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Effect of Rotation on the Propagation of Waves in Hollow
Poroelastic Circular Cylinder with Magnetic Field

A.M. Farhan??

Abstract : Employing Biot’s theory of wave propagation in liquid saturated porous

media, the effect of rotation and magnetic field on wave propagation in a hollow
poroelastic circular of infinite extent are investigated. An exact closed form solution is
presented. General frequency equations for propagation of poroelastic cylinder are
obtained when the boundaries are stress free. The frequencies are calculated for
poroelastic cylinder for different values of magnetic field and rotation. Numerical
results are given and illustrated graphically. The results indicate that the effect of
rotation, and magnetic field are very pronounced. Such a model would be useful in
large-scale parametric studies of mechanical response.

Keywords: Wave propagation, rotation, magnetic field, poroelastic medium, natural
frequency.

1 Introduction

The study of wave propagation over a continuous media is of practical importa
nce in the field of engineering, medicine and bio-engineering. [Abd-Alla, et al.
(2016)] investigated the reflection of Plane Waves from studied the electro-ma
gneto-thermoelastic Half-space with a Dual-Phase-Lag Model. [Ahmed and Abd-
Alla (2002)] studied the electromechanical wave propagation in a cylindrical po
roelastic bone with cavity. [Abd-Alla, et al. (2011)] investigated the wave propa
gation modeling in cylindrical human long wet bones with cavity. [Abd-Alla an
d Abo-Dahab (2013)] discussed the effect of magnetic field on poroelastic bone
model for internal remodeling. [Abo-Dahab, et al. (2014)] investigated the effe
ct of rotation on wave propagation in hollow poroelastic circular cylinder. [Abd
-Alla and Yahya (2013)] studied the wave propagation in a cylindrical human |
ong wet bone [Biot (1955)] studied the theory of elasticity and consolidation f
or a porous anisotropic solid. [Biot (1956)] studied the theory of propagation o
f elastic waves in a fluid-saturated porous solid. [Brynk, et al. (2011)] investiga
ted the experimental poromechanics of trabecular bone strength: role of Terzagh
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i's effective stress and of tissue level stress fluctuations. [Cardoso and Cowin
(2012)] discussed the role of structural anisotropy of biological tissues in poro
elastic wave propagation. [Cui, et al. (1997)] studied the poroelastic solutions o
f an inclined borehole. Transactions. [Cowin (1999)] studied the bone poroelasti
city. [EI-Naggar, et al. (2001)] investigated the analytical solution of electro-me
chanical wave propagation in long bones. [Gilbert, et al. (2012)] investigated a
quantitative ultrasound model of the bone with blood as the interstitial fluid.
[Love (1944)] studied a theoretical on the mathematical theorey of elasticity.
[Matuszyk and Demkowicz (2014)] found the solution of coupled poroelastic/ac
oustic/elastic wave propagation problems using automatic #7-adaptivity . [Misra
and Samanta (1984)] studied the wave propagation in tubular bones. [Mathieu,
et al. (2012)] investigated the influence of healing time on the ultrasonic resp
onse of the bone-implant interface. [Marin, et al. (2015)] discussed the structur
al continuous dependence in micropolar porous bodies. [Marin (2010)] studied t
he harmonic vibrations in thermoelasticity of microstretch materials. [Marin, M.
(1997)] found the weak solutions in elasticity of dipolar bodies with voids.
[Morin and Hellmich (2014)] investigated a multiscale poro-micromechanical ap
proach to wave propagation and attenuation in bone. [Nguyen, et al. (2010)] st
udied the poroelastic behaviour of cortical bone under harmonic axial loading:
A finite element study at the osteonal scale. [Papathanasopoulou, et al. (200
2)] investigated a poroelastic bone model for internal remodeling. [Potsika, et a
I. (2014)] discussed the application of an effective medium theory for modelin
g ultrasound wave propagation in healing long bones. [Qin, et al. (2005)] studi
ed the thermoelectroelastic solutions for surface bone remodeling under axial an
d transverse loads. [Shah (2011)] investigated the flexural wave propagation in
coated poroelastic cylinders with reference to fretting fatigue. [SHARMA and
Marin. M. (2013)] investigated the effect of distinct conductive and thermodyna
mic temperatures on the reflection of plane waves in micropolar elastic half-spa
ce [Yoon and Katz (1976)] studied the ultrasonic wave propagation in human ¢
ortical bone—Il. Measurements of elastic properties and microhardness. [Wen (2
010)] studied the Meshless local Petrov—Galerkin (MLPG) method for wave pro
pagation in 3D poroelastic solids.

In the present, the wave propagation in a cylindrical poroelastic medium with cavity is
studied. The frequency equation for poroelastic medium is obtained. From
measurements of the density, angular velocity, and bone thickness, the coefficients of
the poroelastic medium may be evaluated. The frequencies are calculated for
poroelastic medium is obtained for various values of rotation and magnetic field are
given in graphs. The propagation of flexural waves in an infinite cylindrical element
which is porous in nature is considered and numerical results are carried out. The
results indicate that the effect of magnetic field and rotation are very pronounced.
[Parnell, et al. (2012)] studied the analytical methods to determine the effective
mesoscopic and macroscopic elastic properties of cortical bone.
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2 Formulation of the problem

The stresses 7 and the liquid pressure 7 [Shah, A. (2011)] are

Jdug ou, av, _1( 6179) E)UZ]
69)+C136 +M[ar+r v + + ,

ou, 1
Trr = C11—=— ar + cir” (ur+

du B Jdug du av B dvg dav
T99=C126_:+C11T 1(ur+ 60)+C13 aZ+M|:a_;+r 1<UT+_)+_Z]J

[Our ouy vy

Tzz = C13 |5, T (ur+aa )]+C33a +Q[—+r (Ur+¥)+%]l

[0u, = Ou,
Trz = Caa |5 6_z]'
0 _1 (0ur ] _10uy
Trg = Ces %"‘T 1(%—119)] Tez—c44[ =0 4 1% )
T=M [a”T +r71 (ur + %)] +Q52 a”z +R [a”r +r71 (vr + %ﬂ) + %] )
The magnetic stress is
ou 1 ou
o, =pmH (+-u +—F) (2a)
o r oz

where T; is the average stress of solid, T is the average stress of fluid per unit of
mass, and O is the magnetic stress with elastic constants c;;, M,Q,R and cg6 =
1

2 (c11 — €12

The equation of the flow [Papathanasopoulou, et al. (2002)] is

_ _ d(e—
AVt + b, =20, ©)

2 2
where b, = m,bZZ = ('Uf )
K K

m y24

,V2 is Laplacian operator in polar

coordinates,p is the viscosity, T is the porosity and k.., k,,are the permeability of
the medium. The average displacements of solid and velocity of fluid phases are taken
as u; and vj, respectively.
The strains are expressed as

&jj = %(uia‘ +u;4) (4)
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and dilation of the phasesas € = U ; and € = vy;.

In general, the stress-strain relation for a piezoelectric body can be written in the
following way in matrix notation:

Tm =ChnSn —emkEr 1<mn<6, 1<k<3, (5)

where e and Ej. are, respectively, the piezoelectric strain constants and the
component of the electrical field.

The last term in Eq. (5) is ignored in Eq. (2) for simplifying the calculation. But this
step can be justified by the results of [Yoon and Katz (1976)], who showed that the
piezoelectric stiffening in bones in the ultrasonic wave propagation is negligibly small

The equations of motion are

2, 2, 2
%+r71 aTrH +8Trz +r71(7'-rr _T99)+/ueH02(a o +lau_r_iu + 0 % ):p[6 5 _Qzurj

or 00 oz or? raor r*" oréz or?
or,, .01, Ot, . o’u
—tr 2+ —242rr, = :
or 00 " o T
ot L0z, O 5 ,, 00U du, 1 du o 5
A AN A R SRl St 20 W r_Qu (6)
or 00 oz = R G T aa) T o :

where, p is the density of the bone, Q= (0,Q2,0) is the rotation vector, H o Isthe
magnetic field acts normal on the plane (I’ - Z) and t is the time.

Substituting from equations (1) into equations (6), we obtain
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0%u ou 0%u 0%u
H 2 _ _ H 2
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3 Solution of the problem

Let (F,Q,Z) be the cylindrical polar coordinates. Consider a homogeneous,

transversely isotropic, infinite hollow poroelastic cylinder with inner and outer radii
aand D respectively having thickness h =b —a whoso axis is in the direction of
Z,

Let
[0 | 10¥] _i(kz-wt) o i(kz-wt)
uT(T,H,Z,t) = E"';E] e ) v‘r(rlglzlt) :_a__re 4
_[192 _ 9¥] itkz-wt) — _ 101 i(kz-wt)
ug(T,Q,Z,t)— - 50 ar]e ) UQ(T,B,Z,t)— raee )
w,(r,0,2,t) = %W] eilkz—wt) v,(r,0,z,t) = —iknel(kz—00), (8)

where, U ,U,,U, vV V ,V_ —are mechanical displacements and velocities, w is
the angular frequency, k is the wave number and &,%,W and 77 are functions

of I,0.

Substituting from Egs. (1) into Egs. (3), (6) and using Egs. (7), the following
equations are obtained:

((c11+,ueH02)V2+ p(0® —Q°) —k?(cas — ,ueHOZ)>¢>—(c13+c44+

yeHj) (%) - -m@* -1 =0

((044+ wHZ) v+ p(a)2 - - k2c33) (%) + (c13 +caq t+ U, HOZ) k2

— kQ(V* —k*)n =0,
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{M V4 k2v2] e VZ} o+ {<Q) [—kv2 A k3 ikw}g
by b, h brr bz h
—V3(VZ —k?) Kk*(V?—Kk?
(R K i
by b,z

]iw(VZ - kz)}n =0

1
(E( (€, + 4, H) —CL) V2 + p(o0® Q) — k?(can — yeH§)>z// =0 (9)

r
By defining the dimensionless coordinate X :H and & =Kkh . the above
equations are written in dimensionless parameter X and €1as

((c11 + 1, HZ) V2 + (ch)? - 512)q> - (C13 + 1) (elw) — ME = 0,
(C13 + 1) & Vo + (vz +(ch)? — &’ CSS)W - £0Q&=0,

V?(v2-be’ +iD)d - ¢ (Q' V? +bQ's’ —iD)c+(— R'v2+ bR'e’

+iD)E =0,
(066 V2 4+ (ch)? — gf)w — 0, (10)
where

” 10 1 ¢

V= -2 4= ,
(6x2 X OX xzaez)
f= (@ 1y, D= Q-0 RoR yo M
M M M C44+l[leHO
2 2
_ plo”-Q b _
Q= Q 2 ( ) b=—"", Cj=—= (i,j=123),
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2 2
=210 19 (12)

“orz ' ror ' r2ogez’

The reason for & being defined as above and not being solved for variable 77 is
that the flow of fluid through the boundaries of bone does not take place during the

study of the propagation of waves. However, 1" can be calculated if the flow on the
boundaries are prescribed.

We can write the Eq. (10) in the determinant form:

(C,+HHV?+A) —B -M
BV’ (V2 +C) -Qe(g,w,&) =0 (13)
T T

2 3

where

T, =V?(V2—be’ +iD), T2=—51<Q'v2+bQ'gf—iD>,
T, =(-R'V2+bR' & +iD), A=(ch)?- &,

B = <1 + 613 > & and C = (ch)? — 812 613.

Evaluating the determinant form, the following equations are obtained:
(V6 + PV* + GV? + H)(®,(,¢) =0, (14)

where
P= <R'312 (611+,ueH02) +iD((_:11+,ueH02) +CR (Cu+pHY) -
QQ & (CutpHY)+AR - —B?R' +BQ 5, + M &2 - QB

+iMD + MD)/(— R’ (511+yeH02) + M),



Effect of Rotation on the Propagation of Waves 137

G= <c R’ &% (Cun+ 4, HZ) + inC(Cu+ g, H?) + Q' *Q(Cu+ s, HY)
—iDQe’ (Cua+ 1, HY) +AR' & +iDA+AR'c-AQ'Q g’
+BD813 —iDgl+C512—Bagf+iDBglm+iDCV—VCgf>
J(=R (G + g, HY) + 1)

A(C R'£?+iDC +6Q' &' —iD6 812>

—R'(611+,LIEH§)+M

H=

(15a)

The general solutions of equation (14) can be obtained by using Mathematica program
in terms of the Bessel functions of the first and second kind J and Y respectively as

3
@ = ) [Adfn(@x) + BiY(@)] cos(n0),

=1
(=33, dil[AJn(a;x) + B;Y,(a;x)] cos(nb), (15b)
3
¢ = €; [A‘L]n(aix) + BiYn(aix)] cos(nf),
i=1

where of are the non-zero roots of the equation
a® —Pa*+ Ga? —H =0, (16a)

The roots of the equation (16) by using Mathematica program are
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3 P2
o _P_32@B6-P) FI

'3 3F1 332"

P (1+iv/3)3G-P?) (@1-iv/3)F1
ol =—+ — : (16b)
23 3/32F1 3/62
a2_5+(1—i\@(3G—P2)_(1—i 3)F1
3 3[1024F1 362
where

1
F1=(27H —9GP +2P° + 3\/3V4G® + 27H? —18GHP + 4HP?)?

Solving equations (17) we obtain d; and e;

<<1 + 613) &d;+Me; = (611+,ueH02)ai2 — (ch)? - 812>,

<—ai2 + (ch)? — 6‘12 C33> d; — Qele; = <1 + C13> & af. (17)
Solving Eg. (11) we have

¥ = [Ay),(asx) + ByY, (ayx)] sin(nd), (18)
where

2((ch)? - &°)
((611 +,ueH02) —613)

az =

4 Frequency equation

The boundary conditions for traction free inner and outer surfaces of the hollow
poroelastic cylinder are

T+t O, =T,=Tp=71=0 atr=a4a,

Ty tO0, =T, =T9g=17=0 atr=D0 (19)

where
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_ a - b
a=-, b=-

h h
Substituting from Egs. (8), (15) and (18) into Eg. (19) and grouping the coefficients of
Aq,By, A By, Az, Bsand A, , B, leads to a determinant which is the characteristic
frequency equation:

lay| =0 Gj=123,..8), (0)

where, the coefficients of a; are take the form in Appendix A in the paper end.

Equation (20) is called the characteristic frequency equation. The element a; is

analytically expressed in terms of the elastic constants of the material. Eq. (20) is a
transcendental equation of the frequency and wave number. The roots of Eq. (20)
provide the dispersion curves of the guided modes. i.e. the wave number as a function
of frequency
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Figure 1: Variations of the roots ‘aj‘ (J =1,2,3,4) with respect to the rotation Q
with the variation of p,®,h and H
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Figure 2: Variations of ‘ej‘ (j =1, 2,3,4) with respect to the rotation Q with the
variation of p,®,h and H
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Figure 3: Variations of ‘dj‘ (j =1,2,3,4) with respect to the rotation Q with the
variation of p,w,h and H

p=01_,02.,03-—04_

o=1,11.12--,13 .h=01_011.,0.12--,013
H=01 ,03..,05--07_._



Effect of Rotation on the Propagation of Waves 143

130 il il 1000

- o/ 3 1 [ =
s “E £
E | | \ £
i ¥ &
R
0 0 0 0

Figure 4: Variations of the determinant ‘aij‘,Re(aﬂ), Im(a;) (i, ] =1,2,3,4) with
respect to the rotation € with the variation of p,®,h andH
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p=01_,02..,03--,04_.
o=1,11.12--,13 .h=01_011.,0.12--,013

H=01_,03.,05--,07_._

5 Numerical results and discussion

The numerical results for the frequency equation are computed for the wet bone. Since
the frequency equation is transcendental in nature, there are an infinite number of

roots for the frequency equation. The results are evaluated in the range 0<gl<4

b
and 0<ch<4 with the ratio of — =3 and the thickness b —a=Hh. The
a

values of the elastic constant of the bone are taken from [5] and the poroelastic
constant is evaluated from the expression given by

)
fa—f—z) >
R O ey
(y+o+—) (y+o+—)
X X

where f is the porosity and y,0, y are related by Young’s modulus and the
Poisson ratio, The expression for y,0, y are given by
_3(1-2v)
===
where c is taken to be zero for the incompressibility for the fluid.
The porosity of the human bone in the age group 35-40 years is taken to be 0.24 [7].

, 0=06y and y=1f(c-9)

. - M c
To evaluate one more poroelastic constant it is assumed that — = —2 as the value

C13

M is not provided. Since the fluid in general is isotropic, it is taken that b, =h,,.
The density of the fluid in the porospace, permeability of the medium and mass
density of the bone are taken from [17].

Table 1: The approximate geometry of the femur and the material constants which are
used in the computations.

Cpy Ci, Ci3 Css Cyy a b

2.12 0.95 1.02 3.76 0.75 0.8 1.4
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Fig.1 shows that the variations of the absolute value of the coefficients of
|a1|,|a2|,|a3|and ‘054‘ for poroelastic cylinder with respect to the rotation €,
which it increases with increasing of rotation for different values of density p, the

frequency , thickness h and magnetic field H o+ as well it increases with
increasing of the density, frequency and magnetic field, except when effect the density,
the coefficients of |al|, |a3| increase and decrease with increasing of the density.

Fig. 2 show that the variations of the coefficients of ‘dl‘, ‘dz‘, ‘d3‘ and ‘d4‘ for

poroelastic cylinder with respect to the rotation €2, which increases with increasing
of rotation for different values of the frequency @, thickness h and magnetic field

H o except when effect the density it increases and decreases, as well it decreases

with increasing of frequency, thickness and magnetic field except the coefficient |d4|
increases with increasing of density, frequency and thickness, while the coefficients
decrease with increasing of magnetic field.

Fig. 3 shows that the variations of the absolute of coefficients for poroelastic cylinder

of |e1|’|e2|’|e3|and ‘e“‘with respect to the rotation Q). which it increases with

increasing of the rotation for different values of density # , frequency &
thickness and magnetic field HO, while it increases with increasing of density,
frequency and thickness except when effect of magnetic field, it has oscillatory

behavior in the whole range of the Q) _axis for different values of magnetic field.

Re(la,

2
Fig. 4 shows that the variations of the scalar equation ‘ "I wave velocity

| o Im(a]) o
and attenuation coefficient ' with respect to the rotation , for different

values of density ,0, frequency @ thickness h and magnetic field HO which
it decreases with increasing of rotation. It is observed that the scalar equation
increases with increasing of frequency, thickness, and magnetic field, while it
decreases with increasing of density, wave velocity increases with increasing of
density and rotation, as well it increases with increasing of frequency and magnetic
field, while it decreases with increasing of rotation, as well it decreases with
increasing of thickness and attenuation coefficient decreases with increasing of
frequency, thickness, magnetic field and rotation, while it increases with increasing of
rotation and density.
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6 Conclusion

The investigation of propagation of wave in hollow poroelastic circular cylinder of
infinite extent has led to the following conclusion:

(i) The frequency equation of free vibrations is independent of the nature of surface,
rotation, magnetic field and presence of fluid in poroelastic media.

(ii) By comparing figures 1-4, it was found that the frequency equation, wave velocity,
and attenuation coefficient have the same behavior in both media; but, with the
passage of rotation, magnetic field, density, frequency and thickness, numerical values
of frequency in the poroelastic cylinder are large in comparison due to the influences
of rotation and magnetic field.

(iii) The frequency equation is obtained by considering the material as transversely
isotropic in nature.

(iv)The results presented in this paper should prove to be useful for researchers in
material science and designers of new materials and bones.

Appendix A:

_ 2 _ _
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|
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— ) ( n2 _ 1 _ w
+ (C12 + U, H0 ) ——— |/ () — z]n+1 (a,2)
a

\ a,a

— (Cos + s, H2) (e1)dy Jy (,2)

n? n? 1

_ - 1 -
+ M 55— 2~ 1 |/n(a) + (_&_ =Vnt1 () |,
1 a

aia o
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