ +µ0H2
0 +2µ sin2

θ j
}



72 Copyright © 2016 Tech Science Press CMC, vol.51, no.2, pp.63-79, 2016

+γϑ j]A j +µξ
2
1 sin2θB0−µξ

2
3 sin2θ3B1 = 0 (46)

−ξ
2
1 sin2θA0 +

2

∑
j=1

ξ
2
j sin2θ jA j +ξ

2
1 cos2θB0 +ξ

2
3 cos2θ3B1 = 0 (47)

(2) Assuming that the boundary z = 0 is thermally insulated. This means that the
following relation will be

∂T
∂ z

= 0 on z = 0 (48)

Substitute from Eq. (39), we obtain

ξ1ϑ1 cosθA0−
3

∑
j=1

[ξ jϑ j cosθ j]A j = 0 (49)

From Eqs. (46), (47) and (49) we can put them in the following algebraic equation

3

∑
j=1

ai jZ j = bi, (50)

Now we consider the incidence of p-wave or SV-wave as follows:

(i) For the incidence of p-wave: B0 = 0,θ1 = θ and

Z1,2 =
A1,2

A0
,Z3 =

B1

A0

a1 j = ξ 2
j
{

λ +µ0H2
0 +2µ sin2

θ j
}
+ γϑ j, a13 =−µξ 2

3 sin2θ3,

a2 j = ξ 2
j sin2θ j, a23 = ξ 2

3 cos2θ3,

a3 j = ξ jϑ j cosθ j, a33 = 0,

b1 = a13, b2 = a21, b3 = a31.

(ii) For the incidence of SV-wave: A0 = 0,θ3 = θ and

Z1,2 =
A1,2

B0
,Z3 =

B1

B0

a1 j = ξ 2
j
{

λ +µ0H2
0 +2µ sin2

θ j
}
+ γϑ j, a13 =−µξ 2

3 sin2θ3,

a2 j = ξ 2
j sin2θ j, a23 = ξ 2

3 cos2θ3,

a3 j = ξ jϑ j cosθ j, a33 = 0,

b1 =−µξ
2
1 sin2θ , b2 = ξ

2
1 cos2θ , b3 = 0.
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6 Numerical results and discussion

To illustrate the theoretical results obtained in the preceding section, to compare
these in the context of the (DPL) model, and to study the effect of rotation and
gravity on wave propagation, we now present some numerical results. For this pur-
pose, Crust is taken as the thermoelastic material for which we take the following
values of the different physical constants

λ = µ = 3×1010 N · m−2, K = 3w · m−1 · k−1, T0 = 300 K, g = 9.8,

γ = 1.6×1011k−1, ρ = 2900 kg · m−3, CE = 1100 J · kg−1 · k−1.

The computations were carried out for:

Figure 2: Variation of the magnitude of amplitude ratios Zi(i = 1,2,3) with respect
to the angle of incidence θ with variation of τθ = 1 —–, 3 · · · · · · , 5 — —, 7 — ·
— for p-wave incidence.

Fig. 2 displays the variation of the magnitude of amplitude ratios |Zi| ,(i = 1,2,3)
with respect to the angle of incident θ for p-wave for different values of the phase-
lag of temperature gradient τθ . It is observed that the magnitude of amplitude
ratios |Z1| increases with increasing of the phase-lag of temperature gradient τθ

and it has very large value at θ = 60 and vanishes at θ = 0, while it increases
and decreases with increasing of the angle of incident, the magnitude of amplitude
ratios |Z2| and |Z3| decreases with increasing of the angle of incident until vanish
at θ = 90, while the magnitude of amplitude ratios |Z2| decreases with increasing
of the phase-lag of temperature gradient, as well there is no effect of the phase-lag
of temperature gradient on the |Z3|. Fig. 3 shows the variation of the magnitude
of amplitude ratios |Zi| ,(i = 1,2,3) with respect to the angle of incident θ for p-
wave for different values of the magnetic field H. It is observed that the magnitude
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of amplitude ratios |Z1| increases with increasing of the magnetic field and it has
very large value at θ = 60 and vanishes at θ = 0, while it increases and decreases
with increasing of the angle of incident, the magnitude of amplitude ratios |Z2| and
|Z3| decreases with increasing of the angle of incident until vanish at θ = 90, while
the magnitude of amplitude ratios |Z2| increases with increasing of the magnetic
field, as well the magnitude of amplitude ratios |Z3| decreases with increasing of
magnetic field.

Figure 3: Variation of the magnitude of amplitude ratios Zi(i = 1,2,3) with respect
to the angle of incidence θ with variation of H = 0.1 —–, 0.5 · · · · · · , 0.7 — —, 0.9
— ·— for p-wave incidence.

Figure 4: Variation of the magnitude of amplitude ratios Zi(i = 1,2,3) with respect
to the angle of incidence θ with variation of τθ = 1 —–, 3 · · · · · · , 5 — —, 7 — ·
— for SV-wave incidence.
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Fig. 4 shows the variation of the magnitude of amplitude ratios |Zi| ,(i = 1,2,3)
with respect to the angle of incident θ for SV-wave for different values of the phase-
lag of temperature gradient τθ . It is observed that the magnitude of amplitude ratios
|Z1| decreases with increasing of the phase-lag of temperature gradient τθ and it has
very large value at θ = 60 and it vanishes at θ = 0,90, which it has an oscillatory
behavior of thermoelastic half-space in the whole range of the angle of incident θ ,
the magnitude of amplitude ratios |Z2| and |Z3| decreases with increasing of the
angle of incident until vanish at θ = 90, while it decreases with increasing of the
phase-lag of temperature gradient. Fig. 5 shows the variation of the magnitude of
amplitude ratios |Zi| ,(i = 1,2,3) with respect to the angle of incident θ for SV-
wave for different values of the magnetic field H. It is observed that the magnitude
of amplitude ratios |Z1| decreases with increasing of the magnetic field and it has
very large value at θ = 60 and it vanishes at θ = 0,90, which it has an oscillatory
behavior for thermoelastic half-space in the whole range of the angle of incident θ ,
as well the magnitude of amplitude ratios |Z2| and |Z3| decreases with increasing
of the angle of incident until vanish at θ = 90, while the magnitude of amplitude
ratios |Z2| increases with increasing of the magnetic field, as well there is no effect
of the magnetic field on the |Z3|.

Figure 5: Variation of the magnitude of amplitude ratios Zi(i = 1,2,3) with respect
to the angle of incidence θ with variation of H = 0.1 —–, 0.5 · · · · · · , 0.7 — —, 0.9
— ·— for SV-wave incidence.

7 Conclusion

According to the above results, we can conclude that:

1. The magnitude of amplitude ratios depends on the angle of incidence, the
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phase-lag of temperature gradient τθ and magnetic field, the nature of this
dependence is different for different magnitude of amplitude ratios.

2. The phase-lag of temperature gradient τθ and magnetic field play a signif-
icant role and the two effects have the inverse trend for the magnitude of
amplitude ratios.

3. The phase-lag of temperature gradient and magnetic field have a strong ef-
fect on the magnitude of amplitude ratios. It is observed that the magnitude
of amplitude ratios, changes their values in the phase-lag of temperature gra-
dient and magnetic field. Hence, the phase-lag of temperature gradient and
magnetic field affect on the magnitude of amplitude ratios phenomena sig-
nificantly.

4. The results presented in this paper will be very helpful for researchers con-
cerning with material science, designers of new materials, low-temperature
physicists, as well as for those working on the development of a theory of
hyperbolic propagation of the magnitude of amplitude ratios of thermoelas-
tic waves. Study of the phenomenon of the phase-lag of temperature gradient
and magnetic field are also used to improve the conditions of oil extractions.
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