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Wave Propagation in a Magneto-Micropolar
Thermoelastic Medium with Two Temperatures for

Three-Phase-Lag Model

Samia M. Said1

Abstract: The present paper is concerned with the wave propagation in a mi-
cropolar thermoelastic solid with distinct two temperatures under the effect of the
magnetic field in the presence of the gravity field and an internal heat source. The
formulation of the problem is applied in the context of the three-phase-lag mod-
el and Green-Naghdi theory without dissipation. The medium is a homogeneous
isotropic thermoelastic in the half-space. The exact expressions of the considered
variables are obtained by using normal mode analysis. Comparisons are made with
the results in the two theories in the absence and presence of the magnetic field
as well as the two-temperature parameter. A comparison is also made in the two
theories for different values of an internal heat source.
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1 Introduction

The comprehensive review on the micropolar elasticity was given by Eringen (1966,
1970); Nowacki (1986). Chandrasekharaiah (1986) developed a heat flux depen-
dent micropolar thermoelsticity. Kumar and Singh (1998) studied the reflection
of plane waves from the flat boundary of a micropolar generalized thermoelastic
with stretch. Kumar (2000) investigated the reflection coefficient in a micropolar
viscoelastic generalized half-space. Singh (2007) discussed the wave propagation
in an orthotropic micropolar elastic solid. A new theory of the generalized ther-
moelasticity reinforcement has been constructed by taking into account the defor-
mation of a micropolar generalized thermoelastic medium with voids are discussed
by Othman, Lotfy, Said, and Anwar Bég (2012). The deformation due to thermo-
mechanical sources in a homogeneous isotropic micropolar thermoelastic medium
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with void are discussed by Abbas, Kumar, Sharma, and Garg (2015).

The investigation of the interaction between the magnetic field, stress, and strain in
a thermoelastic solid is very important due to its many applications in diverse field
such as geophysics (for understanding the effect of the Earth’s magnetic field on
seismic waves), damping of acoustic waves in a magnetic field, designing machine
elements like heat exchangers, boiler tubes (where the temperature induced elastic
deformation occurs), biomedical engineering (problems involving thermal stress),
emissions of the electromagnetic radiations from nuclear devices, development of
a highly sensitive super conducting magnetometer, electrical power engineering,
plasma physics, etc. Many studies in a generalized magneto-thermoelasticity can
be found in the literatures by Youssef (2006); Othman and Kumar (2009); Othman
and Atwa (2011); Othman and Abass (2015); Abbas and Zenkour (2015).

A theory of heat conduction in deformable bodies which depends upon two distinct
temperatures, the conductive temperature and the thermodynamic temperature, has
been established by Chen and Gurtin (1968a); Chen and Williams (1968b); Chen,
Gurtin, and Williams (1969). In time-independent problems, the difference be-
tween these two distinct temperatures is proportional to the heat supply and in
the absence of any heat supply; these two temperatures are identical as Chen and
Williams (1968b). In time-dependent situations and of the wave propagation prob-
lems, in particular, the two-temperatures are in general different, regardless of the
presence of a heat supply. Warren and Chen (1973) have studied the wave propa-
gation in the two-temperature theory of thermoelasticity. Youssef (2005) has pro-
posed a theory in the context of the generalized theory of thermoelasticity with
two-temperature. Several problems have been solved by Das and Kanoria (2012);
Abbas and Zenkour (2014); Zenkour and Abouelregal (2015) applying the two-
temperature theory of thermoelasticity.

It is well known that the usual theory of heat conduction based on Fourier’s law
predicts an infinite heat propagation speed. It is also known that heat transmis-
sion at low temperature propagates by means of waves. These aspects have caused
intense activity in the field of heat propagation. Extensive reviews on the second
sound theories (hyperbolic heat conduction) are given in Hetnarski and Ignacza-
k (1999, 2000). A two-phase-lag to both the heat flux vector and the tempera-
ture gradient was introduced by Tzou (1995). According to this model, classical
Fourier’s law qqq = −K∇∇∇T has been replaced by qqq(P, t + τq) = −K∇∇∇T (P, t + τT ),
where the temperature gradient ∇∇∇T at a point P of the material at time t + τT cor-
responds to the heat flux vector qqq at the same point at time t + τq. Here K is
the thermal conductivity of the material. The delay time τT is interpreted as that
caused by the micro-structural interactions and is called the phase-lag of the tem-
perature gradient. The other delay time τq is interpreted as the relaxation time
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due to the fast transient effects of thermal inertia and is called the phase-lag of
the heat flux. For τq = τT = 0, Fourier’s law in a two-phase-lag model is identi-
cal with classical Fourier’s law. If τq = τ and τT = 0, Tzou (1995) refers to the
model as a single-phase-lag model. Recently Choudhuri (2007) has proposed a
three-phase-lag (3PHL) thermoelasticity which is able to contain all the previous
theories at the same time. In this case Fourier’s law qqq =−K∇∇∇T has been replaced
by qqq(P, t + τq) = −[K∇∇∇T (P, t + τT )+K∗∇∇∇ν(P, t + τν)], where ∇∇∇ν(ν̇ = T ) is the
thermal displacement gradient and K∗ is the additional material constant and τν is
the phase-lag for the thermal displacement gradient. The purpose of the work of
Choudhuri (2007) is to establish a mathematical model that includes the 3PHL in
the heat flux vector, the temperature gradient and in the thermal displacement gra-
dient. For this model, we can consider several kinds of Taylor approximations to
recover the previously cited theories. In particular the models of Green and Naghdi
(1991, 1992, 1993) are recovered. The introduction of the 3PHL model provides a
general theoretical heat conduction model with different micro-structural consider-
ations in order to enable scientists in the field of heat conduction with a multi-scale
model to predict accurately the thermal behavior of structures. The three-phase-lag
model is very useful in the problems of nuclear boiling, exothermic catalytic reac-
tions, phonon-electron interactions, phonon-scattering, etc. Quintanilla and Racke
(2008); Quintanilla (2009); Kar and Kanoria (2009); Kumar, Chawla, and Abbas
(2012); Abbas (2014); Kumar and Kumar (2015) have solved different problems
applying the 3PHL model.

In the present work, we shall formulate a two-temperature magneto-micropolar
thermoelastic problem in the presence of the gravity field for a medium with an
internal heat source that is moving with a constant speed. Normal mode analysis
is used to obtain the exact expressions for displacement components, force stresses
and temperatures. The distributions of the considered variables are given and repre-
sented graphically. Comparisons are conducted between the considered variables as
calculated from the 3PHL model and Green-Naghdi theory without dissipation (G-
N II) in the presence and absence of a magnetic field as well as a two-temperature
parameter. A comparison is also made in the two theories for different values of an
internal heat source.

2 Formulation of the problem and basic equations

We consider the problem of an isotropic homogeneous micropolar thermoelastic
half-space (x≥ 0). The generalized thermoelastic medium is permeated into a uni-
form magnetic field with a constant intensity HHH = (0,H0,0) which is acting parallel
to the y-axis. We are interested in a plane strain in the xz-plane [displacement vector
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uuu = (u,0,w), ] and
∂

∂y
= 0.

When the z-axis is positive downward the body force components are given by
Othman, Elmaklizi, and Said (2013).

X = 0, Z = g. (1)

The field equations and constitutive relations for a micropolar generalized ther-
moelastic medium in the absence of body forces and body couples can be written
as Eringen (1970), Choudhuri (2007) and Youssef (2005) in the context of general-
ized thermoelasticity as follows:

The constitutive law of the theory of generalized thermoelasticity is

σi j = λekkδi j +2µei j + ku j,i− kΦrεi jr− γT̂ δi j, ekk = ∇ ·u =
∂u
∂x

+
∂w
∂ z

, (2)

where σi j are the components of stress, ei j are the components of strain, ekk is
the dilatation, λ ,µ are the elastic constants, γ = (3λ + 2µ)αt ,αt is the thermal
expansion coefficient, T̂ = T −T0, where T is the temperature above the reference
temperature T0,εi jr is the alternate tensor and δi j is the Kronecker delta. The strains
can be expressed in terms of the displacement ui as

ei j =
1
2
(ui, j +u j,i), i · j = x,z. (3)

We restrict our analysis parallel to the xz-plane with the micro-rotation vector ϕϕϕ =
(0,Φ2,0). In the above equations a comma followed by a suffix denotes partial
derivative with respect to the corresponding coordinates.

Eq. (2), then yields

σxx = A1
∂u
∂x

+λ
∂w
∂ z
− γT̂ , (4)

σzz = λ
∂u
∂x

+A1
∂w
∂ z
− γT̂ , (5)

σxz = µ
∂u
∂ z

+(µ + k)
∂w
∂x

+ kΦ2, σzx = (µ + k)
∂u
∂ z

+µ
∂w
∂x
− kΦ2, (6)

where A1 = λ +2µ + k.

2.1 Equation of motion:

ρ
∂ 2u
∂ t2 =

∂σxx

∂x
+

∂σxz

∂ z
+ρg

∂w
∂x

+F1, (7)
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ρ
∂ 2w
∂ t2 =

∂σzx

∂x
+

∂σzz

∂ z
−ρg

∂u
∂x

+F3, (8)

where F1,F3 are the Lorentz force and are given in the form,

Fi = µ0(JJJ∧HHH)i. (9)

The variations of the magnetic and electric fields are perfectly conducting slowly
moving medium and are given by Maxwell’s equation as Othman and Atwa (2011).

JJJ = ∇∧hhh− ε0
∂EEE
∂ t

, (10)

∇∧EEE =−µ0
∂hhh
∂ t

, (11)

EEE =−µ0(u̇uu∧HHH), (12)

∇ ·hhh = 0, (13)

where µ0 is the magnetic permeability, ε0 is the electric permeability, JJJ is the cur-
rent density vector, u̇uu is the particle velocity of the medium, and the small effect
of the temperature gradient on JJJ is also ignored. The dynamic displacement vector
is actually measured from a steady-state deformed position and the deformation is
assumed to be small. Due to the application of the initial magnetic field HHH there
are an induced magnetic field hhh = (0,h,0) and an induced electric field EEE, as well
as the simplified equations of electrodynamics of a slowly moving medium for a
homogeneous, thermal and electrically conducting, elastic solid. Expressing the
vector JJJ in terms of the displacement by eliminating the quantities hhh and EEE from
Eq. (10), thus yields,

JJJ = (−∂h
∂ z
−µ0ε0H0

∂ 2w
∂ t2 ,0,

∂h
∂x

+µ0ε0H0
∂ 2u
∂ t2 ) (14)

Substituting Eq. (14) into Eq. (9), we get

F1 =−µ0H0
∂h
∂x
− ε0µ

2
0 H2

0
∂ 2u
∂ t2 , F2 = 0, F3 =−µ0H0

∂h
∂ z
− ε0µ

2
0 H2

0
∂ 2w
∂ t2 . (15)

2.2 Heat conduction equation

K∗∇2
Φ +τ

∗
ν ∇

2
Φ̇ +K1τT ∇

2
Φ̈ =

(
1+ τq

∂

∂ t
+

1
2

τ
2
q

∂ 2

∂ t2

)
(ρCE T̈ + γT0ë−Q), (16)

The relation between the conductive temperature and the thermodynamics temper-
ature is

Φ−T = δΦ,ii, (17)
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where K∗ is the additional material constant, K1 is the coefficient of thermal con-
ductivity, ρ is the mass density, CE is the specific heat at constant strain, Q is a
moving internal heat source, τT and τq are the phase-lag of temperature gradient
and the phase-lag of heat flux respectively. Also τ∗ν = K + τνK∗, where τν is the
phase-lag of thermal displacement gradient.

2.3 The equations of micropolar materials

(α +β + γ1)∇(∇.ϕϕϕ)− γ1∇∧ (∇∧ϕϕϕ)+ k(∇∧uuu)−2kϕϕϕ = ρJ0
∂ 2ϕϕϕ

∂ t2 , (18)

mi j = αΦr,rδi j +βΦi, j + γ1Φ j,i, (19)

Where α,β ,γ1,k are the material constants. J0 is micro-inertia and mi j is the couple
stress tensor.

Introducing Eqs. (4)–(6) and (15) in Eqs. (7), (8) we get

ρ =
∂ 2u
∂ t2 = A1

∂ 2u
∂x2 +A2

∂ 2w
∂x∂ z

+µ
∂ 2u
∂ z2 − γ

∂ T̂
∂x

+ k
∂Φ2

∂ z

+ρg
∂w
∂x
−µ0H0

∂h
∂x
− ε0µ

2
0 H2

0
∂ 2u
∂ t2 , (20)

ρ =
∂ 2w
∂ t2 = µ

∂ 2w
∂x2 +A2

∂ 2u
∂x∂ z

+A1
∂ 2w
∂ z2 − γ

∂ T̂
∂ z
− k

∂Φ2

∂x

−ρg
∂u
∂x
−µ0H0

∂h
∂ z
− ε0µ

2
0 H2

0
∂ 2w
∂ t2 , (21)

where A2 = λ +µ + k.

Using h = −H0e, then introducing the following non-dimension quantities in the
above equation (dropping the primes for convenience):

(x′,z′,u′,w′) = c1η(x,z,u,w), (t ′,τ ′q,τ
′
ν ,τ
′
T ) = c2

1η(t,τq,τν ,τT ), g′ =
ρg

A1c1η
,

θ =
γT̂
A1

, Φ
′ =

γ(Φ−T0)

A1
, Q′ =

γ

ρCEc4
1η2A1

Q, σ
′
i j =

σi j

µ
, Φ

′
2 = Φ2,

m′i j =
η

ρc1
mi j, i, j = 1,2. (22)

Where η =
ρCE

K∗
, c2

1 =
A1

ρ
.

Thus we get,

α1
∂ 2u
∂ t2 =

∂ 2u
∂x2 +

A2

A1

∂ 2w
∂x∂ z

+
µ

A1

∂ 2u
∂ z2 −

∂θ

∂x
+

k
A1

∂Φ2

∂ z
+g

∂w
∂x

+RH
∂e
∂x

, (23)
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α1
∂ 2w
∂ t2 =

∂ 2w
∂ z2 +

A2

A1

∂ 2u
∂x∂ z

+
µ

A1

∂ 2w
∂x2 −

∂θ

∂ z
− k

A1

∂Φ2

∂x
−g

∂u
∂x

+RH
∂e
∂ z

, (24)

∇
2
Φ2 +B1(

∂u
∂ z
− ∂w

∂x
)−2B1Φ2 = B2

∂ 2Φ2

∂ t2 , (25)

CKΦ,ii +CνΦ̇,ii +CT Φ̈,ii =

(
1+ τq

∂

∂ t
+

1
2

τ
2
q

∂ 2

∂ t2

)
(θ̈ + ε ë−Q), (26)

Φ−θ = β0Φ,ii, (27)

where,

α1 =
(ρ + ε0µ2

0
H2

0 )c
2
1

A1
, RH =

µ0H2
0

A1
, B1 =

K
γ1c2

1η2 , B2 =
ρJ0c2

1
γ1

, CK =
K∗

ρCEc2
1
,

Cν =
ηK1

ρCE
+CKτν , CT =

ηK1τT

ρCE
, ε =

γ2T0

ρCEA1
, β0 = δc2

1η
2.

Introducing potential functions defined by

u =
∂q
∂x

+
∂ψ

∂ z
, w =

∂q
∂ z
− ∂ψ

∂x
. (28)

where q(x,z, t), and ψ(x,z, t), are scalar potential functions.

Introducing Eq. (28) in Eqs. (23)–(26), we get

α1
∂ 2q
∂ t2 = R1∇

2q−θ −g
∂ψ

∂x
, (29)

α1
∂ 2ψ

∂ t2 =
µ

A1
∇

2
ψ +

k
A1

Φ2 +g
∂q
∂x

, (30)

B2
∂ 2Φ2

∂ t2 = (∇2−2B1)Φ2 +B1∇
2
ψ, (31)

CKΦ,ii +CνΦ̇,ii +CT Φ̈,ii =

(
1+ τq

∂

∂ t
+

1
2

τ
2
q

∂ 2

∂ t2

)
(θ̈ + ε∇

2q̈−Q), (32)

Where R1 = 1+RH .

3 Normal mode analysis

The solution of the considered physical variable can be decomposed in terms of
normal modes as the following form:

[u,w,q,ψ,θ ,Φ2,Φ ,σi j,mi j](x,z, t)

= [u∗,w∗,q∗,ψ∗,θ ∗,Φ∗2 ,Φ
∗,σ∗i j,m

∗
i j](z)exp(mt + iax),
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Q = Q∗ exp(mt + iax), Q∗ = Q0v0, (33)

where m is a complex constant, i =
√
−1,a is the wave number in the x-direction,

v0 is the velocity of a moving internal heat source, Q0 is the magnitude of an internal
heat source and u∗(x),w∗(x),q∗(x),ψ∗(x),θ ∗(x),Φ∗2 (x),Φ

∗(x),σ∗i j(x),m
∗
i j(x) are the

amplitudes of the field quantities.

Introducing Eqs. (33) in Eqs. (29)–(32) and Eq. (27), we obtain

[R1D2−N1]q∗− iagψ
∗ = (N9−β0D2)Φ∗, (34)

[N2D2−N3]ψ
∗+ iagq∗+ kAΦ

∗
2 = 0, (35)

[D2−N4]Φ
∗
2 +[B1D2−B1a2]ψ∗ = 0, (36)

[εN5D2−N6]q∗ = [N10D2−N11]Φ
∗+N0Q0v0, (37)

θ
∗ = (N9−β0D2)Φ∗, (38)

where

N0 = 1+ τqm+
1
2

τ
2
q m2, N1 = R1a2 +α1m2, N2 =

µ

A1
, N3 = N2a2 +α1m2,

N4 = a2 +2B1 +B2m2, N5 = m2N0, N6 = εa2N5, N7 =CK +Cνm+CT m2,

N8 = a2N7, N9 = 1+β0a2, N10 = β0N5 +N7, N11 = N5N9 +N8,

kA =
k

A1
, D =

d
dx

.

Eliminating ψ∗(x),Φ∗2 (x) and ). Φ∗(x) between Eqs. (34)–(37), we obtain the
eighth-order ordinary differential equation satisfied with q∗(x),

[D8−S1D6 +S2D4−S3D2 +S4]q∗(x) =
−N0N9Q0v0(N3N4 +B1a2kA)

L0
, (39)

where, S1 =
L1
L0

, S2 =
L2
L0

, S3 =
L3
L0

, S4 =
L4
L0

, L0 = (R1N10 + εN5β0)N2,

L1 = R1N10N3 + εN5N3β0 +R1N2N4N10 + εβ0N5N2N4 +R1N10B1kA + εβ0N5B1kA

+N1N2N10 +N2N11R1 + εN2N5N9 +N2N6β0,

L2 =−a2g2N10 +R1N3N4N10 + εβ0N3N4N5 +R1kAa2B1N10 + εβ0a2kAN5

+N1N3N10 +N3N11R1 + εN3N5N9 +N3N6β0 +N1N2N4N10 +N2N4N11R1

+ εN2N4N5N9 +β0N2N4N6 +B1kAN1N10 +B1kAN11R1 + εN5N9B1kA

+B1kAβ0N6 +N1N2N11 +N2N6N9,

L3 =−a2g2N11−a2g2N4N10 +N1N3N4N10 +N3N4N11R1 + εN3N4N5N9
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+β0N3N4N6 +N1N10B1a2kA +N11R1B1a2kA + εN5N9B1a2kA +β0B1a2kAN6

+N1N3N11 +N3N6N9 +N1N2N4N11 +N2N4N6N9 +N1N11B1kA +N6N9B1kA,

L4 =−a2g2N4N11 +N1N3N4N11 +N3N4N6N9 +N1N11B1a2kA +N6N9B1a2kA.

Equation (39) can be factored as

(
D2−k2

1
)(

D2−k2
2
)(

D2−k2
3
)(

D2−k2
4
)

q∗(x) =
−N0N9Q0v0(N3N4 +B1a2kA)

L0
, (40)

where k2
n(n = 1,2,3,4) are the roots of the following characteristic equation:

k8−S1k6 +S2k4−S3k2 +S4 = 0. (41)

The solution of Eq. (39), which is bound as x→ ∞, is given by

q∗(x) =
4

∑
n=1

Mn exp(−knz)− N0N9Q0v0(N3N4 +B1a2kA)

L0S4
. (42)

In a similar manner, we get that

ψ
∗(x) =

4

∑
n=1

H1nMn exp(−knz)− iagN0N4N9Q0v0

S4L0
. (43)

Φ
∗(x) =

4

∑
n=1

H2nMn exp(−knz)+
N0Q0v0(N1N3N4 +N1B1kAa2−a2g2N4)

S4L0
. (44)

Φ
∗
2 (x) =

4

∑
n=1

H3nMn exp(−knz)+
ia3gB1N0N9Q0v0

S4L0
. (45)

where Mn are parameters,

H1n =
iag(N4− k2

n)

N2k4
n− (N3 +N2N4 +B1kA)k2

n +N3N4 +B1a2kA
,

H2n =
R1k2

n−N1− iagH1n

N9−β0kn
, H3n =

(N2k2
n−N3)H1n + iag
−kA

.

Introducing Eq. (44) in Eq. (38), this yields

θ
∗(x) =

4

∑
n=1

H4nMn exp(−knz)+
N0N9Q0v0(N1N3N4 +N1B1kAa2−a2g2N4)

S4L0
. (46)

where, H4n = (N9−β0k2
n)H2n.
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Introducing Eq. (42) and (43) in Eq. (28), this yields

u∗(x) =
4

∑
n=1

H5nMn exp(−knz)− iaN0N9Q0v0(N3N4 +B1a2kA)

L0S4
. (47)

w∗(x) =
4

∑
n=1

H6nMn exp(−knz)− a2gN0N4N9Q0v0

S4L0
. (48)

where, H5n = ia−H1nkn, H6n =−kn− iaH1n.

Introducing Eqs. (22) and (33) in Eqs. (5) and (6), we get

µσ
∗
zz = iaλu∗+A1Dw∗−A1θ

∗, (49)

µσ
∗
xz = µDu∗+ ia(µ + k)w∗+ kΦ

∗
2 . (50)

Introducing Eqs. (45)–(48) in Eqs. (49) and (50), this yields

σ
∗
zz =

4

∑
n=1

H7nMn exp(−knz)+ r1, (51)

σ
∗
xz =

4

∑
n=1

H8nMn exp(−knz)+ r2, (52)

where,

H7n =
1
µ
[iaλH5n−A1H6nkn−A1H4n], H8n =

1
µ
[−µH5nkn + ia(µ + k)H6n + kH3n],

r1 =
N0N9Q0v0[λa2(N3N4 +B1a2kA)−A1(N1N3N4 +N1B1a2kA−a2g2N4)]

µS4L0
,

r2 =
ia3gN0N9Q0v0[kB1− (µ + k)N4]

µS4L0
.

From Eqs. (22) and (33) in Eqs. (19), we get

m∗zy =
γη2

ρ
DΦ

∗
2 (53)

Introducing Eqs. (45) in Eqs. (53), this yields

m∗zy =
4

∑
n=1

H9nMn exp(−knz), (54)

where H9n =−
γη2

ρ
knH3n.
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4 Application

We consider a generalized two-temperature magneto-micropolar thermoelastic prob-
lem for a medium with an internal heat source that is moving with a constant speed
in the presence of the gravity field which fills the region Ω defined as follows:

Ω = {(x,y,z) : 0≤ x < ∞,−∞ < y < ∞,−∞ < z < ∞} .

In the physical problem, we should suppress the positive exponentials that are un-
bounded at infinity. The constants Mn(n = 1,2,3,4) have to be chosen such that the
boundary conditions on the surface at z = 0 are as follows:

σzz =− f (x, t) =− f ∗ exp(mt + iax) Φ = σxz = mzy = 0. (55)

Where, f (x, t) is an arbitrary function of x, t, and f ∗ is the magnitude of the me-
chanical force. Using the expressions of the variables considered into the above
boundary conditions (Eqs. (55)), we can obtain the following equations satisfied
with the parameters:

3

∑
n=1

H2nMn =−R0, (56)

3

∑
n=1

H7nMn =− f ∗− r1, (57)

3

∑
n=1

H8nMn =−r2, (58)

3

∑
n=1

H9nMn = 0, (59)

where, R0 =
N0Q0v0(N1N3N4 +N1B1kAa2−a2g2N4)

S4L0
.

Invoking Eqs. (56)–(59), we obtain a system of four equations. After applying
the inverse of matrix method, we have the values of the four constants Mn(n =
1,2,3,4). Hence, we obtain the expressions of the considered variables.


M1
M2
M3
M4

=


H21 H22 H23 H24
H71 H72 H73 H74
H81 H82 H83 H84
H91 H92 H93 H94


−1

−R0
− f ∗− r1
−r2

0

 (60)
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5 Particular cases and special cases of thermoelastic theory

i. The corresponding equations for a two-temperature micropolar thermoelastic
medium with an internal heat source (Q0 = 5.5) in the presence of the gravity
field from the above mentioned cases by taking H0 to vanish.

ii. The corresponding equations for a magneto-micropolar thermoelastic medi-
um with an internal heat source (Q0 = 5.5) in the presence of the gravity field
from the above mentioned cases by taking δ to vanish.

iii. The corresponding equations for a two-temperature magneto-micropolar ther-
moelastic medium in the presence of the gravity field for different values of
an internal heat source from the above mentioned cases by taking Q0 = 5.5,
1.

iv. Equations of the 3PHL model when K,τT ,τq,τν > 0 and the solutions are

always (exponentially) stable if
2KτT

τq
> τ∗ν > K∗τq as in Quintanilla and

Racke (2008).

v. Equations of the G-N II theory when K = τT = τq = τν = 0.

6 Numerical calculation and discussion

In order to illustrate the theoretical results obtained in the preceding section, and
to compare these in the context of the 3PHL model and the GN-II theory, we now
present some numerical results for the physical constants as

λ = 7.76×1010 N ·m−2, µ = 7.86×1010 N ·m−2, ρ = 8954 kg ·m−3, a = 0.1,

CE = 383.1J ·kg−1 ·K−1, f ∗ = 1.2, τT = 7×10−7 s, τq = 9×10−7 s,

τν = 6×10−7 s, αt = 1.78×10−4 K−1,K∗ = 386 w ·m−1 ·K−1 · s−1,

v0 = 0.4 m.s−1, T0 = 293 K,µ0 = 1.9, ε0 = 0.7,K1 = 150 w ·m−1 ·K−1,

m = m0 + iξ , ξ =−0.7,m0 = 0.3, k = 0.5N ·m−2, J0 = 2×10−12 N ·m ·kg−1,

g = 9.8 m · s−2, δ = 2×10−14, γ1 = 0.0779 N ·m−2.

The computations were carried out for a value of time t = 1.2. The vertical dis-
placement component w, the thermodynamic temperature θ , the conductive tem-
perature Φ , the stress components σzz,σxz, the tangential couple stress mzy and
micro-rotation component Φ2 with distance z for the value of x, namely x = 1.5,
were substituted in performing the computations. The results are shown in figures
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1–21. The graphs show the four curves predicted by two different theories of ther-
moelasticity. In these figures, the solid lines represent the solution in the 3PHL
model, and the dashed lines represent the solution derived using the G-N II theory.
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Figure 1: Vertical displacement distribu-
tion w in the absence and presence of a
magnetic field.
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Figure 2: Conductive temperature distri-
bution Φ in the absence and presence of
a magnetic field.
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Figure 3: Thermodynamic temperature
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ence of a magnetic field.
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Figure 4: Distribution of the stress com-
ponent σzz in the absence and presence
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Figures 1–7 show comparisons between the vertical displacement w, the thermody-
namic temperature θ , the conductive temperature Φ , the stress components σzz,σxz,
the tangential couple stress mzy and micro-rotation component Φ2 in the absence
(H0 = 0) and presence (H0 = 140) of a magnetic field with a two-temperature pa-
rameter (δ = 2 × 10−14) and an internal heat source (Q0 = 5.5).

Figure 1 depicts that the distribution of the vertical displacement w begins from
positive values. In the context of the two theories and in the presence of a mag-
netic field, w starts with decreasing to a minimum value, then increases, and also
moves in the wave propagation. However, in the context of the two theories and in
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Figure 5: Distribution of the stress com-
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Figure 7: Distribution of the micro-rotation component Φ2 in the absence and p-
resence of a magnetic field.

the absence of a magnetic field, w starts with decreasing, then increases, after then
becomes nearly constant. The magnetic field decreases the magnitude of w then
increases it. Figure 2 exhibits the distribution of the conductive temperature Φ and
demonstrates that it reaches a zero value and satisfies the boundary condition at
x = 0. In the context of the two theories, in the absence and presence of a magnetic
field, Φ decreases in the range 0≤ x≤ 10. The magnetic field decreases the magni-
tude of Φ . Figure 3 explains the distribution of the thermodynamic temperature θ .
In the context of the two theories, in the absence and presence of a magnetic field, θ

starts with increasing to a maximum value, then decreases to a minimum value and
also moves in the wave propagation. The magnetic field increases the magnitude
of θ , then decreases, again increases, and in the last decreases it. Figure 4 explains
that the distribution of the stress component σzz begins from a negative value and
satisfies the boundary condition at x = 0. In the context of the two theories, in the
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absence and presence of a magnetic field, σzz starts with decreasing to a minimum
value, then increases to a maximum value, and also moves in the wave propagation.
The magnetic field decreases the magnitude of σzz, then increases, again decreases,
and in the last increases it. Figure 5 depicts the distribution of the stress compo-
nent σxz and demonstrates that it reaches a zero value and satisfies the boundary
condition at x = 0. In the context of the two theories, in the absence and presence
of a magnetic field, σxz starts with increasing to a maximum value, then decreases
to a minimum value, and also moves in the wave propagation. The magnetic field
increases the magnitude of σxz, then decreases, again increases, and in the last de-
creases it. Figure 6 depicts the distribution of the tangential couple stress mzy and
demonstrates that it reaches a zero value and satisfies the boundary condition at x =
0. In the context of the two theories and in the presence of a magnetic field, mzy

starts with increasing to a maximum value, then decreases to a minimum value, and
also moves in the wave propagation. However, in the context of the two theories
and in the absence of a magnetic field, mzy starts with decreasing to a minimum val-
ue, then increases to a maximum value, and also moves in the wave propagation.
The magnetic field increases the magnitude of mzy, then decreases, again increases,
and so on. Figure 7 describes the distribution of the micro-rotation component Φ2.
In the context of the two theories and in the presence of a magnetic field, Φ2 starts
with increasing to a maximum value, then decreases to a minimum value, and also
moves in the wave propagation. However, in the context of the two theories and
in the absence of a magnetic field, Φ2 starts with decreasing to a minimum value,
then increases to a maximum value, and also moves in the wave propagation. The
magnetic field increases the magnitude of Φ2, then decreases, again increases, and
in the last decreases it. Figures 1–7 demonstrate that the values of all the phys-
ical quantities converge to zero by increasing the distance z, the behavior of two
theories are similar. These trends obey elastic and thermoelastic properties of the
solid.

Figures 8–14 show comparisons between the vertical displacement w, the ther-
modynamic temperature θ , the conductive temperature Φ , the stress components
σzz,σxz, the tangential couple stress mzy and micro-rotation component Φ2 for one
temperature (δ = 0) and two temperature (δ = 2 × 10−14) in the presence of a
magnetic field (H0 = 140) and an internal heat source (Q0 = 5.5).

Figure 8 explains that the distribution of the vertical displacement w begins from
positive values. In the context of the two theories, w starts with decreasing to a min-
imum value, then increases, and then becomes nearly constant for δ = 0. Figure 9
exhibits the distribution of the conductive temperature Φ and demonstrates that it
reaches a zero value and satisfies the boundary condition at x = 0. In the context
of the two theories, Φ starts with increasing to a maximum value, then decreases
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to a minimum value, and again increases for δ = 0. Figure 10 exhibits that the dis-
tribution of the thermodynamic temperature θ begins from positive values. In the
context of the two theories, θ starts with increasing to a maximum value, then de-
creases to a minimum value, and again increases for δ = 0. Figure 11 explains that
the distribution of the stress component σzz begins from a negative value and satis-
fies the boundary condition at x = 0. In the context of the two theories, σzz starts
with decreasing to a minimum value, then increases, and again decreases for δ = 0.
Figure 12 shows the distribution of the stress component σxz and demonstrates that
it reaches a zero value and satisfies the boundary condition at x = 0. In the context
of the two theories, σxz starts with increasing to a maximum value, then decreases
to a minimum value, and also moves in the wave propagation for δ = 0. Figure 13
depicts the distribution of the tangential couple stress mzy and demonstrates that it
reaches a zero value and satisfies the boundary condition at x = 0. In the context
of the two theories, mzy starts with increasing to a maximum value, then decreases
to a minimum value, and also moves in the wave propagation for δ = 0. Figure
14 describes the distribution of the micro-rotation component Φ2. In the context of
the two theories, Φ2 starts with increasing to a maximum value, then decreases to
a minimum value, and also moves in the wave propagation for δ = 0.

Figures 15–21 show comparisons between the vertical displacement w, the ther-
modynamic temperature θ , the conductive temperature Φ, the stress components
σzz,σxz, the tangential couple stress mzy and micro-rotation component Φ2 for a
two-temperature magneto-microploar medium (H0 = 140, δ = 2 × 10−14) and for
different values of an internal heat source (Q0 = 5.5, Q0 = 1).

Figure 15 explains that the distribution of the vertical displacement w begins from
positive values. In the context of the two theories, w starts with decreasing to a
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minimum value, then increases, and again decreases for Q0 = 1. Figure 16 exhibits
the distribution of the conductive temperature Φ and demonstrates that it reaches a
zero value and satisfies the boundary condition at x = 0. In the context of the two
theories, Φ decreases in the range 0≤ x≤ 10 for Q0 = 1. Figure 17 exhibits that the
distribution of the thermodynamic temperature θ begins from positive values. In
the context of the two theories, θ starts with increasing to a maximum value, then
decreases to a minimum value, and also moves in the wave propagation for Q0 =
1. Figure 18 explains that the distribution of the stress component σzz begins from
a negative value and satisfies the boundary condition at x = 0. In the context of the
two theories, σzz starts with decreasing to a minimum value, then increases, and
also moves in the wave propagation for Q0 = 1. Figure 19 shows the distribution of
the stress component σxz and demonstrates that it reaches a zero value and satisfies
the boundary condition at x = 0. In the context of the two theories, σxz starts
with increasing to a maximum value, then decreases to a minimum value, and also
moves in the wave propagation for Q0 = 1. Figure 20 depicts the distribution of
the tangential couple stress mzy and demonstrates that it reaches a zero value and
satisfies the boundary condition at x = 0. In the context of the two theories, mzy

starts with increasing to a maximum value, then decreases to a minimum value, and
also moves in the wave propagation for Q0 = 1. Figure 21 describes the distribution
of the micro-rotation component Φ2. In the context of the two theories, Φ2 starts
with increasing to a maximum value, then decreases to a minimum value, and also
moves in the wave propagation for Q0 = 1.
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Figure 22: Vertical displacement distri-
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Figures 22–26 are giving 3D surface curves for the physical quantities, i.e., the
vertical displacement w, the stress components σzz,σxz, the tangential couple stress
mzy and micro-rotation component Φ2 to study the effect of a magnetic field on
the wave propagation within a two-temperature micropolar thermoelastic isotropic
medium with an internal heat source in the context of the 3PHL model. These fig-
ures are very important to study the dependence of these physical quantities on the
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vertical component of distance. The curves obtained are highly depending on the
vertical distance from origin, all the physical quantities satisfy boundary condition
and are moving in the wave propagation.

7 Concluding remarks

A rigorous mathematical study of thermoelasticity in solid materials has been con-
ducted utilizing two different, robust, well-formulated theories, namely the 3PHL
model and the Green-Naghdi theory without dissipation. The cases of a magnet-
ic field presence and absence have been addressed as well as a two-temperature
paramter. Analytical solutions based upon normal mode analysis for thermoelas-
ticity in solids have been developed and utilized. The computations have revealed
that:

1) There are significant differences in the field quantities under the GN-II theory
and the 3PHL model due to the phase-lag of temperature gradient and the
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phase-lag of heat flux.

2) The magnetic field, two-temperature parameter and magnitude of an internal
heat source have important roles in the distributions of the field quantities.

3) Deformation of a body depends on the nature of the applied force as well as
the type of boundary conditions.

4) The curves in the context of the 3PHL model and the GN-II theory decrease
exponentially with increasing z; this indicates that the thermoelastic waves
are un-attenuated and non-dispersive, while purely thermoelastic waves un-
dergo both attenuation and dispersion.

5) The vertical distance plays a significant role on all the physical quantities.
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