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B-Spline Wavelet on Interval Finite Element Method for
Static and Vibration Analysis of Stiffened Flexible Thin

Plate

Xing Wei1,2, Wen Chen2, Bin Chen2,3, Bin Chen1,4, Bin Chen2, Bin Chen1

Abstract: A new wavelet finite element method (WFEM) is constructed in this
paper and two elements for bending and free vibration problems of a stiffened plate
are analyzed. By means of generalized potential energy function and virtual work
principle, the formulations of the bending and free vibration problems of the s-
tiffened plate are derived separately. Then, the scaling functions of the B-spline
wavelet on the interval (BSWI) are introduced to discrete the solving field vari-
ables instead of conventional polynomial interpolation. Finally, the corresponding
two problems can be resolved following the traditional finite element frame. There
are some advantages of the constructed elements in structural analysis. Due to the
excellent features of the wavelet, such as multi-scale and localization characteristic-
s, and the excellent numerical approximation property of the BSWI, the precise and
efficient analysis can be achieved. Besides, transformation matrix is used to trans-
late the meaningless wavelet coefficients into physical space, thus the resolving
process is simplified. In order to verify the superiority of the constructed method
in stiffened plate analysis, several numerical examples are given in the end.

Keywords: B-spline wavelet on the interval; Wavelet finite element method; S-
tiffened plate; Bending analysis; Vibration analysis.

1 Introduction

The finite element method (FEM) has been well accepted in numerous industrial
areas for structural analysis and simulation [Zienkiewicz and Taylor (2005); Bathe
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(1996); Song, Noh, and Choi (2003); Atluri, Gallagher, and Zienkiewicz (1983);
Dong, EI-Gizawy, Juhany, and Atluri (2014)]. It has helped many engineers and
scholars to promote their work both in design and application. For example, the
structural analysis results by FEM helped the engineers to improve their design.
It can test the characteristics of the new theoretical achievements or simulate the
experimental environment before it is used in experiment or application.

Stiffened plate is a typical structure used in various mechanical equipment and
architecture structures. It can enhance the component and can improve the char-
acteristics of the equipment. Therefore, many scholars and engineers spent much
energy and time on precise analysis and test of stiffened structures. For example,
based on the work of Han and Atluri (2003), Dong and Atluri developed the two-
dimensional weakly-singular symmetric galerkin boundary elements for fatigue
crack growth analyses in stiffened panels [Dong and Atluri (2012)]. Patel, Bisagni,
and Datta (2011) studied the dynamic buckling behavior of laminated composite
stiffened cylindrical shell by using ABAQUS. Fenner and Watson (2012) tackled
the buckling problem of stiffened plate with filleted junction by three dimensional
finite element in order to optimize the fillet radius along the line junction. [Du-
ran, Rodriguez, and Sanhueza (2012)] applied a low order finite element method to
analyzing a stiffened plate based on Reissner-Mindlin equations and Timoshenko
beams equations. Fernandes and Neto (2014) analyzed stiffened plates composed
by beams and slabs with different materials based on boundary element method.
[Golmakani and Mehrabian (2014)] studied the elastic large deflection problem of
axisymmetric ring-stiffened circular and annular general angle-ply laminated plates
by first order shear deformation theory and the dynamic relaxation method. Askar-
i, Saadatnia, Esmailzadeh, and Younesian (2014) investigated the free and forced
vibrations of stiffened triangular plate based on Galerkin approach, the energy bal-
ance method and the variational approach. Zhu, Chen, Kong, and Zhang (2014)
developed a hybrid method combining finite element analysis and energy finite ele-
ment analysis together to predict the vibrations of stiffened built-up structure. Shi,
Kapania, and Dong (2015) developed a finite element method for the static, vi-
bration and buckling behaviors of curvilinearly stiffened plates. Although many
achievements have been obtained for stiffened structure analysis, the precision or
efficiency is limited. This is because the traditional finite element or hybrid method
with the traditional polynomial function or other traditional interpolation function
being used to interpolate the solving field cannot achieve multi-scale analysis for
high efficiency and precision.

Wavelet finite element method is a new numerical method developed in the last two
decades, which takes wavelet functions to replace traditional interpolation in field
variables discretion. Due to excellent features of the wavelet function, such as mul-



B-Spline Wavelet on Interval Finite Element Method for Static and Vibration Analysis 55

tiresolution, multi-scale and localization etc., the Wavelet Finite Element Method
(WFEM) possesses excellent numerical analysis ability. As an example, [Ko, Kur-
dila, and Pilant (1995)] constructed Daubechies wavelet finite element method and
applied it in 1D and 2D elliptic partial differentiation equations with Neumann
boundary conditions in 1995. This paper uncovers the prelude on WFEM. Li and
Chen (2014) reviewed the recent development of wavelet numerical method, in-
cluding wavelet weighted residual method, wavelet finite element method, wavelet
boundary method and wavelet meshless method. Mitra constructed the 2-D wavelet
spectral finite element method for analysis of wave propagation in an isotropic plate
[Mitra and Gopalakrishnan (2006)]. Xiang implemented damage detection through
a hybrid method by combining the interval wavelets and wavelet finite element
model together [Xiang, Matsumoto, Wang, and Jing (2011)]. Li et al. achieved
multiple cracks quantitative identification in a rotor by using wavelet finite ele-
ment method in forward problem to construct the model of the rotor [Li and Dong
(2012)]. Yang analyzed the vibration problem of shell structures by using B-spline
wavelet on the interval finite element and general shell theory [Yang, Chen, Li,
He, and Miao (2012)]. Zhang, Chen, Yang, Li, and He (2014a) developed a s-
tochastic finite element method based on B-spline wavelet on the interval for static
analysis of 1D and 2D structures. Wang and Wu (2013) investigated a new kind of
operator-orthogonal wavelet-based element for adaptive analysis of thin plate bend-
ing problems. Liu, Xiang, Gao, Jiang, Zhou, and Li (2014) implemented WFEM
to analyze the dispersion relation for one dimensional phononic crystals. Yang,
Chen, Li, Miao, and He (2014) applied BSWI finite element method for wave mo-
tion analysis in arch structures. Xue, Zhang, Li, Qiao, and Chen (2014) proposed a
multi-scale wavelet-based numerical method for wave propagation and load iden-
tification by introducing modified Hermitian cubic spline wavelets on the interval.
Alm, Harbrecht, and Krämer (2014) investigated the fast solution for nonlocal oper-
ator equations based on H2-wavelet method. Zuo et al. studied the static, vibration
and buckling problems of functionally graded beams and plates [Zuo, Yang, Chen,
Xie, and Zhang (2014a, 2014b)]. Zhao (2015) studied the temperature-pressure
coupled field analysis of liquefield petroleum gas tank under jet fire by WFEM.
Samaratunga, Jha, and Gopalakrishnan (2015)] developed a wavelet spectral mod-
el for studing transient dynamics and wave propagation in adhesively bonded com-
posite joints. In order to improve the calculation precision of generalized stress and
strain, [Zhang, Chen, and He (2011a, 2012); Zhang, Chen, He, and Yang (2011b);
Zhang, Chen, Yang, and Shen (2014b); Zhang, Zuo, Liu, Chen, and Yang (2016)]
constructed a series of multivariable wavelet finite elements for the structures of
beam, plate and shell, and static and dynamic characteristics are analyzed and in-
vestigated. [Wang, Wu, and Wang (2015)] proposed a design method of second
generation wavelet-based multivariable finite element for static and vibration anal-
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ysis of beam.

In this paper, the wavelet finite element for stiffened plate is investigated to improve
the solving precision and efficiency in bending and free vibration analysis. First,
the FEM formulation of the stiffened plate is derived from generalized potential
energy function. Then, taking BSWI scaling functions as interpolation function,
the solving field variables are discretized. In the meantime, the transformation
matrix is constructed to translate the meaningless wavelet coefficients into physical
space. Finally, the static and dynamic problems can be resolved by solving the
FEM matrix equations.

2 Two-dimensional BSWI

B-spline wavelet on the interval was constructed by Chui and Quak (1992), and
the decomposition and reconstruction algorithm was derived in 1994 Quak and
Weyrich (1994). The even order BSWI is frequently chosen in practical numerical
calculation.

At any scale j, the mth order BSWI scaling functions must satisfy the following
condition [Goswami, Chan, and Chui (1995)] in order to have at least one inner
wavelet on the interval [0, 1].

2 j ≥ 2m−1 (1)

Since the 0 scale mth order BSWI scaling functions and wavelet functions had been
derived by Goswami, Chan, and Chui (1995), the j scale mth order BSWI scaling
functions φ

j
m,k(ξ ) and wavelet functions ψ

j
m,k(ξ ) can be evaluated by the following

formulas.

φ
j

m,k(ξ ) =



φ l
m,k(2

j−lξ ),k =−m+1, . . . ,−1
(0 boundary scaling functions)

φ l
m,2 j−m−k(1−−2 j−lξ ),k = 2 j−m+1, . . . ,2 j−1

(1 boundary scaling functions)
φ l

m,0(2
j−lξ −2−lk),k = 0, . . . ,2 j−m

(inner boundary scaling functions)

(2)

ψ
j

m,k(ξ ) =



ψ l
m,k(2

j−lξ ),k =−m+1, . . . ,−1
(0 boundary wavelets)

ψ l
m,2 j−2m−k+1(1−−2 j−lξ ),k = 2 j−2m+2, . . . ,2 j−m

(1 boundary wavelets)
ψ l

m,0(2
j−lξ −2−lk),k = 0, . . . ,2 j−2m+1

(inner wavelets)

(3)
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The 11 BSWI43 scaling functions are given here for the use in the following sec-
tions.

φ
3
4,−3(ξ )=

1
6
×

{
6−18× (23ξ )+18× (23ξ )2−6× (23ξ )3, ξ∈[0,0.125]
0, others

φ
3
4,−2(ξ )=

1
6
×


18× (23ξ )−27× (23ξ )2+

21
2
× (23ξ )3, ξ∈[0,0.125]

12−18× (23ξ )+9× (23ξ )2−3
2
× (23ξ )3, ξ∈[0.125,0.25]

0, others

φ
3
4,−1(ξ )=

1
6
×


9× (23ξ )2−11

2
× (23ξ )3, ξ∈[0,0.125]

−9+27× (23ξ )−18× (23ξ )2+
7
2
× (23ξ )3, ξ∈[0.125,025]

27−27× (23ξ )9× (23ξ )2−(23ξ )3, ξ∈[0.25,0375]
0, others

φ
3
4,0(ξ )=

1
6
×


(23ξ )3, ξ∈[0,0.125]
4−12× (23ξ )+12× (23ξ )2−3× (23ξ )3, ξ∈[0.125,0.25]
−44+60× (23ξ )−24× (23ξ )2+3× (23ξ )3, ξ∈[0.25,0.375]
64−48× (23ξ )+12× (23ξ )2−(23ξ )3, ξ∈[0.375,0.5]

φ
3
4,1(ξ )=φ

3
4,0(ξ−0.125),φ 3

4,2(ξ )=φ
3
4,0(ξ−0.25),φ 3

4,3(ξ )=φ
3
4,0(ξ−0.375)

φ
3
4,4(ξ )=φ

3
4,0(ξ−0.5),φ 3

4,5(ξ )=φ
3
4,−1(1−ξ ), φ

3
4,6(ξ )=φ

3
4,−2(1−ξ ),

φ
3
4,7(ξ )=φ

3
4,−3(1−ξ )

Where, φ 3
4,−3(ξ ), φ 3

4,−2(ξ ), and φ 3
4,−1(ξ ) are 0 boundary scaling functions. φ 3

4,5(ξ ),
φ 3

4,6(ξ ) and φ 3
4,7(ξ ) are 1 boundary scaling functions. φ 3

4,0(ξ ), φ 3
4,1(ξ ), φ 3

4,2(ξ ),
φ 3

4,3(ξ ), and φ 3
4,4(ξ ) are inner scaling functions.

The vector form of the BSWI scaling functions is:

ΦΦΦ =
{

φ
j

m,−m+1(ξ )φ
j

m,−m+2(ξ ) . . .φ
j

m,2 j−1(ξ )
}

(4)

The vector form of BSWI wavelet functions is:

ΨΨΨ =
{

ψ
j

m,−m+1(ξ )ψ
j

m,−m+2(ξ ) . . .ψ
j

m,2 j−m(ξ )
}

(5)

Two dimensional BSWI can be generated from the BSWI vectors in Eqs. (4–5) by
tensor product. The two dimensional BSWI scaling functions are:

ΦΦΦ = ΦΦΦ1⊗ΦΦΦ2 (6)
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where, ΦΦΦ1 and ΦΦΦ2 are BSWI scaling function vector in Eq. (4).

The two dimensional BSWI wavelet functions are:

ψψψ
1 = ΦΦΦ1⊗ψψψ2 (7)

ψψψ
2 = ψψψ1⊗ΦΦΦ2 (8)

ψψψ
3 = ψψψ1⊗ψψψ2 (9)

where, ψψψ1 and ψψψ2 are BSWI wavelet function vector in Eq. (5).

The corresponding two dimensional BSWI scaling functions and wavelet functions
are shown in Fig. 1.

(a) (b)

(c) (d)

Figure 1: Two dimensional BSWI scaling and wavelet functions. (a) scaling func-
tions ΦΦΦ = ΦΦΦ1⊗ΦΦΦ2 and (b) wavelet functions ψψψ1 = ΦΦΦ1⊗ψψψ2; (c) wavelet functions
ψψψ2 = ψψψ1⊗ΦΦΦ2 and (d) wavelet functions ψψψ3 = ψψψ1⊗ψψψ2.
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Figure 2: Stiffened plate model and node displacement.

3 BSWI element for bending analysis of stiffened plate

3.1 BSWI element construction

As shown in Fig. 2, there are three Degrees of Freedom (DOF) in each node. The
total potential energy of the stiffened flexible thin plate is consisted with strain
energy of the flexible thin plate, strain energy of the stiffeners and the potential
energy of the load. Therefore, the total potential energy function of the stiffened
flexible thin plate can be obtained as Shen (1991):

∏p=Ub +Us +∑
i

Ui +∑
j

Uj +Vp (10)

where,

Ub is the bending strain energy of the flexible thin plate:

Ub =
D
2

∫
Ω

[(
∂ 2w
∂x2

)2

+

(
∂ 2w
∂y2

)2

+2µ
∂ 2w
∂x2 ·

∂ 2w
∂y2 +2(1−µ)

(
∂ 2w
∂x∂y

)2
]

dxdy

(11)

Us is the tensile strain energy of the flexible thin plate.

Us =
d
2

∫
Ω

[(
∂u
∂x

)2

+2µ
∂u
∂x
· ∂v

∂y
+

(
∂v
∂y

)2

+
1−µ

2

(
∂u
∂y

+
∂v
∂x

)2
]

dxdy (12)

Ui is the strain energy of stiffeners along x direction.

Ui =
1
2

a∫
0

EiAi

(
∂ui

∂x

)2

dx+
1
2

a∫
0

EiIi

(
∂ 2wi

∂x2

)2

dx+
1
2

a∫
0

GiJi

(
∂ 2wi

∂x∂y

)2

dx (13)



60 Copyright © 2016 Tech Science Press CMC, vol.52, no.1, pp.53-71, 2016

U j is the strain energy of stiffeners along y direction.

U j =
1
2

b∫
0

E jA j

(
∂v j

∂y

)2

dy+
1
2

b∫
0

E jI j

(
∂ 2w j

∂y2

)2

dy+
1
2

b∫
0

G jJ j

(
∂ 2w j

∂x∂y

)2

dy (14)

Vp is the potential energy of load.

Vp =
∫
Ω

qwdxdy (15)

Where, u, v, w are the displacement of flexible thin plate in middle plane along the
direction of x, y and z respectively shown in Fig. 2. D is the bending stiffness. µ is
poisson ratio. E, Ei and E j are the elastic modulus of flexible thin plate, stiffeners
along x direction and stiffeners along y direction respectively. Ai and A j are the
cross area of the stiffeners along x and y direction. Ii and I j are the inertia moment
of stiffeners along x and y direction. Gi and G j are the shear modulus of stiffeners
along x and y direction. q is the load.

The BSWI scaling function in Eq. (4) is used to discrete the displacement field
variables.

u = ΦΦΦT eue (16)

v = ΦΦΦT eve (17)

w = ΦΦΦT ewe (18)

where, T e is the transformation matrix, which can be expressed as follows.

T e = (ΦΦΦ1⊗ΦΦΦ2)
−1 (19){

ΦΦΦ1 =
{

φ T
1 (ξ1)φ

T
1 (ξ2) . . .φ

T
1 (ξn+1)

}T

ΦΦΦ2 =
{

φ T
2 (η1)φ

T
2 (η2) . . .φ

T
2 (ηn+1)

}T (20)

Substituting Eqs. (11–20) into Eq. (10), and based on the minimum potential

energy principle,
∂ ∏p

∂ue = 0,
∂ ∏p

∂ve = 0 and
∂ ∏p

∂we = 0, the BSWI finite element for
the stiffened flexible thin plate can be obtained as follows.

K11 K12 K13
K21 K22 K23
K31 K32 K33

ue

ve

we

=


0
0

(T e)T
∫
Ω

Φ1⊗Φ2dxdy

 (21)
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where,

K11 = dΓ
11
1 ⊗Γ

00
2 +

d (1−µ)

2
Γ

00
1 ⊗Γ

11
2 +∑

i
EiAiΓ

11
1 ⊗Γ

00
2 ;

K12 = dµΓ
10
1 ⊗Γ

01
2 +

d (1−µ)

2
Γ

01
1 ⊗Γ

10
2 ;

K13 =−∑
i

EiAieiΓ
12
1 ⊗Γ

00
2 ;

K21 = (K12)
T ;

K22 = dΓ
00
1 ⊗Γ

11
2 +

d (1−µ)

2
Γ

11
1 ⊗Γ

00
2 +∑

j
E jA jΓ

00
1 ⊗Γ

11
2 ;

K23 =−∑
j

E jA je jΓ
00
1 ⊗Γ

12
2 ;

K31 = (K13)
T ;

K32 = (K23)
T ;

K33 = DΓ
22
1 ⊗Γ

00
2 +DΓ

00
1 ⊗Γ

22
2 +µDΓ

20
1 ⊗Γ

02
2 +µDΓ
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1 ⊗Γ

20
2

+2D(1−µ)Γ
11
1 ⊗Γ

11
2 +∑

i
EiAie2

i Γ
22
1 ⊗Γ

00
2 +∑

i
EiI jΓ

22
1 ⊗Γ

00
2

+∑
i

GiJ jΓ
11
1 ⊗Γ

11
2 +∑

j
E jA je2

jΓ
00
1 ⊗Γ

22
2 +∑

j
E jIiΓ

00
1 ⊗Γ

22
2 .

+∑
j

G jJ jΓ
11
1 ⊗Γ

11
2

where the integral terms are:

ΓΓΓ
00
1 = (T e)T Lx

∫ 1

0
ΦΦΦ

T
1 ΦΦΦ1dξ T e;

ΓΓΓ
10
1 = (T e)T

∫ 1

0

dΦΦΦ
T
1

dξ
ΦΦΦ1dξ T e;

ΓΓΓ
01
1 = (ΓΓΓ10

1 )T ;

ΓΓΓ
20
1 = (T e)T 1

Lx

∫ 1

0

d2ΦΦΦ
T
1

dξ 2 ΦΦΦ1dξ T e;

ΓΓΓ
02
1 = (ΓΓΓ20

1 )T .

Substituting Lx and dξ as Ly and dη in ΓΓΓ
i, j
1 (i, j = 0,1,2), the expression of ΓΓΓ

i, j
2 (i, j =

0,1,2) can be obtained.
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3.2 Numerical examples

3.2.1 Bending analysis example 1

As shown in Fig. 3, the clamped flexible thin plate with two orthogonal stiffeners
is considered in this numerical example for bending analysis. The corresponding
parameters of this plate are: Elastic modulus E = 2.116× 104 N/mm; Poisson ratio
µ = 0.3; Plate length a= b= 201.8 mm; Plate thickness t = 2.817 mm; Distributed
load q= 0.005 N/mm2. The parameters of the two stiffeners are: Moment of inertia
I = 59.6 mm4; Offset e = 0.

O x

y

a
/2

a
/2

b/2 b/2

Figure 3: Clamped flexible thin plate with two orthogonal stiffeners.

Table 1: Displacement and moment of the stiffened flexible plate with two orthog-
onal stiffeners.

w(mm) M(N · mm)
x/b

(y/a =1/2)
Spline
FEM

BSWI
FEM

Experiment
Spline
FEM

BSWI
FEM

Experiment

0 0 0 0 7.452 7.5832 7.927
1/10 / 0.02803 / / 3.1493 /
1/8 0.040695 0.04088 0.049 1.6686 1.4288 /
2/10 / 0.08438 / / 0.3122 /
2/8 0.112957 0.01142 0.117 1.7812 1.6632 /
3/10 / 0.14013 / / 2.3419 /
3/8 0.16899 0.16918 0.169 3.2989 3.1825 /
4/10 / 0.17648 / / 3.3226 /
1/2 0.18901 0.18919 0.185 3.60887 3.5731 3.379

The static bending problem of the stiffened flexible thin plate with two orthogonal
stiffeners clamped with distributed load is analyzed in this example. The displace-
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ment of middle plane and moment results are compared with spline FEM [Shen,
Huang, and Wang (1987)], BSWI FEM and experimental results [Shen (1991)] in
Table 1. BSWI43 is used to discrete the displacement field variables, so there are
363 DOFs in each BSWI element. The results of these three elements are in con-
sistent with each other, so the correctness of the proposed BSWI FEM is verified.
With a relatively small computational cost, it can achieve similar precision as s-
pline FEM and experiment do. Besides, the isolines and global deformation in Fig.
4 further demonstrated that the analyzed results are reasonable. Therefore, the con-
structed BSWI FEM is an efficient way in bending analysis for stiffened flexible
thin plate.
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Figure 4: Deformation of the stiffened flexible
thin plate with two orthogonal stiffeners (Isoline
along y = a/2).

O x

y
a
/3

a
/3

b/3 b/3b/3

a
/3

Figure 5: Clamped flexible
thin plate with four orthogo-
nal stiffeners.

3.2.2 Bending analysis example 2

As shown in Fig. 5, the square stiffened flexible thin plate with four orthogonal
stiffeners is considered in this example. The corresponding parameters are: Elastic
modulus E = 2.116 × 104 N/mm; Poisson ratio µ = 0.3; Plate length a = b =
201.8 mm; Plate thickness t = 2.817 mm; Distributed load q = 0.005 N/mm2. The
parameters of the four stiffeners are: Moment of inertia I = 45.0702 mm4; Offset
e = 0.

The bending problem of the stiffened flexible thin plate with four orthogonal stiff-
eners is analyzed in this numerical example. The displacement of middle plane and
moment results are shown in Table 2 and the deformation of the stiffened thin plate
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Table 2: Displacement and moment of the stiffened flexible plate with four orthog-
onal stiffeners.

w(mm) M(N·cm)

y/a x/b
Spline
FEM

BSWI
FEM

Experiment
Spline
FEM

BSWI
FEM

Experiment

1/2

0 0 0 0 7.8303 7.7821 8.2301
1/10 / 0.02931 / / 3.3485 /
1/8 0.04223 0.04352 0.044 1.20787 1.9524 /
2/10 / 0.08831 / / 0.5768 /
2/8 0.11495 0.11522 0.114 1.89021 1.8232 /
3/10 / 0.14485 / / 2.5159 /
3/8 0.17219 0.17328 0.1660 3.37769 3.3540 /
4/10 / 0.18511 / / 3.5344 /
1/2 0.19365 0.19687 0.1840 4.0375 3.9421 3.491
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Figure 6: Deformation of the stiffened flexible thin plate with four orthogonal stiff-
eners (Isoline along y = a/2).

are drawn in Fig. 6. It can be seen from the comparison among spline FEM [Shen
(1991)], BSWI FEM and experiment [Shen (1991)] in Table 2 that the results of the
three methods are in consistent with other. For BSWI FEM, only one element is
used in this example, so the proposed BSWI FEM is an efficient way in structural
analysis. Besides, the global deformation and isolines in Fig. 6 further demonstrate
the correctness of the BSWI FEM.
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4 Bswi element for free vibration analysis of stiffened plate

4.1 BSWI element construction

The total potential energy of the stiffened flexible thin plate in Fig. 2 is [Shen
(1991)]:

∏p=
1
2

∆
T K∆− 1

2
ω

2
∆

T M∆ (22)

Where, ∆ = [u v w] is the displacement in middle plane.

According to minimum potential energy principle
∂ ∏p

∂∆
= 0,(

K−ω
2M
)

∆ = 0 (23)

the frequency equation to free vibration can also be obtained.∣∣K−ω
2M
∣∣= 0 (24)

By solving the frequency equation in Eq. (24), the natural frequencies ω and cor-
responding mode shapes can be obtained.

K can be solved and obtained as shown in section 3.1, so the next problem is how
to get M.

The maximum kinetic energy of the stiffened flexible thin plate is:

V = ω
2T (25)

where,

T =
1
2

∫
Ω

m̄
(
u2 + v2 +w2)dxdy+

1
2 ∑

∫ [
m̄i
(
u2

i + v2
i +w2

i
)
+ Ji

(
∂wi

∂x

)2
]

dy

+
1
2 ∑

∫ [
m̄ j
(
u2

j + v2
j +w2

j
)
+ J j

(
∂w j

∂y

)2
]

dx =
1
2

∆
T M∆ (26)

where, m̄, m̄i and m̄ j are the density of thin plate and ribs along x and y directions.
ω is circular frequency. Other symbols are the same as those in Eq. (10).

Then, according to Eq. (25), the mass matrix for vibration problem of the stiffened
flexible thin plate can be obtained.

M =

M11 M12 M13
M21 M22 M23
M31 M32 M33

 (27)
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where,

M11 = m̄Γ
00
1 ⊗Γ

00
2 +∑ m̄iΓ

00
1 ⊗Γ

00
2 +∑ m̄ jΓ

00
1 ⊗Γ

00
2 ;

M12 = 0;

M13 =−∑ m̄ieiΓ
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1 ⊗Γ

01
2 −∑ m̄ je jΓ

01
1 ⊗Γ

00
2 ;

M21 = (M12)
T ;
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2 ;
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T ;
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i Γ
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11
2

+∑
(
m̄ie2
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)

Γ
00
1 ⊗Γ

00
2 +∑ m̄ je2

jΓ
11
1 ⊗Γ

00
2 +∑

(
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j + J j
)

Γ
00
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2
.

The integral terms above are the same as those in section 3.1.
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Figure 7: Simply supported flexible thin plate with six orthogonal stiffeners.

4.2 Numerical example

As shown in Fig. 7, the square stiffened flexible thin plate with six orthogonal
stiffeners is considered in this numerical example for free vibration analysis. The
corresponding material parameters of the plate are: Elastic modulus E = 10920;
Poisson ratio µ = 0.3; Plate length a = b = 1; Plate thickness t = 0.1; Bending
stiffness D = 1; Density m̄ = 1. The parameters of the eight stiffeners are: Cross
area A = 0.03; Moment of inertia I = 0.00025; Offset e = 0.
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The free vibration analysis results of simply supported stiffened flexible thin plate
are shown in Table 3. The first four circular frequencies are compared with s-
pline FEM [Shen, Huang, and Wang (1987)], BSWI FEM, orthotropic plate [Shen
(1991)] and Reference [Cao (1983)]. It can be seen from the comparison that the
precision of the constructed BSWI FEM is in consistent with other three methods,
while only one BSWI element is used in this free vibration analysis. Therefore, the
proposed BSWI FEM is an efficient way in structural analysis, including bending
analysis and vibration analysis, which can achieve the results with good precision
and small computational cost.

Table 3: Free vibration analysis results of simply supported stiffened flexible thin
plate.

ω1(rad/s) ω2(rad/s) ω3(rad/s) ω4(rad/s)
Spline FEM 86.0581 247.659 247.659 345.491
BSWI FEM 86.8538 248.9235 248.9235 347.8416

Orthotropic plate 86.0643 246.956 246.956 346.032
Reference 87.3056 250.195 250.195 349.222

5 Conclusion

Based on generalized potential energy function and B-spline wavelet on the inter-
val, a novel BSWI finite element method is constructed for static and free vibration
analysis of the stiffened flexible thin plate in this paper. The FEM formulations
are derived from the generalized potential energy function according to general-
ized potential energy function and virtual work principle. BSWI is used to replace
polynomial interpolation function in traditional FEM to discrete the solving field
variables, and the transformation matrix is constructed to transfer the meaningless
wavelet coefficients into physical space. Due to the excellent features of BSWI, the
efficient and precise analysis results can be obtained. Through several numerical
analysis examples, it proved that the proposed BSWI FEM can achieve static and
vibration analysis with high efficiency and precision.
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