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Rotational Effects on Magneto-Thermoelastic Stoneley, Love and 
Rayleigh Waves in Fibre-Reinforced Anisotropic General 

Viscoelastic Media of Higher Order 

A. M. Abd-Alla1, 2 , S. M. Abo-Dahab1, 3 and Aftab Khan4 

Abstract: In this paper, we investigated the propagation of magneto-thermoelastic surface 
waves in fibre-reinforced anisotropic general viscoelastic media of higher order ofnth order, 
including time rate of strain under the influence of rotation and magnetic field.The general 
surface wave speed is derived to study the effects of rotation, magnetic field and thermal on 
surface waves. Particular cases for Stoneley, Love and Rayleigh waves are discussed. The 
results obtained in this investigation are more general in the sense that some earlier published 
results are obtained from our result as special cases. Our results for viscoelastic of order zero 
are well agreed to fibre-reinforced materials. Comparison was made with the results obtained 
in the presence and absence of rotation, magnetic field and parameters for fibre-reinforced of 
the material medium. It is also observed that, surface waves cannot propagate in a fast rotating 
medium. Numerical results for particular materials are given and illustrated graphically. The 
results indicate that the effect of rotation, magnetic field on fibre-reinforced anisotropic general 
viscoelastic media are very pronounced. 

Keywords: Fibre-reinforced, viscoelastic, surface waves, rotation, anisotropic, thermoelastic, 
magnetic.  

1 Introduction 

These problems are based on the more realistic elastic model since thermoelastic waves 
are propagating on the surface of earth, moon and other planets which are rotating about 
an axis. Schoenberg and Censor (1973) were the first to study the propagation of plane 
harmonic waves in a rotating elastic medium where it is shown that the elastic medium 
becomes dispersive and anisotropic due to rotation. Later on, many researchers 
introduced rotation in different theories of thermoelasticity. Agarwal (1979) studied 
thermo-elastic plane wave propagation in an infinite non-rotating medium. The normal 
mode analysis was used to obtain the exact expression for the temperature distribution, 
the thermal stresses and the displacement components. The purpose of the present work is 
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to show the thermal and rotational effects on the surface waves.Surface waves have been 
well recognized in the study of earthquake, seismology, geophysics and Geodynamics. A 
good amount of literaturefor surface waves is available [Bullen (1965), Ewing and 
Jardetzky (1957), Rayleigh (1885), Stoneley (1924)]. Acharya and Singupta (1978), Pal 
and Sengupta (1987), Sengupta and Nath (2001) and his research collaborators have 
studied surface waves. These waves usually have greater amplitudes ascompared with 
body waves and travel more slowly than body waves. There are  
many types of surface waves but we only discussed Stoneley, Love andRayleigh waves. 
Earthquakeradiate seismic energy as both body and surface waves. These are also used for 
detecting cracks and other defects in materials. The idea of continuous self-reinforcement at 
every point of an elastic solid was introduced by Belfield et al. (1983). The superiority of 
fibre-reinforced composite materials over other structural materials attracted many authors to 
study different types of problems in this field. Fibre-reinforced composite structures are 
used due to their low weight and high strength. Two important components, namely 
concrete and steel of a reinforced medium are bound together as a single unit so that there 
can be no relative displacement between them i.e. they act together as a single anisotropic 
unit. The artificial structures on the surface of the earth are excited during an earthquake, 
which give rise to violent vibrations in some cases [Acharya (2009); Samaland and 
Chattaraj (3011)]. Engineers and architects are in search of such reinforced elastic 
materials for the structures that resist the oscillatory vibration. The propagation of waves 
depends upon the ground vibration and the physical properties of the material structure. 
Surface wave propagation in fiber reinforced media was discussed by various authors 
[Sing (2006); Kakar et al. (2013)]. Abd-Alla et al. (2012) investigated the transient coupled 
thermoelasticity of an annular fin.Reflection of quasi-P and quasi-SV waves at the free and 
rigid boundaries of a fibre-reinforced medium was also discussed by Chattopadhyay et 
al.(2012). Abd-Alla and Mahmoud (2011) investigated the magneto-thermoelastic problem in 
rotating non-homogeneous orthotropic hollow cylinder under the hyperbolic, heat 
conduction model.The extensive literature on the topic is now available and we can only 
mention a few recent interesting investigations [Singh and Singh (2004); Abd-Alla 
(2013); Singh (2007); Abd-Alla (2011); Abo-Dahab et al. (2016), Alla et al. (2015); 
Kumar et al. (2016); Said and Othman (2016); Bakora and Tounsi (2015)]. The 
temperature-rate dependent theory of thermoelasticity, which takes into account two 
relaxation times, was developed by Green and Lindsay (1972); Kumar et al. (2016) 
investigated the thermomechanical interaction transversely isotropic magnetothermoelastic 
medium with vacuum and with and without energy dissipation with the combined effects 
of rotation. Marin (1996) studied the Lagrange identity method in thermoelasticity of 
bodies with microstructure. Marin (1995) presented the existence and uniqueness in thermoelasticity 
of micropolar bodies. Marin and Marinescu (1998) investigated the thermoelasticity of initially 
stressed bodies. Asymptotic equipartition of energies.  
The aim of this paper is to investigate the propagation of magneto-thermoelastic surface 
waves in a rotating fibre-reinforced viscoelastic anisotropic media of higher order. The 
general surface wave speed is derived to study the effect of rotation, magnetic field and 
thermal on surface waves. 
The wave velocity equations have been obtained for Stoneley waves, Rayleigh waves and 
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Love waves, and are in well agreement with the corresponding classical result in the absence 
of viscosity, temperature, rotation as well as homogeneity of the material medium.The results 
obtained in this investigation are more general in the sense that some earlier published results 
are obtained from our result as special cases. For order zero our results are well agreedto 
fibre-reinforced materials. It is also observed that the corresponding classical gcresults follow 
from this analysis, in viscoelastic media of order zero, by neglecting reinforced parameters, 
rotational and thermal effects. Numerical results are given and illustrated graphically. It is 
important to note that Love wave remains unaffected by thermal, magnetic field and 
rotational effects. 

2 Formulation of the problem 

The constitutive relation of an anisotropic and elastic solid is expressed by the 
generalized Hooke’s law, which can be written as 

ij ijkl klCτ ε= ,   i, j, k, l=1, 2, 3.                             (1) 
Let To be the reference temperature at which the system is in equilibrium and let it be 
subjected to a temperature change T - oT  where 0 0T T T− << . Thus the coupled 
thermoelastic equations for the material may be written as Kakar et al. (2013). 

– ( )1  ij ijkl kl ij o oC T T
t

ε βt ν ∂
= + − 

 
 ∂

          (2)

 
2

2ij v o o ij ij
i j

T ρc T T β ε
x x t t t
∂ ∂ ∂ ∂ ∂κ t
∂ ∂ ∂ ∂ ∂

     = + +          
             (3)  

The thermal constant oν and oτ appearing in the above equations satisfy the inequalities 

oν ≥ oτ ≥0. It is evident that if oτ >0, consequently oν >0, the Eq. (3) predicts a finite 

speed of propagation of thermal signals and that if oν = oτ =0, the Eq. (2) and (3) reduce 

to the coupled theory. The assumption oτ =0 and oν >0 is also a valid one; in this case 
the equation of motion continues to be affected by the temperature rate, while Eq. (3) 
predicts an infinite speed for the propagation of heat. 

In Eq. (3) we have made use of the condition - oT T << oT  to replace T by oT in the 

last term of Eq. (3). The ijκ  is the conductivity tensor, cν is the specific heat at constant 

deformation, βij are the thermal moduli, σij are the Cartesian components of the stress and 
ε kl is the strain tensor which is related with the displacement vector, ui, Cijkl are the 
components of a fourth-order tensor called the elasticities of the medium. The Einstein 
convention for repeated indices is used.  
For a homogeneous elastic body equation of motion may be taken as follows 
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, , ,– )  (1 ij j ijkl kl j ij o jC T
t

t ε β ν ∂
= +

∂       
        (3a)  

where the comma denotes differentiation with respect to the appropriate component of x . 
If a body is rotating about an axis with a constant angular velocity Ω in the presence of 
externally applied force F , then equation of motion can be written as follows [(Abd-Alla 
et al. (2013)]. 

{ }2
, 2ij j i i j j i i ijk j kF u u u uτ ρ ε+ = +Ω Ω −Ω + Ω 

                       (4)
 

For a slowly moving electrically conducting homogeneous elastic medium in which the 
variation of magnetic and electric fields is given by Maxwell’s equations as follows:  

( ) ( )
0 0

00 0

E H

u J H , curl(u H )

curlH J , curlE , divH 0, divE 0,

E H , F b
ε µ

µ µ= × = ×

= + = − = =

= − ×

 



     

(4a)  

where  0 0 0( )H H H 0 0 Hb x, y,z, t , ( , , )= + =  

E is electric intensity, F is Lorentz’s body forces, u is the velocity vector, b is 
perturbed magnetic field, H is magnetic field vector, 0H is primary constant magnetic 

field vector, 0H is the absolute magnetic field, J is an electric current density vector, 

and 0µ is magnetic permeability, 0ε is the electric permeability. 

Then magnetic force is defined as follows[13] 

2
0 0 0 0 1 0 0 2 , , 0e eF H u u

x y
µ e µ e µ

 ∂ ∂
= − − ∂ ∂ 



  , ( )( )= 0 , 0,-eb x, y,z,t  

where 1 2u ue
x y

∂ ∂
= +
∂ ∂                                                   (5a)

  

In an incompressible material 0e = , here ijkε is the Levi-Civita tensor, by using (4), the 
equation of motin in a thermoelastic medium becomes 

{ },
2

,2 (1 )i iijkl k jl ij j i i ijk j k j o jF u u uC u
t

u Tρ ε β ν+ = +
∂

+
∂

Ω Ω −Ω + Ω +   (5b) 

In isotropic medium ij ijκ κδ=  and ij ijβ βδ= , β is the coefficient of linear thermal 
expansion andκ is the thermal conductivity of the medium. Thus Above equation 
becomes  
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{ }, ,
2(1 ) 2i i i j j i i ijijkl k j o k kl jF u u uu uC T

t
ρ εβ ν ∂

+
∂

+ − = +Ω Ω −Ω + Ω   (5c) 

Medium is consisting of two homogeneous anisotropic fibre-reinforced semi-infinite 
elastic solid media M and M1 with different elastic and reinforcement parameters. The 
two media are perfectly welded in contact at a plane interface. Let us take orthogonal 
Cartesian axes 1 2 3Ox x x with the origin at O . 2Ox is pointing vertically upwards into the 
medium M( 2x >0). Each of the media M( 2x >0) and M1 ( 2x <0) separated at 2x =0. Both 
media are rotating about an axis. 
It is assumed that the waves travel in the positive direction of the x1-axis and at any 
instant, all particles have equal displacements in any direction parallel to Ox3. In view of 
those assumptions, the propagation of waves will be independent of x3.   
The general equation for a fibre-reinforced linearly elastic anisotropic media w. r. t. a 
direction 1 2 3( , , )a a a a= .  

)2 ( 2( )( ) ( ),
T L Tkl kk ij ij k m km ij kk i jijkl i k kj j k ki k m km i jD D D a a a a D D a a a a D a aC a al m a mm  βε ε δ ε ε δ ε ε ε ε+= + + + − + +

(6) 

Strain tensor is 1
, ,2 ( )ij i j j iu uε = + and D ,

T
Dλ µ are elastic parameters. ,Dα Dβ and 

(D )
L T

Dµ µ− are reinforced anisotropic viscoelastic parameters of higher order, s ,  

defined as 
k k

k kD D
t tλ µλ µ∂ ∂   = =   ∂ ∂   

 

L k

k k

k LD D
t tα µα µ∂ ∂   = =   ∂ ∂   

 

T k

k k

k TD D
t tβ µβ µ∂ ∂   = =   ∂ ∂   

 

0,1, 2... .k s=  
An Einstein summation convention for repeated indices upon “k” is used and comma 
followed by an index denotes the derivative with respect to coordinate. 

iu are the displacement vectors components. By choosing the fibre direction as (1,0,0)a = , 
the components of stress becomes as follows 
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∂
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=
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+ −
∂
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∂
∂

23.Tµ ε

By using strain tensor, we get 

11 1,1 2,2 3,3(D 2 4 2 –) (D ) (D ) (1 )( )
L T o oD D D D u T T

t
D u D uλα  µ µ β λαλα    νt β−

∂
+ −

∂
= + + + + + + +

11,1 1,11 2,11

12,2 1,22 2,2

,1

1

13,3

–(D 2 4 2 ) (D ) (1 )

( ),

0.

L T

T

oD D D D u D u

D u u

T
tλα  µ µ β λα

µ

βt

t

t

ν−= + + +

+

++

=

∂

=

∂
+

  (7)
It is assumed that body is rotating about z-axis with an angular frequency Ω  i.e. 

(0,0,1)= ΩΩ and by choosing the fibre direction as (1,0,0)a = , Also by taking all 
derivatives w.r.t. 3x zero. The equations (6) of motion takes the following form 

2 2
0 0 1,11 0 0 2,21 1,22

2 2 2
0 0 0 1 1 ,2 1

(D 2 4 2 ) (D )

( ) { 2 } (1 )

LL T L

o

D D D D H u D D H u D u

H u u u T
t

λα  µ µ β αλ  µ µµ µ

ρ β νε µ

+ + − + + + + + + + =

+ − Ω + Ω
∂

+
∂

+ 

(8) 
2 2

0 0 1,12 2,11 0 0 2,22

2 2 2
0 0 0 2 2 1 ,2

(D ) ( 2 )

( ) { 2 } (1 )

k L L k T

o

D D H u D u D D H u

H u Tu u
t

αλ  µ µ λ µµ

β

µ

ρ ε µ ν

+ + + + + +

∂

+ =

+ − Ω − Ω + +
∂

 

(9) 

T3,11 3,22 3(D D ) ,
L

u u uµ µ ρ+ =  (10) 
From Eq. (2), we have 

2

, ,2ii v o o i iT ρc T T β u
t t t
∂ ∂ ∂κ t
∂ ∂ ∂

   = + +   
         (11)

Similarly, we can get similar relations in 1M with , , , , vcρ α β κ ,D ,Dαλ  ,
L

Dµ T
Dµ and 

Dβ are replaced by , , , vcρ β κ′ ′ ′ ′ ,DDαλ ′ ′ , L
Dµ′ T

Dµ′ and Dβ ′  i.e. all the parameters in 

medium M1 are denoted by super script “ dash ” 
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Thus above set of equation becomes (For convenious dashes are omitted) 

2 2
3 1,11 2 2,21 1 1,22 0 1 1 2 ,1(1 ) ( 2 ) (1 )o oAh u h u h u c u u

t
u Tρ ε µ νρ β+ + =

∂
+

∂
+ − Ω + Ω + 

  (12) 
2 2

4 2,22 2 1,12 1 2,11 0 0 2 2 1 2,(1 ) 2 (1 )A oh u h u h u c u T
t

u uρ µ ρ ρ β νε+ + = + − Ω + Ω
∂

+
∂

+ 

   (13) 

1 3,11 5 3,22 3) ,ρ+ = h u h u u (14)
2

, ,2ii v o o i iT ρc T T β u
t t t
∂ ∂ ∂κ t
∂ ∂ ∂

   = + +   
    

(15) 

where 

1

2
2

2
3

2
4

5

2
2 0 0

,

D ,

D 2 4 2 ,

2 ,

and , is the Alfven wave speed

L

L

L T

T

T

A

A

A

A v

h D

h D D c

h D D D D c

h D D c

h D

Hc c

µ

a l µ

l a µ µ β

l µ

µ

ρ

ρ

ρ

µ
ρ

=

= + + +

= + + − + +

= + +

=

=

. 

3 Solution of the problem 

To solve the coupled thermoelastic equations, we make the assumptions : 

{ }
{ }

1 2 3 1 2 2 2 3 2 1

2 1

exˆ ˆ ˆu ,u ,u =u (x ), u (x ), u (x ) iω(x -p
ˆθ = θ(  

ct)

x ) iωex (xp -ct)    (16)
where 0T Tθ = −

Hence the initially uniform magnetic field 0H is transverse to the direction of wave 
propagation. 
Thus coupled Eq. (8a, b, c) becomes 

2 2 2 2 2 2
1 3 0 o A 1 2 2 o

ˆˆ ˆ(h D -ω h +ω (1+ε μ c )ρc +ρΩ )u +iω(h D-2cρ Ω)u -iωβ(1-iωc )ν θ=0
, (17)    

2 2 2 2 2 2
4 1 0 o A o2 2 1

ˆˆ ˆ(h D -ω h +ω (1+ε μ c )ρc +ρΩ )u +iω(h D+2cρ Ω)u -β(1-iωc )Dν θ=0 , (18)     
{ }2 2 2

5 1 3ˆ( ) ) 0 ,ω ρ− − =h D h c u
  (19) 

and 
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( ) { }2 2 2 2
o o 1 2 o

ˆˆ ˆβT iωc (Du -iωu )+ κ(D -ω )+iωc+ω c τ θ=0
            (19a) 

where
 

1

2
2

2
3

2
4

5

( ) ,

( )( ) ,

( 2 4 2 )( ) ,

( 2 )( ) ,

( )











k
Lk

k
k k Lk A

k
k k Lk Tk k A

k
k Tk A

k
Tk

i c

i c c

i c c

i c c

i c

µ ω

αλ  µ ω ρ

λα  µ µ β ω ρ

λ µ ω ρ

µ ω

= −

= + + − +

= + + − + − +

= + − +

= −

 

Above 3rd equation has the following solution,     
2 1( )

3 ,x i x ctu Ee eηω ω− −=                                                   (20) 

where 
2

2 1

5

ρη −
=




c
. 

for positive real rootη , it is necessary that 2
10 ρ< < c . 

Remaining above set of equation can be written as 
2

1 1 1 2 2

2
4 2 2 2 1

2
4 1 2 3

ˆˆ ˆ(h D -A )u +iω(h D-2cρΩ)u -iωQθ=0
ˆˆ ˆ(h D -A )u +iω(h D+2cρΩ)u -QDθ=0

ˆˆ ˆA (iωu +Du ) +(D -A )θ=0







                   (21) 

where 

( )

2 2 2 2 2
1 3 0

2 2 2 2 2
2 1 0

2 2
3

4

(1 )

(1 )

1

(1 )





o A

o A

o

o

o

A c c
A c c

A c i c

A i c T
Q i c

ω ω ε µ ρ ρ

ω ω ε µ ρ ρ

ω

ν

τ ω

ω β
β ω

= − + − Ω

= − + − Ω

= − −

=
= −

 

From avove set of equations, we have 
2

1 1 2
2

2 4 2 1 2
2

4 4 3

( ) ( 2 )
( 2 ) ( ) ( , , ) 0

( )

D A i D c i Q
i D c D A DQ u u

i A DA D A

ω ρ ω
ω ρ θ

ω

− − Ω −
+ Ω − − =

−

 

 

              (22) 
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This implies 
6 4 2

1 2( )( , , ) 0D AD BD C u u θ− + − =                                 (23) 
where  

( )2 2
1 1 2 4 3 4 2

1 4

1 ( )A A A A A Q ω= + + − −  

 

 

( ){ }2 2 2 2 2 2 2 2
1 2 4 1 3 1 2 3 2 3 4 1 2 4

1 4

1 ( 2 ) 4 )B A A A A A A A QA A cω ω ω ω ρ= + + − − − + − Ω    

 

 

( )2 2 2 2 2
1 2 3 2 4

1 4

1 4C A A A A A Q cω ω ρ= − − Ω
 

. 

2Let D m=  
Auxiliary equation becomes 

3 2 0m Am Bm C− + − =           (24) 
A, B and C must be positive for real positive roots (m). If there is no thermal effect then 
the above equation is quadratic in m and it is easy to solve. But in the case of 
thermoelastic, it is cubic. A, B and C must be positive impose a necessary and sufficient 
condition upon the frequency of rotation of the medium. Through which a surface wave 
cannot propagate in a fast rotating medium. If there is no thermal effect then 

2 2
2 3 1

2 2
0 0

0 min ,
(1 ) (1 )
 

o A o A

c
c c

ω ρ
ε m ρ ε m ρ

 − Ω
< <  + + 

 

From 1st term 2 2
3ρ ωΩ < , and from second term speed of the wave approaches to zero 

as . .A oc i e H approached to infinite. Thus in a fast rotating medium or in the presence of 
highly initially applied magnetic field, the surface wave cannot propagate. Thus earth 
quakes can be stoped by increasing the frequency of rotation of the earth or by increasing 
the gravity of the earth. But human cannot do that. 

Llet m1 , m2  and  m3 be three positive real roots, then solution by normal mode method 

has the following form

 

2
3

1
1

ˆ  ,
n

m xn
nu M e

=

−=∑                                                    (25)
 

2
3

2 1
1

ˆ  ,n
n

m xnu M e
=

−=∑                                                   (26) 
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2
3

2
1

ˆ  ,n
n

m xnM eθ
=

−=∑                                                    (27) 

where nM , 1nM  and 2nM , are some parameters depending on c  and  ω . By using 
Eqs. (10a,b,c) into Eqs. (9), we get the following relations, 

1 1

2 2

n n

n n

n

n

M H M
M H M

=

=                                                        (28)   
Where 

( )2
2 2 4

1 3 2 2
1 2 1

2
3

2
4 1

( ) 2
,

( ) 2

1,2,3.
( )

n n
n

n n

n
n

n n

i A m c m
H

m A m c

m AH n
A m H i

ω ρ

ω ρ ω

ω

+ − + Ω
=

+ − + Ω

−
= =

−

 

   

Hence we obtain the expressions of the displacement components, temperature distribution 
function and stresses as follows  

{ }2
3

1 1
1

 ( ) ,
n

m xn
nu M e iex x ctp ω

=

−= −∑
               (29) 

{ }2
3

2 1 1
1

 ( ) ,n
n

m xn
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Similar expressions can be obtained for second mediun and present them with dashes as 
follows 
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Also it is found that 
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In order to determine the secular equations, we have the following boundary conditions. 

4 Boundary conditions 

1) The displacement components between the mediums are continuous, i.e.  

1 1,u u′= 2 2u u′= ,  3 3u u′=  andθ θ ′=  on  2 0x = , for all 1x and t. 

2) Stress continuity exists, i.e. 12 12 12 12τ τ τ τ′ ′+ = + , 22 22 22 22τ τ τ τ′ ′+ = + + , 

23 23 23 23τ τ τ τ′ ′+ = +  on 2 0x = , for all 1x and t. 

where, Maxwell's stress equation 
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Thermal boundary conditions [Abd-Alla and Mahmoud (2010)], gives 
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where h and ′h are non nagative thermal constant. 
Boundary conditions implies the following equatios. 
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   (44) 
From the above equations containing E and F, we have 
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But from Eq.(5) we have 2b =0 and similarly for second medium 2b′=0, Thus 0 .E F= =  

This implies that there is no propagation in the transverse component of displacement. 
From others equations one can find nM ′nM very easily. Also if 0 3 0 3,b bµ µ′ ′= then
elimination of constants , ( 1, 2,3)n nM and M n′ =  from above set of relation , gives the 
following secular equation for thermoelastic surface wave in a rotating fibre reinforced 
viscoelastic material of order n. 
det( ) 0; 1, 2,3, 4,5,6.pqa p q= = =     (45) 
where 
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5 Particular cases 

5.1 Stoneley waves 

Eq. (14) is the secular equation for Stonely waves in a fibre reinforced viscoelastic media 
of order s if 0 3 0 3,b bµ µ′ ′=  For k=0, results are similar to Abd-Alla (2013) and Lotfy 
(2012). If rotational, thermal and fiber-reinforced parameters are ignored, then for k=0, 
the results are same as Stoneley (1924). 
Then equation (45) reduces to, 
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Eq. (46) gives the wave velocity equation of Stoneley waves in a viscoelastic medium of 
Voigt type where the viscosity is of Ist order involving time rate of change of strain which is 
completely in agreement with classical results given by Sengupta and Nath (2001). Further 
equation (46), of course, is in complete agreement with the corresponding classical result, 
when the effect of rotation, viscosity and parameters of fibre-reinforcement are ignored. 

 

 

 
Figure 1: Variation of ∆ , velocity ( Re( )∆ ) and attenuation coefficient ( Im( )∆ ) for  
stoneley waves with respect toΩwith variation of c, ω and k  

5.2 Love waves 
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media of higher order, we replace medium M1 by an infinitely extended horizontal plate 
of finite thickness d and bounded by two horizontal plane surfaces x2=0 and x2=d. 
Medium M is semi infinite as in the general case.  
The boundary conditions of Love wave are as follows 
The displacement component 3u and 12τ between the mediums are continuous, i.e.  
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This gives the wave velocity of Love waves propagating in a fiber-reinforced viscoelastic 

medium of order s. For k= 0, the results are exactly same as in literature. It is interesting 

to note that the magnetic field, thermal and rotation did not interrupt the propagation of 

Love waves. 

 

Figure 2: Variation of ∆ , for Love waves with respect toΩwith variation of c, ω , k , d 
and H 
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Figure 3: Variation of velocity ( Re( )∆ ) for Love waves with respect toΩwith variation 
of c,ω , k , d and H 
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Figure 4: Variation of attenuation co-efficient ( Im( )∆ ) for Love waves with respect to 
Ωwith variation of c,ω , k , d and H 

5.3 Rayleigh waves 

Rayleigh wave is a special case of the above general surface wave. In this case we 
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consider a model where the medium 1M is replaced by vacuum. Since the boundary 

2 0x = is adjacent to vacuum. It is free from surface traction. So the stress boundary 
condition in this case may be expressed as 

12 12 0+ =τ τ  ,  22 22 0+ =τ τ on  2 0x = , for all 1x and t. 
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Thus above set of equations reduces to 
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If 3 0=b , this mean that induced magnetic field is not present then for non trival 
solution we have 
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So as a special case i.e. in the absence of induced magnetic field, the Eq. (15) is the 
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secular equation for Rayleigh wave for the medium M. For k=0, that is, our results are 
similar to AbAlla et al. (2013). For a non-rotating media we have to put 0Ω = , then for k 
= 0 our results are similar to Singh (2006) . In the absence of rotational, themal and 
magnetic field results are same as Sengupta and Nath (2001). If one also ignor the 
fibre-reinforced parameters then results are same as Rayleigh (1885). 

 

 

 

Figure 5: Variation of ∆ , velocity ( Re( )∆ ) and attenuation co-efficient ( Im( )∆ ) for 
Rayleigh waves with respect toΩwith variation of c,ω and k  
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6 Numerical results and discussion 

The following values of elastic constants are considered Chattopadhyay et al. (2002) and 
Singh (2006), for mediums M and 1M respectively. 
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Taking into consideration Green-Linsay theory, the numerical technique outlined above 
was used to obtain secular equation, surface wave velocity and attenuation coefficients 
under the effects of rotation in two models. For the sake of brevity some computational 
results are being presented here. The variations are shown in Figure 1-5 respectively. 
Figure1a-1l Show that the variation of the secular equation Stoneley wave, Stoneley 
wave velocity and attenuation coefficient of Stoneley wave with respect to rotation Ω  
for different values of phace velocity c, frequency ω , wave number k and magnetic 
field .H  The secular equation decreases with increasing of rotation except when effect 
of frequency it increases with increasing of rotation, while it decreases with increasing of 
phase velocity, frequency and wave number, as well it increases with increasing of 
magnetic field, the Stoneley wave velocity increases with increasing of rotation except 
when effect of frequency it decreases with increasing of rotation, while it increases with 
increasing of phase velocity, frequency and wave number, as well it decreases with 
increasing of magnetic field, the attenuation coefficient increases with increasing of 
rotation except when effect of frequency it decreases with increasing of rotation, while it 
increases with increasing of phase velocity, frequency and wave number, as well it 
decreases with increasing of magnetic field.  
Figure 2a-2e Show that the variation of the secular equation of Love wave with respect to 
rotationΩ for different values of phace velocity c, frequencyω , wave number ,k  
thickness d and magnetic field .H There is no effect of rotation on the sculer equation 
except when effect of thickness it increases with increasing of thickness and rotation, 
while it increases with increasing of phase velocity, frequency and magnetic field, as well 
it decreases with increasing of wave number.  
Figure 3a-3e Show that the variation of Love wave velocity with respect to rotationΩ  
for different values of phace velocity c, frequencyω , wave number ,k  thickness d and 
magnetic field .H  There is no effect of rotation on the sculer equation except when 
effect of frequency it increases with increasing of frequency and rotation, while it 
decreases with increasing of phase velocity, thickness and magnetic field, as well it 
increases with increasing of wave number.  
Figure 4a-4e) Show that the variation of attenuation coefficient of Love wave with 
respect to rotationΩ for different values of phace velocity c, frequencyω , wave number 
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,k  thickness d and magnetic field .H  There is no effect of rotation on the sculer 
equation except when effect of thickness it increases with increasing of thickness and 
rotation, while it increases with increasing of phase velocity and frequency, as well it 
decreases with increasing of wave number and magnetic field.  
Figure 5a-5lShow that the variation of the secular equation of Rayleigh wave, Rayleigh 
wave velocity and attenuation coefficient of Rayleigh wave with respect to rotationΩ  
for different values of phace velocity c, frequencyω , wave number k and magnetic field 

.H The secular equation decreases with increasing of rotation except when effect of 
frequency of frequency it decreases with increasing of rotation, while it increases with 
increasing of phase velocity and magnetic field, as well it decreases with incrasing of 
frequency and wave number, Rayleigh wave velocity increases with increasing of 
rotation and phase velocity, while it decreases with increasing of rotation, as well it 
increases with increasing of frequency and magnetic field, while it decreases with 
increasing of wave number, the attenuation coefficient increases with increasing of 
rotation except when effect of phase velocity it decreases with increasing of phase 
velocity, while it increases with increasing of phase velocity, frequency, wave number 
and magnetic field. 

7 Conclusion     

The analysis of graphs permits us some concluding remarks.  
1. The surface waves in a homogeneous, anisotropic, fibre-reinforced viscoelastic solid media 
under the rotation and higher order of nth order including time rate of strain are investigated. k  
2. Love waves do not depend on temperature; these are only affected by viscosity, rotation, 
magnetic field, frequency, higher order of net order, including time rate of strain, phase 
velocity and thicknessof the medium. In the absence of all fields, the dispersion equation is 
incomplete agreement with the corresponding classical result. k  
3. Rayleigh waves in a homogeneous, general magneto-thermo viscoelastic solid medium 
of higher order, including time rate of change of strain we find that the wave velocity 
equation, proves that there is a dispersion ofwaves due to the presence of rotation, 
magnetic field, temperature, frequency, phase velocity and viscosity. The results are 
incomplete agreement with the corresponding classical results in the absence of all fields. 
4. The wave velocity equation of Stoneley waves is very similar to the corresponding 
problem in the classical theoryof elasticity. The dispersion of waves is due to the 
presence of rotation, phase velocity, frequency, temperatureand viscosity of the solid. 
Also, wave velocity equation of this generalized type of surface waves is incomplete 
agreement with the corresponding classical result in the absence of all fields.  
5. The results presented in this paper will be very helpful for researchers in geophysics, 
designers of new materials and the study of the phenomenon of rotation is also used to 
improve the conditions of oil extractions.  
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