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Forced and Natural Vibrations of an Orthotropic Pre-Stressed 

Rectangular Plate with Neighboring Two Cylindrical Cavities 

U. Babuscu Yesil1 

Abstract: Forced and natural vibrations of a rectangular pre-stressed orthotropic composite 

plate containing two neighboring cylindrical cavities whose cross sections are rectangular 

with rounded-off corners are investigated numerically. It is assumed that all the end surfaces 

of the rectangular pre-stressed composite plate are simply supported and subjected to a 

uniformly distributed normal time-harmonic force on the upper face plane. The considered 

problem is formulated within the Three-Dimensional Linearized Theory of Elastic Waves in 

Initially Stressed Bodies (TDLTEWISB). The influence of mechanical and geometrical 

parameters as well as the initial stresses and the effect of cylindrical cavities on the dynamical 

characteristics of the rectangular orthotropic composite plate are analyzed and discussed.  

Keywords:  Initial stresses, vibration, cylindrical cavities, 3D FEM, orthotropic material. 

1 Introduction 

Many defects such as holes and cavities within structural elements subjected to external 

effects are responsible for the stress concentrations around them. Knowledge of the 

magnitude of these stress concentrations is necessary to safely use these structural 

elements containing holes or cavities in engineering structures. This is because the values 

of the stress concentrations in the case where they are close to their critical value can 

cause a variety of dangerous situations in structures containing such defects to arise. A 

wide range of research in this area has been made and continues to be studied intensively 

in many branches of science. These problems were extensively studied, firstly by Savin 

[Savin (1961)]. Since then, many aspects of these problems have been developed by 

many researchers such as the considered structural elements and their materials, solution 

methods and the theories used in the mathematical modeling of these problems. Stress 

concentration around two cylindrical horizontal holes in a rectangular plate was 

investigated in [Akbarov, Yahnioglu and Babuscu (2012)], Weakening Effects of Internal 

Part-Through Elliptic Holes in Homogeneous and Laminated Composite Plates was 

investigated in [Chaudhuri (2007)]. A method of finding the general solution of a system 

of equilibrium equations for nonthin transversely isotropic plates with a uniform pre-stress 

field was investigated in [Khoma and Kondratenko (2008)]. A non-contact measurement 

method was investigated to investigate the tensile strain field of a composites plate in the 
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presence of stress concentrations caused by a geometrical defect consisting of circular 

hole in [Toubal, Karama and Lorrai (2005)]. A single-layer higher-order model for 

predicting the stresses at curved free boundaries of laminated composite plates subjected 

to inplane loading was investigated in [Zhen and Wanji (2009)]. In [Zheng, Chang-Boo, 

Chongdu and Hyeon (2008)] the coupled influence of the Poisson’s ratio and plate 

thickness upon the stress concentration factor, the strain concentration factor and their 

relations of finite thickness plate containing a hole subjected to uniaxial tension were 

vastly investigated using the finite element method. 

In these works consideration was given to determination of the values of the stress and 

strain concentrations around the holes and the effects of the geometrical and material 

parameters on them. However, in some research, holes which were seen as being 

responsible for the stress concentration under loading were used for reduction of the 

stress concentration around the discontinuities i.e. around the other holes. An overview of 

various techniques developed for analysis as well as the mitigation of stress concentration 

in plates with singularities is given by S. Nagpal et al. [Nagpal, Jain and Sanyal (2012)]. 

But all the above-mentioned research is related to the corresponding problem in the static 

case. However, it has been established that stress concentrations significantly affect the 

dynamical characteristics of plates containing holes. The forced vibration of an initially 

statically stressed rectangular plate made of an orthotropic material with a cylindrical 

hole was investigated in [Akbarov, Yahnioglu and Babuscu (2010)]. An analysis of the 

forced vibration of an initially stressed rectangular transversally isotropic plate containing 

two neighboring cylindrical cavities was investigated in [Akbarov, Yahnioglu and 

Babuscu Yesil (2012)]. Coupling method was investigated for free vibration analyses of 

rectangular plate with a rectangular or circular hole in [Kwaka and Han (2007)]. Free 

vibration analysis of composite plates in the presence of cutouts undergoing large amplitude 

oscillations was investigated in [Sivakumar and Iyengar (1999)]. Stress distribution in the pre-

stretched simply supported strip containing two neighbouring circular holes under forced 

vibration was investigated in [Yahnioglu (2007)]. The influence of the initial stretching of a 

composite thick plate containing a cylindrical hole on the stress concentration around a hole 

caused by the action of the additional uniformly distributed dynamic (time-harmonic) normal 

forces on the upper face of the plane was investigated in [Yahnioglu and Babuscu (2009)]. The 

first aim is to determine the magnitude of the stress concentrations around the defects; the 

second aim is to find ways of reduction for these concentrations. One way to reduce the values 

of the stress concentrations around the defects is the use of pre-stressed materials in elements of 

structures with defects. The effects of initial stresses on the stress concentration around holes 

were investigated in some papers as mentioned above. 

The present study extends the study [Akbarov, Yahnioglu and Babuscu (2010)] for the 

case where the pre-stressed orthotropic rectangular plate contains two equal internal parallel 

neighboring cylindrical cavities (lying width-wise in the plate) with rectangular cross 

sections with rounded corners. And the present study extends the study [Akbarov, 

Yahnioglu and Babuscu (2012)] by taking the plate’s material as orthotropic and extends 

the study [Akbarov, Yahnioglu and Babuscu (2012)] by examining the dynamical 

characteristics of the plate. Mathematical modeling is made within the TDLTEWISB and 

according to this theory, initial stress distributions are determined in the considered plate 

by employing the linear elasticity theory and then, using the equations and relations of 
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the TDLTEWISB containing the initial stress distributions in the plate, the forced and 

natural vibrations of the pre-stressed rectangular orthotropic plate are investigated. It is 

assumed that the initial stresses are caused by the uniformly distributed normal forces 

acting on two opposite end-planes which are normal to the direction in which the 

cylindrical cavities lie. Both determination of the initial stresses and the dynamical 

quantities such as the fundamental frequencies and stress concentrations under vibration 

of the considered rectangular plate are calculated numerically by using 3D finite element 

modeling. The influence of the geometrical and mechanical parameters of the orthotropic 

plate and interaction between the cavities, as well as the initial stresses on the dynamical 

characteristics of the considered plate are analyzed and discussed.  

2 Formulation of the problem 

Consider a rectangular orthotropic plate containing two equal parallel cylindrical cavities 

whose cross sections are rectangular with rounded-off corners, the geometries of which 

are shown in Fig. 1, and according to which, the plate’s height, length and thickness are 

h , 1  and 3 , respectively. Determine the position of the points by the Lagrange coordinates 

which, in the natural state, coincide with the Cartesian coordinates 1 2 3Ox x x .  Assume that 

the cylindrical cavities extend longitudinally along the thickness 3 .  

  

Figure 1: The geometry of the considered rectangular plate including two equal cylindrical 

cavities 

In the considered problem, the solution domain occupies the region:  

 I II                                                                                                         (1) 

In (1) the domain I ( II ) is occupied by the left (right) cylindrical cavity and the 

following notation is used: 

 1 1 2 3 30 ;0 ;0      x x h x  

  I 01 1 01 01 2 01 3 3x x x b 2R ;y R x y R;0 x            
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        2 2 2
1 2 3 1 01 2 01 01 1 01 01 2 01 3 3x ,x ,x x x x y R , x R x x ;y R x y R;0 x             

      2 2 2
1 2 3 1 02 2 02 02 1 02 01 2 01 3 3x ,x ,x x x x y R , x x x R;y R x y R;0 x            

  II 01 1 01 01 2 01 3 3x x x b 2R ;y R x y R;0 x               

        2 2 2
1 2 3 1 01 2 01 01 1 01 01 2 01 3 3x ,x ,x x x x y R , x R x x ;y R x y R;0 x                  

        2 2 2
1 2 3 1 02 2 02 02 1 02 01 2 01 3 3x ,x ,x x x x y R , x x x R ;y R x y R;0 x                 

                                                                                                                                           (2) 

where  01 01x ,y  (  02 02x ,y ) is the center of the left (right) half circular arc of the first 

cavity near the left side of the plate and  01 01x ,y   (  02 02x ,y  ) is the center of the left 

(right) half circular arc of the second cavity near the right side of the plate. Suppose that 

at first, this plate is stretched (or compressed) by the uniformly distributed normal static 

forces with intensity q acting on the 1x 0  and 1 1x   planes (Fig. 2.b). Next, suppose 

that additional uniformly distributed dynamic (time-harmonic) normal forces with 

intensity p are applied on the plane 2x h . (Fig 2.c) These loading stages are shown in 

Fig. 2 schematically. Note that within this study our aim is to determine the effects of the 

initial stressed state on the stressed state caused by the additional force. Therefore, the 

superposition principle is not applicable. Assume that p ( q) . Henceforth all the 

quantities referring to the initial state will be labeled by the superscript (0) and the 

repeated indices in equations are summed over their ranges.  

 

(a) (b) (c) 

Figure 2: Loading of the considered rectangular plate including two equal cylindrical 

cavities 

According to the above discussion, to determine the initial stress-state, the following 

boundary-value problem can be solved. 

Equilibrium equations:  

(0)
ij

σ
0

xj





                                                                                                                          (3) 

Mechanical Relations:
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(0) (0)σ Dε ,    
T

(0) (0) (0) (0) (0) (0)(0)
11 22 33 23 13 12σ σ σ σ σ σσ ,

   
T

(0) (0) (0) (0) (0) (0)(0)
11 22 33 23 13 12ε ε ε ε ε εε                                                                              (4) 

Geometrical Relations:  

(0)(0)
j(0) i

ij
j i

uu1
ε

2 x x

   
  
 

                                                                                                  (5)

  
Boundary Conditions:

                                                 
1 1 3 3

(0) (0)
2 2

x 0; x 0;
u u 0

 
  , 

1 1

(0)
11

0;
 i

i
x

q  , 
2

(0)
2i

x 0;h
σ 0


 , 

3 3 3 3

(0) (0)
31 33

x 0; x 0;
σ σ 0

 
  , 

I

(0) (I)
ij j

S
σ n 0 , 

II

(0) (II)
ij j

S
σ n 0  i;j=1,2,3                        (6) 

In Eq. (6) IS  ( IIS ) shows the surface of the first (the second) cylindrical cavity and ( I )
jn

( ( II )
jn ) are the components of the unit’s outward normal vector to the surface IS  ( IIS ) in 

(6).  

To determine the stress-state caused by additional dynamic loading, the following 

boundary-value problem must be solved. 

TDLTEWISB equations of motion [Akbarov, Yahnioglu and Babuscu (2012), Guz 

(2004)]: 

 

2
(0) i i

ji in 2
j n

u u
σ σ ρ

x x t

  
  

    

                                                      (7) 

Mechanical relations  

σ Dε ,    
T

11 22 33 23 13 12      σ ,    
T

11 22 33 23 13 12 ,      ε                         (8) 

Geometrical relations:  

ji
ij

j i

uu1
ε

2 x x

 
  

   

                                                                                                          (9) 

Boundary conditions: 

1 1 3 3
2 2

x 0; x 0;
u u 0

 
  , 

1 1 1 1

(0) (0) 31
j1 1n j j3 3n j

n nx 0; x 0;

uu
σ σ n σ σ n 0

x x
 

   
      

    
,  

2

(0) iωtk
jk kn j

n x h

u
σ σ n pe

x


 
  

 
,  

2

(0) i
ji in j

n x 0

u
σ σ n 0

x


 
  

 
, 
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3 3 3 3

(0) (0) 31
j1 1n j j3 3n j

n nx 0; x 0;

uu
σ σ n σ σ n 0

x x
 

   
      

    
,  

(0) ( )
0

 
  

 
 

I

Ii
ji in j

n
S

u
n

x
  , (0) ( )

0
 

  
 
 

II

IIi
ji in j

n
S

u
n

x
    i;j;k=1,2,3.                      (10) 

In (7) - (10) conventional notation is used. It is assumed that the plate material is an 

orthotropic one with elastic symmetry axes 1Ox , 2Ox  and 3Ox . So matrix D in (4) and 

(8) is given as follows: 

11 12 13

12 22 23

13 23 33

44

55

66

0 0 0

0 0 0

0 0 0

0 0 0 2 0 0

0 0 0 0 2 0

0 0 0 0 0 2

A A A

A A A

A A A

A

A

A

 
 
 
  

  
 
 
 
  

D                                                      (11) 

where, according to [Christensen (1979)],                   

 

i j

ij

ij

nm

( 1) a
A

det a


 , 11

1

1
a

E
 , 12

12
2

ν
a

E


 , 13

13
3

ν
a

E


 , 23

23
3

ν
a

E


 , 

22
2

1
a

E
 , 33

3

1
a

E
 , ij jia a  ;  ij ijG μ  (for ji  ), i;j=1,2,3 .                                (12) 

In (12) 1,E 2E
 
and 3E  are the modules of elasticity of the plate material in the direction 

of the 1,Ox 2Ox  and 3Ox  axes, respectively, and 12 ,υ 13υ  and 23υ
 
are Poisson's ratios 

for this material. ,12G
 

,13G and ,23G
 
denote the shear modulus of the plate material in the 

1 2Ox x , 1 3Ox x
 
and 2 3Ox x

 
planes, respectively. Since the applied additional loading is 

time-harmonic and the steady state is considered, then all the dependent variables are also 

time-harmonic and can be represented as follows: 

   ij ij i ij ij iσ ,ε ,u σ , ε ,u exp(iωt)                                                                                    (13) 

where the quantities with over-bars denote the amplitude of the corresponding quantities. 

For simplicity, below it is omitted these over-bars. Substituting expression (13) into Eq. 

(7) - (10) and doing some manipulations, the following equation in terms of the 

amplitude of the corresponding quantities is obtained:  

(0) 2 0
 

   
  

i
ji iin

j n

u
u

x x
                                                                          (14) 

and the boundary condition in (10) at 2x h  is replaced with the following one: 
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2

0
2



 
  

 
 

( ) kk
jk jkn

n
x h

u
σ σ n pδ

x
                                                                                    (15) 

The other boundary conditions and relations are identically satisfied for the 

corresponding amplitude of the sought values. In (15), 
j

iδ  is the Kronecker symbol.  

Eventually, the investigation of the boundary value problem of the stress-state caused by 

additional dynamic loading is reduced to the solution of the boundary value problem 

given in Eqs. (8) - (10), (14) and (15). Note that the case where 0p  in (15) corresponds 

to the natural vibration problem of the plate under consideration. Thus, the mathematical 

formulation of the considered problem is fully defined. 

3 Solution method: finite element formulation 

The foregoing boundary value problems will be investigated by employing 3D FEM 

modeling. The displacement-based finite elements for the FEM modeling is used. It 

means that unknown values at each node of a finite element are selected displacements 

only [Zienkiewicz and Taylor (1989)].  For this purpose, for the FEM modeling of the 

boundary value problem in (3) - (6), the functional  

3 3

1 1 1

(0) (0) (0) (0) (0) (0)(0)
2 3 2 31 1

0
0 0 0 0

1 1

2 2  
 

           
q

h h

ij j i qij ij ij ij
x x

S

d n u dS d qu dx dx qu dx dx

 

       

(16) 

is introduced and for the FEM modeling of the problem (8) - (10), (14) and (15) the 

functional   

2

`

1

2

 
   

 
 

p

j
ij i j ij j i p

i S

u
T u u d T n u dS

x


                                                         (17) 

is introduced, where    is the solution domain determined by expressions (1) and (2). 

Moreover, in (17) the following notation is used: 

(0) 
 



i
ij ij ij

n

u
T

x
                                                                                                          (18) 

where 
(0)
ij

 
are the components of the initial stresses determined from the solution to the 

boundary value problem (3) - (6). For each functional, using the virtual work principle 

and employing the well-known Ritz technique, FEM modeling for each problem is 

obtained. Note that from the equations 
(0) 0  and 0 , i.e. from the first 

variations of these functionals, the governing equations and boundary conditions with 

respect to the stresses for the boundary value problems (3)-(6) and (8)-(10), (14) and (15) 

are obtained, respectively. In this way, the validity of the functionals (16) and (17) for the 

FEM modeling of the considered problems is proved. 
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Only one quarter of the region is considered under FEM modeling, since the problem is 

symmetric with respect to the 1 1x 2  and 3 3 2x  planes (Fig. 3). In this case, the 

surroundings of the cylindrical cavities are modeled by triangular prism finite elements. 

For the remaining part of the region not covered by the triangular prism finite elements, 

rectangular prism (brick) elements are used. Triangular prism finite elements have six 

corner nodes and rectangular prism (brick) finite elements have eight corner nodes. The 

selection of the number degrees of freedom (NDOF) is determined from the requirements 

that the boundary conditions should be satisfied with very high accuracy and the 

numerical results obtained for various NDOFs must converge. In accordance with the 

finite elements method, the solution domain   is divided into a finite number of finite 

elements as follows: 

1

 
M

k
k

                                                                                                                       (19) 

where k  shows the k-th finite element (Fig. 3).  

  

(a) (b) 

Figure 3: a) The finite elements mesh around the cylindrical cavity; 

b) The geometry of the brick and the triangular prism finite elements. 

For the solution to the considered boundary value problems, the functions of the 

displacements in each finite element are determined as polynomial functions in terms of 

shape functions and unknown values of the displacement at the nodes of that element.  

(k) (k) (k)u N a , k=1,2,…,M                                                                                         (20) 

where 

   
T

(k) k k k k k k k k k
11 21 31 12 22 32 1p 2p 3pa u ,u ,u ,u ,u ,u ...,u ,u ,u  ,      

  

k k k
1 2 p

T
k k k k

1 2 p

k k k
1 2 p

N 0 0 N 0 0 ... N 0 0

N 0 N 0 0 N 0 ... 0 N 0

0 0 N 0 0 N ... 0 0 N

 
 
 

  
 
 
 

,  

        321
k
3321

k
2321

k
1

T)( x,x,xu,x,x,xu,x,x,xuu k
.                                      (21) 
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In Eq. (21) p equals 8 (6) for a brick (a triangular prism) finite element. For the 

rectangular finite element, the second-order standard Lagrange-family shape functions 

are used at nodes in normalized coordinates [Zienkiewicz and Taylor (1989)]. For 

calculating the shape functions of triangular prism finite elements, triangular pyramids 

are used. For this purpose each triangular prism element divided into three triangular 

pyramidal elements (Fig. 4) 

 

 

Figure 4: Separation of triangular prism elements into triangular pyramidal finite 

elements  

Volume coordinates iL (i=1,2,3,4) with the help of a moving point  p x,y,z  in volume 

are determined for calculating the shape functions of triangular prism finite elements (Fig. 

5). 

 

Figure 5:  Triangular pyramidal finite elements 

,L)z,y,x(N
)k(

i
)k(

i 
)k(

)k(
i)k(

i
V

V
L                                                                                (22) 

In (22) (k)V shows the volume of the k-th tri-angular pyramidal elements. The relations 

between volume coordinates and Cartesian coordinates: 

4143132121111 LxLxLxLxx  ;  

4243232221122 LxLxLxLxx  ;  

4343332321313 LxLxLxLxx  ; 

4321 LLLL1                                                                                                    (23) 

Substituting Eq. (20) into Eq. (16) and Eq. (17), after some mathematical manipulations, 

finally yields the following system of algebraic equations are obtained as follows:  
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The system for the algebraic equation for the first boundary value problem ((3)-(6))  

(0) (0) (0)
K a  f                                                                                                                (24) 

and the system for the algebraic equation for the second boundary value problem ((8)-

(10), (14) and  (15)) 

 2
K M a  f                                                  (25) 

are obtained respectively, where 
(0)

K and K are the stiffness matrices, M is the mass 

matrix, 
(0)

a  and a are the vectors whose components are values of the unknown 

displacements at selected nodes, and  
0( )

f  and f  are the force vectors [Akbarov 

S.D.,Guz A.N. (2000), Zienkiewicz O.C., Taylor R.L. (1989)]. The values of these 

matrices for k-th finite element ( k ): 

 
k

T
(0) (k) (k)(k)

kijk j i
K B D B d



  ,  
i; j 1,2,...,p

k 1,2,...,M




                                                            (26) 

j j j

1 2 3

j j j(k)
j

2 1 3

j j j

3 2 1

N N N
0 0 0

x x x

N N N
B 0 0 0

x x x

N N N
0 0 0

x x x

   
 
   

   
 

   
 

   
    

, j=1,2,…,p                                        (27) 

k

(1) T
j i kijk

M N N d



                                                                                                       (28) 

The solutions to Eqs. (24) and (25) give the values of the displacements at each node. 

However, equation (25) includes the values of the stresses obtained from the solution to 

the first boundary value problem. So, before finding the solution to Eq. (25), the 

distribution of the stresses for the first boundary value problem should be found. Using 

the solution to Eq. (24) and Hooke’s Law, they are obtained. Furthermore, the 

fundamental frequency of the considered plate can be determined from equation: 

2det 0K M                                                                                                             (29) 

Note that the same number of finite elements is taken and the same arrangements are 

used for the FEM modeling in obtaining the numerical solutions of the considered 

problems. The normalized coordinates for the brick finite elements and Gauss quadrature 

method are used for the calculation of the numerical integrals with ten sample points in 

each finite element. Volume coordinate for the triangular prism finite elements is used 

and numerical integrals are calculated with formula (30) for triangular pyramidal finite 

elements [Zienkiewicz and Taylor (1989)]. 
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 


V

d
4

c
3

b
2

a
1 V6

)!3dcba(

!d!c!b!a
dxdydzLLLL                                                          (30) 

In (30), iL (i=1,2,3,4) are the components of volume coordinates, (a,b,c,d) are the degree 

of these components and V is the volume of the pyramidal elements  

Thus, the discussion above completes consideration of the FEM modeling of the 

formulated problem.  

4   Numerical results and discussions 

The primary focus of the present study analyzes the effect of the initial stresses and the 

effect of the interaction between two cylindrical cavities on the natural and forced 

vibration of an orthotropic rectangular plate. Numerical results are presented for 

orthotropic composite rectangular plates with two neighboring cylindrical cavities. The 

material properties of the considered plate are represented by the parameters 

1 2 3 12 13 23 12 13, , , , , , ,E E E G G G   and 23  Here, the symbols ,i ijE G  and ij  (i=1,2,3) 

represent the modulus of elasticity, Shear modulus and Poisson's ratio of the considered 

material, respectively.  

Since the considered boundary value problems and the solution domain (1) have symmetry 

with respect to the 1 1 2x   and 3 3 2x   planes, these symmetry conditions permit us 

to make finite element modeling in a quarter of the plate (see Fig. 1). This part of the 

plate (solution domain) is divided into 30, 12 and 30 brick elements along the direction of 

the 
1Ox , 

2Ox  and 
3Ox  axes respectively, but 32 triangular prism finite elements are 

used around the single cavity in a layer. Hence, 10200 brick and 960 triangular prism 

finite elements, 13082 nodes and 37596 NDOFs have been used in total for the FEM 

modeling. Note that all the algorithms and programs required for the numerical solutions 

of the considered boundary value problems using the finite element method are 

implemented in a FORTRAN code composed by the author.  

The dimensionless parameter of frequency 
2  (

2
1 22A  ) is introduced, through which 

the frequency of the additional external forces is estimated. It is characterized the intensity of 

the initial forces through the parameter 1q E  and analyze the concentration of the stresses 

around the cylindrical cavities in the cylindrical coordinate system 3'O r x 
 
(Fig. 1).  

In order to see the validity of the algorithm and programs which are composed by the author, 

first, the values of the fundamental natural frequencies (
2
cr ) for the whole plate (i.e. the 

plate without cavities) are calculated. Assume that the plate material consists of alternating 

two isotropic layers with mechanical constants kE (Young’s modulus) and k  (Poisson’s 

ratio) ( 1,2k  ) [Akbarov (2000)]. According to the well-known mechanical consideration, 

the values of 
2
cr  must approach the corresponding ones obtained for the plane-strain state i.e. 

with 3 1 . This prediction is proven by the data given in Table 1 which shows the values of 
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the fundamental frequency obtained for various 3 1 . It follows from this table that the 

values of 
2
cr  decreases with 3 1  and approach the corresponding values given in 

[Akbarov (2000)] obtained in the plane strain-state. 

Table 1: The effect of 3 1  on 
2
cr  for the transversally isotropic rectangular plate 

without a cylindrical cavity where 1 0q E  , 1/ 0.10h   and 1 2 0.3   . [Akbarov 

S.D., Yahnioglu N., Babuscu Yesil U. (2012), Akbarov S.D., Yahnioglu N., Babuscu 

Yesil U. (2012)] 

 

2 1E E  

3 1   

Akbarov and Guz  

(2000) 1 2 3 4 

1 0.23 0.09 0.08 0.07 0.06 

10 0.56 0.24 0.21 0.19 - 

20 0.93 0.41 0.35 0.33 0.31 

50 1.92 0.80 0.70 0.67 0.62 

Table 2 and Table 3 show the effect of the parameter b/R which characterizes the volume 

of the cylindrical cavities, and initial stretching force ( 1q E ) on 
2
cr

 
for transversely 

isotropic and orthotropic plates, respectively. If the values of the parameter b/R decreases, 

i.e. if the total volume of the cavities decreases, the values of 
2
cr

 
approach a certain 

asymptote. The value of this asymptote is the value of 
2
cr

 
for the corresponding plate 

without cavities [Akbarov (2000)]. In this way, the validity and reliability of the 

algorithm and programs used are also proved. 

Unless otherwise specified, we assume that 12 13 23 0.3     , 1/ 0.10h  , 

1 0.00833R  , and 3 1 31 1   for obtaining the following numerical results. The 

values of the other parameters are given in the tables or in the figures. 

Table 2: The effect of  b/R on 
2
cr  for a transversely isotropic plate with two cylindrical 

cavities in the case where 1/ 0.10h  , 31 3 1γ / 1 
 
, / / 5,A Uh R h R   R h /12 , 

υ 0.3  and c/ R 11  [Akbarov S.D., Yahnioglu N., Babuscu Yesil U. (2012), Akbarov 

S.D., Yahnioglu N., Babuscu Yesil U. (2012)]. 

1q E  2 1E E  
b/R 

22.00 15.00 13.00 6.25 0 

0 
1 0.271 0.259 0.249 0.239 0.238 

10 0.634 0.607 0.586 0.567 0.566 

0.001 1 0.285 0.274 0.263 0.250 0.245 
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10 0.643 0.617 0.594 0.572 0.570 

0.005 
1 0.339 0.334 0.317 0.297 0.274 

10 0.680 0.654 0.628 0.598 0.586 

Table 3: The effect of  b/R on 
2
cr  for an orthotropic plate with two cylindrical cavities in 

the case where 1/ 0.10h  , c/R 7.75 , 31 3 1/ 1   , / / 5,A Uh R h R   R h /12 ,

12 13 23υ υ υ 0.3   , 2 1 3 1/ / 0.5E E E E   and 12 1 13 1 23 1/ / / 0.1.G E G E G E    

1q E  
b/R 

22.00 13.00 8.50 6.25 0.00 

0 0.279 0.230 0.220 0.219 0.218 

0.005 0.372 0.333 0.319 0.280 0.272 

0.010 0.459 0.410 0.394 0.353 0.325 

Table 4: The effect of c/R on 
2
cr  for an orthotropic plate with two cylindrical cavities in the 

case where / / 5,A Uh R h R  12 1 13 1 23 1/ / / 0.1G E G E G E   , 2 1 3 1/ / 0.5E E E E   

and b/ R 22.00.   

1q E  

c/R 

A centered 

Single Cavity 
3.25 5.50 7.75 14.50 21.25 

0 0.186 0.246 0.252 0.279 0.307 0.347 

0.005 0.258 0.353 0.358 0.372 0.402 0.441 

0.010 0.327 0.435 0.439 0.459 0.492 0.531 

The values given in Table 4 show the effect of the interaction between the cavities, i.e., the 

effect of the parameter c/R on 2
cr  where 5U Ah R h R  , 12 1 13 1 23 1/ / / 0.1G E G E G E   , 

2 1 3 1/ / 0.5E E E E   and b/ R 22.00.  It is concluded that when two cavities are close to 

each other, the fundamental natural frequencies decrease. Table 4 also shows that the initial 

stretching force causes an increase in the values of 
2
cr . In Table 5, the values of 

2
cr  are 

given for the various values of 2 1/E E  and 3 1/E E  for the case where 

12 1 13 1 23 1/ / / 0.1G E G E G E   , 5U Ah R h R  , b/R 22.00.  and  / 7.75c R  . It 

can be concluded that the values of 
2
cr  increases with 3 1/E E , but the values of 

2
cr  

decreases with 2 1/E E  .The values in Table 5 also show that under the considered case, the 

values of 2 1/E E
  have a greater effect on the values of 

2
cr  than that of 2 1/E E  .  
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Table 5: The effect of  3 1/E E  and 2 1/E E  on 
2
cr  for  / / 5,A Uh R h R   b/ R 22.00.

 
/ 7.75c R   and 12 1 13 1 23 1/ / / 0.1G E G E G E   . 

1q E  

3 1/E E  

0.3 0.5 

2 1/E E  

0.3 0.5 0.3 0.5 

0 0.178 0.0154 0.379 0.279 

0.005 0.234 0.203 0.501 0.372 

0.010 0.285 0.249 0.613 0.459 

Table 6: The effect of the shear modulus (
1/ijG E ) on 

2
cr

 
for 2 1 3 1/ / 0.5E E E E  , 

/ / 5,A Uh R h R 
 

/ 22.00b R   and c/ R 7.75 . 

1q E  

13 1/ 0.1G E   

23 1/ 0.1G E   

12 1/ 0.1G E   

23 1/ 0.1G E   

13 1/ 0.1G E   

12 1/ 0.1G E   

12 1/G E  13 1/G E  23 1/G E  

0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01 

0 0.279 0.225 0.120 0.279 0.248 0.206 0.279 0.268 0.250 

0.005 0.372 0.333 0.213 0.372 0.343 0.287 0.372 0.376 0.402 

0.010 0.459 0.419 0.295 0.459 0.414 0.345 0.459 0.479 0.533 

In Table 6 the values of 
2
cr  are given for the various shear moduli i.e. for various 

1/ijG E  

for the case where 2 1 3 1/ / 0.5E E E E  , / / 5,A Uh R h R   / 22.00b R   and 

c/ R 7.75 . The numerical results in this table show that the values of 
2
cr  are influenced 

more by the values of 12 1/G E  (the shear modulus of the plate material in the plane 1 2Ox x ) 

than those of the other shear moduli: 13 1/G E  (the shear modulus of the plate material in the 

plane 1 3Ox x ) and 23 1/G E  (the shear modulus of the plate material in the plane 2 3Ox x ) and 

decreases with a decrease in the shear modulus 
1/ijG E .  

Two types of initial forces, i.e. an initial stretching ( 1 0q E  ) and an initial compressing 

( 1 0q E  ) force are considered in the numerical calculation. In Table 7 the values of 
2
cr  are 

given for various values of the initial forces. It can be concluded that the values of 
2
cr  

increases (decreases) with the initial stretching (compressing) forces. 

 



 

 

Forced and Natural Vibrations                                                                                          15 

 

 

Table 7: The effect of the initial stresses ( 1q E ) on 
2
cr  for  2 1 3 1/ / 0.5E E E E  , 

/ / 5,A Uh R h R   12 1 13 1 23 1/ / / 0.1G E G E G E   ,  / 22.00b R   and c/ R 7.75 . 

1q E  0.010 0.005 0.001 0.000 -0.001 -0.005 -0.010 

2
cr  0.459 0.372 0.298 0.279 0.260 0.181 0.077 

Table 8: The effect of Uh R  on 
2
cr  for various 1q E  in the case where 

2 1 3 1/ / 0.5E E E E  ,  12 1 13 1 23 1/ / / 0.1G E G E G E   ,  / 22.00b R   and c/ R 7.75 . 

1q E  
Uh R  

5 4 3 2 

0 0.279 0.278 0.274 0.266 

0.005 0.372 0.345 0.311 0.260 

0.010 0.459 0.406 0.342 0.248 

In Table 8 the effect of the values of Uh R
 
on 

2
cr  for various 1q E  under 

2 1 3 1/ / 0.5E E E E  , 12 1 13 1 23 1/ / / 0.1G E G E G E   , / 22.00b R   and c/ R 7.75  

are given. Note that the ratio Uh R
 
characterizes the distance between the upper surface 

of the cavities and the upper face plane of the considered plate. It can be concluded that 

the values of 
2
cr  decreases with a decrease in the values of Uh R . 

Table 9: Influence of the parameter   obtained for various initial forces on the 

fundamental frequencies for 2 1 3 1/ / 0.5E E E E  ,  12 1 13 1 23 1/ / / 0.1G E G E G E   ,  

/ 22.00b R   and c/ R 7.75 .  

1q E  
(%) 

0.010 64 

0.005 33 

0.001 7 

-0.001 -7 

-0.005 -35 

-0.010 -72 

Table 9 illustrates the values of the parameter 
1 1

1

2 2

cr.(q E 0) cr.(q E 0)

2

cr.(q E 0)

ω ω
( 100)

ω

 




   where 

1

2

cr.(q E 0)ω  (
1

2

cr.(q E 0)ω  ) indicates the value of the fundamental frequency for the case where 

1q E 0
 
( 1q E 0 ). Note that the parameter   shows the degree of the influence of the 

initial force ( 1q E ) on the fundamental frequencies. According to the data given in Table 
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9, a conclusion can be drawn on the amount of change in the values of the fundamental 

frequencies caused by the initial loading. 

Fig. 6 shows the influence of the initial force ( 1q E ) on the values of p  calculated 

for the case where / 22.00b R  , c/ R 7.75 , / / 5,A Uh R h R   2 1 3 1/ / 0.5E E E E  ,
 

12 1 13 1 23 1/ / / 0.1G E G E G E    and 2 0 16ω .  for an orthotropic plate. It follows from 

these graphs that the initial compressive force has a much greater effect on the values of 

the stresses than the corresponding values of the initial stretching force. It is also 

concluded that an increase in the absolute values of 1q E  under initial tension 

(compression) causes a decrease (an increase) in the absolute local maximum values of 

the stress p . 

 

Figure 6: The distribution of p  with respect to   under various initial forces 1q E                                                                                                                                                                                                                                                                                                                                                                     

in the case where / 22.00b R  , c/ R 7.75 , / / 5,A Uh R h R   

5.01312  EEEE ,
 

1.0123113112  EGEGEG  and 
2 0 16ω . .  

 

Fig. 7 shows the influence of the distance between the cavities along the 1Ox  axis i.e. the 

influence of the parameter /c R  on the values of p  under 
1

/ 0.10,h   

/ / 5,A Uh R h R  / 22.00b R  , 5.01312  EEEE ,
3

1/ 8.333*10 ,R 

1.0123113112  EGEGEG  and 2 0 16ω .  for an orthotropic plate. It follows 

from the graphs that in the considered case the absolute values of p  decreases 

monotonically with the distance between the cavities for 1/ 0.005q E 
 
but increases 

slightly with the distance between the cavities for 1/ 0q E  . 
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(a) 

 

                            (b) 

Figure 7: The distribution of p  with respect to   under various distances 

between the cavities ( /c R ) for 1/ 0q E   (a) and 1/ 0.005q E   (b) in the case where 

 / 22.00b R  , / / 5,A Uh R h R  2 1 3 1 0.5E E E E  , 

1.0123113112  EGEGEG , and 2 0 16ω . . 

Fig. 8 shows the influence of the dimensionless frequency 
2  on the values of p  in the 

case where 12 1 13 1 23 1 0.1G E G E G E   , 2 1 3 1 0.5E E E E  , / / 5,A Uh R h R   

/ 22.00b R   and c/ R 7.75 . It follows from the graphs that the absolute values of p  

increases monotonically with 
2  for the cases where 1/ 0q E   and

 1/ 0q E  . 

 

(a) 

 

(b) 

Figure 8: The influence of 
2  on the values of p  with respect to   a) for 1/ 0q E   

and b) for 1/ 0.005q E   in the case where / 22.00b R  ; / 7.75c R  , 5U Ah R h R  , 

2 1 3 1 0.5;E E E E   12 1 13 1 23 1 0.1G E G E G E    and 31 3 1/ 1   . 

Fig. 9 shows the influence of 2 1E E  on the values of p  for / 22.00b R  , 
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/ / 5,A Uh R h R   c/ R 7.75 , 12 1 13 1 23 1G E G E G E 0.1   , 3 1 0.5E E   and 

2 0 16ω . .  It follows from the graphs that the absolute values of p  decreases 

monotonically with 2 1E E
 for both cases  where 1/ 0q E   and

 1/ 0q E  .  

 

(a) 

 

(b) 

Figure 9: The influence of 2 1/E E  on the values of p   for 1/ 0q E  (a) and 

1/ 0.005q E   (b) in the case where / 22.00b R  ; 5U Ah R h R  , / 7.75c R  , 
2 0 16ω . , 12 1 13 1 23 1 0.1G E G E G E   and 3 1/ 0.5.E E 

 

         

 

(a) 

               

 

(b) 

Figure 10:  The influence of 12 1G E  on the values of p   for 1/ 0q E   (a) and  

1/ 0.005q E   (b) in the case where / 22.00b R  ; 5U Ah R h R  , / 7.75c R  , 
2 0 16ω . ,  2 1 3 1 0.5E E E E   and 13 1 23 1 0.1G E G E  . 

Fig. 10 shows the influence of 12 1G E  on the values of p  in the case where 
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/ 22.00b R  , 5U Ah R h R  , / 7.75c R  , 
2 0 16ω . ,  2 1 3 1 0.5E E E E   and 

13 1 23 1 0.1G E G E  . It follows from the graphs that the absolute values of p  

decreases monotonically with  12 1G E
 for both cases where 1/ 0q E   and 1/ 0q E  . 

Fig. 11 shows the influence of the position of the cavities ( /Uh R ) along the 2Ox  axis on 

the values of p  for the case where / 22.00b R  ; A Uh h h 2R   ; / 7.75,c R   

2 1 3 1 0.5;E E E E 
 12 1 13 1 23 1 0.1.G E G E G E  

 
and 

2 0 16ω . . It follows from 

the graphs that the absolute values of p  increases monotonically with a decrease in 

the values of /Uh R , for the cases where 1/ 0q E   and 1/ 0q E  . 

 

Figure 11: The distribution of p  with respect to    under various thicknesses between 

the upper plane of the cavities and upper face-plane of the plate, i.e. /Uh R  in the case where

/ 22.00b R  , 5,U Ah R h R  / 7.75,c R  2 0 16ω . ,  2 1 3 1 0.5;E E E E 
 
and 

12 1 13 1 23 1 0.1.G E G E G E    

Fig. 12 shows the influence of 31 3 1/γ   on the values of p  for the case where 

1/ 0q E   and 
2 0 08ω .  (a) and 1/ 0.005q E   and 

2 0.16ω   (b), respectively. It 

follows from the graphs that the absolute values of p  increases monotonically with 

31 3 1/γ   for the cases where 1/ 0q E 
 
 and 1/ 0q E   and approach their limit values, 

i.e. the values determined from the corresponding boundary-value problem in the plane-

strain state. These results also confirm the reliability of the algorithm and the PC 

programs composed and used by the author for determination of the numerical solutions.   
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(a)             (b) 

Figure 12: The distribution of p  with respect to   under various 31 3 1/γ   for 

1/ 0q E   and 
2 0 08ω .  (a) and 1/ 0.005q E   and 

2 0.16ω   (b) in the case where 

/ 22.00b R  , 5U Ah R h R  , 2 1 3 1 0.5;E E E E   12 1 13 1 23 1 0.1G E G E G E    

and / 7.75.c R   

5   Conclusions 

Thus, in the present paper, within the scope of the Three-Dimensional Linearized Theory of 

Elastic Waves in Initially Stressed Bodies (TDLTEWISB), natural and forced vibration of a 

rectangular pre-stressed plate containing two neighboring equal parallel cylindrical 

cavities (lying width-wise in the plate) whose cross sections are rectangular with 

rounded-off corners has been investigated. It was assumed that the material of the plate is 

orthotropic. The investigations were carried out by employing 3D FEM modeling. First, 

the initial stress state caused by uniform stretching forces acting on two end planes of the 

plate was determined using the linear theory of elasticity. Next, the stress state caused by 

time–harmonic forces acting on the upper free face plane of the plate was determined. All 

the end surfaces of the plate are simply supported. Numerical results on the dynamical 

stress concentrations around the holes and the influence of the orthotropic material 

properties and the influence of initial stretching on these concentrations, as well as 

interaction between the holes were presented and compared with the corresponding 

numerical results for transversely isotropic plate with two cylindrical cavities and for a 

plate without holes. 

From the numerical results obtained, the following inferences can be drawn: 

 The values of the fundamental frequency 
2
cr  approximate a certain asymptote with 

a decrease in the total volume of the cavities i.e. with a decrease in the ratio  

of  b / R.  

 The values of the fundamental frequency 
2
cr  increases with the distance between 

the cavities. 
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 The values of 
2
cr  are more influenced by the values of 12 1/G E  than those of the 

other shear moduli 13 1/G E  and 23 1/G E , and decreases with a decrease in the shear 

modulus ij 1G E . 

 The values of the fundamental frequency 
2
cr  increases (decreases) with the initial 

stretching (compressing) force i.e. with values of 1q E .  

 The values of the fundamental frequency 
2
cr

 
decreases as the cavities approach the 

upper free face plane of the plate i.e. with a decrease in the values of Uh R. 

 The dynamic (time harmonic) stress concentration of θθσ / p  around the cavities 

decreases (increases) with the initial stretching (compressing) of the plate. 

 The dynamic stress concentration of θθσ / p
 
decreases monotonically with the 

distance between the cavities for 1(q / E 0.005)  but increases slightly with the 

distance between the cavities for 1(q / E 0) . 

 An increase in the values of the frequency of the external forces causes an increase in 

the values of the dynamic stress concentration of  θθσ / p . 

 The dynamic stress concentration of  θθσ / p  around the cavities decreases with the 

parameters 2 1E / E . 

 The dynamic stress concentration of  θθσ / p  around the cavities decrease with the 

parameters 12 1G / E . 

 The dynamic stress concentration of θθσ / p  around the cavities increases 

monotonically with  31 3 1/γ   and approaches a certain limit value, i.e. the value 

which is determined from the corresponding boundary-value problem in the plane-

strain state. 
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