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Mathematical Modelling and 3D FEM Analysis of the Influence of 

Initial Stresses on the ERR in a Band Crack’s Front in the 

Rectangular Orthotropic Thick Plate 
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Abstract: This paper deals with the mathematical modelling and 3D FEM study of the 

energy release rate (ERR) in the band crack’s front contained in the orthotropic thick 

rectangular plate which is stretched or compressed initially before the loading of the crack's 

edge planes. The initial stretching or compressing of the plate causes uniformly distributed 

normal stress to appear acting in the direction which is parallel to the plane on which the 

band crack is located. After the appearance of the initial stress in the plate it is assumed 

that the crack's edge planes are loaded with additional uniformly distributed normal forces 

and the ERR caused with this additional loading is studied. The corresponding boundary 

value problem is formulated within the scope of the so-called 3D linearized theory of 

elasticity which allows the initial stress on the values of the ERR to be taken into 

consideration. Numerical results on the influence of the initial stress, anisotropy properties 

of the plate material, the crack’s length and its distance from the face planes of the plate on 

the values of the ERR, are presented and discussed. In particular, it is established that for 

the relatively greater length of the crack’s band, the initial stretching of the plate causes a 

decrease, but the initial compression causes an increase in the values of the ERR. 

Keywords: Band crack, energy release rate, stress intensity factor, initial stress, 

orthotropic material, rectangular plate, 3D FEM.   

1    Introduction 

It is known that the linear theory of crack mechanics cannot take into consideration the 

uniformly distributed normal stresses acting along the crack’s edges under determination 

of Stress Intensity Factors (SIF) or Energy Release Rates (ERR) at the tips or fronts of the 

crack. Note that this state is caused with the linearity of the mathematical modelling as well 

as with the geometrical modelling of the crack. Nevertheless, up to now within the scope 

of the T-stress concept [Williams (1957); Rice (1974)] some attempts have been made to 

take into consideration the aforementioned normal stresses on the crack’s growth process 
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within the scope of the linear theory of elasticity. We recall that the T-stress is the first non-

singular term in the expansion of the opening normal stress at the near vicinity of the 

crack’s tip or front and this stress has great significance for the prediction of the crack 

growth direction stability in the fracture of brittle materials [Cotterell and Rice (1980); 

Melin (2002); Pham, Bahr, Bahr, Fett, and Balke (2006)] and for the determination of the 

crack growth resistance in the fracture of ductile materials detailed in the paper [Tvergaard 

and Hutchinson (1994)] and others listed therein.  These facts have pushed the researchers 

to develop mathematical methods for calculation and analysis of the T-stress, some of 

which are detailed in the papers [Sherry, France, and Goldthorbe (1995); Jogdand and 

Murthy (2010); Sutradhar and Paulino (2004); Chen (2000); Chen (2014)] and others 

reviewed therein. Nevertheless, the aforementioned T- stress concept cannot take into 

consideration the influence of the uniformly distributed normal stresses acting along the 

crack’s edge surfaces on the SIF or ERR. Note that, this influence can be modelled within 

the framework of the approach of which the equations and relations are obtained from 

linearization of the corresponding geometrically non-linear field equations and relations of 

the theory of elasticity. Under this linearization procedure, the stress-strain state regarding 

the uniformly distributed normal stresses acting along the crack’s edge surfaces is taken as 

the initial stresses, and the non-linear equations and relations are linearized around this 

initial state and in this way the linearized theory of elasticity is constructed. Consequently, 

the corresponding crack problems are studied within the scope of this linearized theory, of 

which the coefficients of the equations and relations contain the aforementioned initial 

stresses [Guz (1999)]. The fundamentals of the application of the linearized theory on the 

corresponding crack problems are proposed and detailed in the monograph [Guz (1983)] 

which also contains many concrete results. A review of more recent results related to the 

linearized (or so-called, non-classical) crack problems can be found in the papers [Guz 

(2000); Guz, Dyshel, and Nazarenko (2004)]. However, the results detailed in the works 

[Guz (1983); Guz (2000); Guz, Dyshel, and Nazarenko (2004)] relate to the micro-crack 

problems, i.e. to the problems related to the cracks contained in the infinite or semi-infinite 

elastic medium. Note that up to now some investigations have also been made related to 

the macro-crack problems [Akbarov and Turan (2009); Akbarov and Turan (2011); 

Akbarov and Yahnioglu (2016)], the results of which are also detailed in the monograph 

[Akbarov (2013)]. Moreover, a mixed boundary value problem for an embedded crack in 

an orthotropic strip is considered in the paper [Yusufoglu and Turhan (2012)]. At the same 

time, it should be noted that these investigations are carried out for the two-dimensional 

(plane-strain state) problems and up to now there have not been any investigations 

regarding the corresponding 3D crack problems. Therefore, in the present paper we attempt 

to consider and investigate the 3D problem for the band crack contained in the rectangular 

plate made of anisotropic (orthotropic) material. It is assumed that at first (i.e. in the initial 

state) the plate's two opposite lateral edge planes are loaded by uniformly distributed 

normal stretching or compressing forces and then the crack’s edge surfaces are loaded with 

the additional uniformly distributed normal opening forces. It is required to investigate how 

the uniformly normal initial stresses acting along the crack's edge planes influence the ERR 

at the band crack front caused with the aforementioned additional opening normal forces 

acting on the crack's edge planes. Moreover, the influence of the anisotropy properties of 

the plate material and the crack location with respect to the plate thickness on the ERR is 
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studied.    

2    Formulation of the problem 

Consider a rectangular plate and associate the Cartesian coordinate system 1 2 3Ox x x  with 

this plate (Fig. 1). The position of the points of the plate we determine through the Lagrange 

coordinates in this system. Assume that the plate contains a band crack, the edge plane-

surfaces of which are parallel to the plate’s face planes. Moreover, we assume that the plate 

occupies the region 

 1 1 2 3 30 ; 0 ; 0      x x h x                                                                         (1) 

and the crack’s upper and lower edge planes occupy the regions c


 and c


, 

respectively, where  

 1 0 1 1 0 2 3 3( / 2 / 2) ( / 2 / 2), 0,0c cx x h x          .                       (2) 

In (1) and (2) the following notation is used: 1  ( 3 ) is the plate length in the 1Ox  

( 3)Ox axis direction, 0  is the band crack length in the 1Ox  axis direction, h  is the 

plate thickness, and ch  is the distance of the crack located plane from the lower face 

plane of the plate (Fig.1).  

 

Figure 1: The sketch of the rectangular plate containing the band crack. 

We suppose that the material of the plate is orthotropic with the principal axes 1Ox , 2Ox   

and 3Ox  of elastic symmetry. Moreover, we suppose that on the plate edge planes at 1 0x   
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and 1 1x   the uniformly distributed normal forces with intensity q  act and these forces 

cause uniformly distributed initial normal stress acting along the crack’s edge planes. After 

this initial stress appears, the crack’s edge planes are loaded with additional uniformly 

distributed normal opening forces with intensity p  and assume that p q . Thus, we 

attempt to investigate how the initial stress influences the ERR caused by the additional 

opening normal forces with intensity p .   

According to the well-known procedure, in the case under consideration the initial stresses 

caused by the forces with intensity q  can be determined as follows 

0
11 q  , 0 0ij   for 11ij  .                                                                                          (3) 

In (3) the upper index 0  denotes that the quantities belong to the initial state.   

Now we consider formulation of the problem related to the stress-strain state caused by the 

additional opening normal forces acting on the crack’s edge planes. For this purpose we 

use the so-called three dimensional linearized equations and relations which, for the case 

under consideration, can be written as follows. 

Equilibrium equations and strain-displacement relations. 
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 .                                                                (4)  

In (4) and repeated below, ( ; 1,2,3i j  ) are summed over their ranges and conventional 

notation is used.  

According to [Lekhnitskii (1963)], the constitutive relations for the plate material can be 

written as follows. 

11 11 11 12 22 13 33σ A ε A ε A ε   , 22 12 11 22 22 23 33σ A ε A ε A ε   , 

33 13 11 23 22 33 33σ A ε A ε A ε   , 23 23 232σ G ε , 12 12 122σ G ε , 13 13 132σ G ε .             (5) 

where  
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 , 

ij jia a , ( ; 1,2,3i j ).                                    (6) 

In (5) and (6) the following notation is used: 1E , 2E  and 3E  are the elastic moduli 

along the principal axes 1Ox , 2Ox  and 3Ox  of the elastic symmetry, respectively; 12G , 
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13G  and 23G  are the shear moduli in the 1 2Ox x , 1 3Ox x  and 2 3Ox x  planes, respectively; 

and 12ν , 13ν  and 23ν  are Poisson ratios and, according to [Lekhnitskii (1963)], 
ijν

characterizes the shortening (elongation) in the direction of the i th  axis under tension 

(compression) along the j th  axis. Moreover, in (6), the symbol “det” means the 

determinant of the matrix ija . 

Now we consider formulation of the boundary conditions which for the case under 

consideration are selected as follows. 

Boundary conditions on the plate edges at 1 10,x  and 3 30,x : 

2 0,1 1
0
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
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0 1
11 11
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2 0,3 3
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x
u , 31 0,1 3

0
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x

σ , 33 0,1 3
0




x
σ .                                                                         (71) 

Boundary conditions on the plate face planes at 2 0,x h  : 

21 22 230, 0, 0,2 2 2
0

  
  

x h x h x h
σ σ σ .                         (72) 

Boundary conditions on the crack’s edge surfaces:  
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Thus, this completes the formulation of the problem, according to which, the determination 

of the stress-strain state in the rectangular plate containing the band crack is reduced to the 

solution to the equations (3) – (6) within the scope of the boundary condition given in (7).   

3   Method of solution and 3D FEM modelling for calculation of the ERR 

As the analytical solution to the problem formulated above is impossible, we attempt to 

solve it by utilizing the 3D Finite Element Method (FEM). For this purpose, according to 

[Guz (1999)], we introduce the following functional.  
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Employing the usual procedure, we attempt to obtain the equilibrium equations in (4) and 

the boundary conditions in (7) given for the forces from equating the first variation of the 

functional   (8) to zero. The expression of the variation is obtained from (8) as follows. 
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In (9),   is a first variation of the functional  . 
1u  ,

2u   and 
3u   are the 

variations of the functional  in Eq. (8) with respect to functions displacements 1u , 2u  

and 3u  respectively. The regions   , 
c  and 

c   are determined through the 

relations (1) and (2). 

After some mathematical manipulations, we can represent the equation (9) as follows.  
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Note that the first (the third) underlined term in the equation (10) gives the boundary 

condition with respect to the forces at 1 0x   and 1 1x   (at 3 0x   and 3 3x  ). 

However, the second underlined term in the equation (10) gives the boundary conditions 

with respect to the forces given on the lower and upper face planes of the plate (i.e. at 

2 0x   and 2x h ), as well as on the crack’s edges, i.e. on c


 and  c


. 

Thus, equating the coefficients of 1u , 2u  and 3u  in the equation (10) to zero, the 

equilibrium equation in (4) and the boundary conditions with respect to the forces in (7) 

are obtained and in this way, the validity of the functional (8) for the 3D FEM modelling 

of the boundary value problem under consideration is proven.  Note that similar type 

functional was also used in the paper [Babuscu Yesil  (2017)] for investigation of the forced 

vibration of the pre-stressed rectangular plate with cylindrical cavities. 

Now we consider the FEM modelling of the region occupied by the plate. Under this 

modelling, using the symmetry of the plate geometry and boundary conditions with respect 

to the planes 1 1 / 2x   and 3 3 / 2x  , we use a quarter part of the plate which occupies 

the region  

 1 1 2 3 3= 0 / 2; 0 ; 0 / 2' x x h x       .                                                       (11)  

According to the FEM procedure, the solution domain '  (11) is divided into a finite 

number of elements, i.e. the domain '  is presented as 

1

M

k

k

' = ' 



, and k'  is 

selected as standard rectangular prisms (bricks) with eight nodes. The number M , i.e. 

the number of finite elements is determined from the convergence requirement of the 

numerical results.  

Note that under the FEM modelling of the crack's front we also use ordinary finite elements, 

i.e. under this modelling the so-called singular finite elements are not introduced. This is 

because the investigations carried out in [Akbarov and Turan (2011); Akbarov and 

Yahnioglu (2016), Akbarov (2013)] show that the use of the singular finite elements under 

finite element modelling of the crack's tip changes the values of the ERR in an insignificant 
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amount. Moreover, we note that under FEM modeling the k'  can be also selected as 

rectangular prisms with nodes the number of which greater than eight. For instance, the 

k' can be presented as a 32-node hexahedral element described in [Fan, Zhang, Dong, Li 

and Atluri (2015)].     

Thus, employing the well-known Ritz technique [Zienkiewicz and Taylor (1989)] for the 

case under consideration we solve numerically the boundary value problem formulated 

above and in this way we determine the stress-strain state in the plate. After this 

determination, we calculate the ERR at the crack front with the use of the following 

algorithm. 

First, according to the expression  
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we calculate the strain energy denoted as cU S   where cS  is the area of the crack’s 

edge surface. Thereafter, at a certain point determined with the parameter 1/s  3( (0.5   

3 1) / )x  of the crack’s front, some perturbation 1( / )cS s  is added to the area of the 

crack’s edge surface and the strain energy is calculated for this case, i.e. the values of                 
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respectively caused by the perturbation cS  of the crack’s edge area.  

Thus, using the expressions in (14) and (12) we determine the values of the ERR (denoted 

by  ) as follows. 

1

1

( ( / )) ( )1

2 ( / )

c c c

c

U S S s U S

S s


  



.                                                                                   (15) 
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Note that under calculation of  , the magnitude of the area cS  is determined from the 

convergence of the numerical results obtained for   with decreasing of cS .   

4   Numerical results and discussions 

Below, in consideration of the numerical results, the influence of the initial stress on the 

ERR will be estimated through the ratio 1/q E , however, the influence of the mechanical 

constants, i.e. the orthotropic properties of the plate material will be estimated through the 

ratios 12 1/ ,G E  13 1/G E , 23 1/G E , 2 1/E E  and 3 1/E E . Moreover, under this 

consideration we introduce the ratios 1/h , 0 1/ ,  3 1/  and 1/uh , where 

u ch h h  . Note that under obtaining these results it is assumed that 

12 13 23 0.3      and 1/ 0.2h  . 

All the numerical results which will be discussed below are obtained in the case where the 

region '  (11) is divided into 30, 12 and 30 finite elements in the directions of the 1Ox , 

2Ox  and 3Ox  axes, respectively. Moreover, under calculation of the ERR, i.e. under 

calculation of the values of   (15), the values of cS  are selected as  

2 4
1/ 5.5 10cS    . Note that the number of finite elements and the values of cS  are 

selected from the convergence requirement of the numerical results with accuracy 
510 . 

Moreover, the PC programs through which the numerical results are obtained, are 

composed by the authors of the paper and are realized in FTN77.  

First, we consider the numerical results illustrating validation of the reliability of the used 

algorithm and PC programs. For this purpose, we consider the case where the plate material 

is isotropic, i.e. the case where 2 1/E E  3 1/ 1E E  , 12 1/G E  13 1/G E 

23 1/ 1/ (2(1 ))G E v    and  v  12 13 23 0.3     . Assume that the initial stress 

in the plate is absent, i.e. 1/ 0q E   and  / 2uh h  under which the crack location and 

the problem under consideration become symmetric with respect to the 2 / 2x h  plane, 

according to which, we have the crack problem for the mode I.  However, in the cases 

where / 2uh h  we have the crack problem for the mixed mode. Consequently, in the 

case where / 2uh h  we can calculate the SIF, i.e. we can calculate IK  through the 

values of   (15) with the use of the well-known expression IK  2
0( / (1 ) )    . 

According to the well-known mechanical consideration, the results obtained within the 
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scope of the present algorithm and PC programs for IK  at 1/ 0s   must approach the 

corresponding ones obtained for the plane strain state with increasing of the ratio 3 1/ .  

To prove this prediction, we consider the numerical results given in Tab. 1 which show the 

values of /I IK K   (where 0IK p   ) obtained for various values of the ratios 

0 1  and 0 h . Note that in Tab. 1 the values of /I IK K   related to the plane strain 

state and denoted as /S
I IK K   are calculated with the use of the analytical expression 

detailed in the handbook [Sih (1973)]. Thus, analysis of the data illustrated in Tab. 1 proves 

the foregoing prediction with very high accuracy, i.e. the values of /I IK K   calculated 

with the use of the present algorithm and PC programs approach /S
I IK K   with 

increasing of the ratio 3 1/ . Moreover, according to the mechanical consideration, as 

IK   is the SIF of the mode I in the case where the crack is in the infinite elastic medium, 

then the ratio /I IK K   must approach 1 with simultaneous decreasing of the ratios  

0 1  and 0 h . Note that this prediction is also proven with the results given in Tab. 1 

which are obtained for various ratio 3 1/  and in this way the validity of the algorithm and 

PC programs used in the present investigation are tested and verified.    

Table 1: The values of SIF at 1/ 0s   obtained for various values of the ratio 3 1  in 

the case where the material of the plate is isotropic and the initial stress in the plate is absent. 

0 1/

 

0 / h

 

3 1/  

1 5 10 15 20 50 
S
I IK / K 

[Sih (1973)] 

0.080 0.400 0.9761 1.1771 1.2000 1.2029 1.2036 1.2356 1.2406 

0.075 0.375 0.9742 1.1720 1.1922 1.1943 1.1947 1.1948 1.2009 

0.060 0.300 0.9278 1.1129 1.1304 1.1329 1.1335 1.1341 1.1444 

0.050 0.250 0.8906 1.0658 1.0871 1.0909 1.0920 1.0931 1.0931 

Thus, now we consider the numerical results related to the influence of the problem 

parameters on the values of the dimensionless ERR determined as 
3
1/ ( )p . We also 

consider the dependence between 
3
1/ ( )p  and 1/s  ( 3 3 1(0.5 ) /s x  ), i.e. how the 

crack point distance from the plate’s end 3 0x   influences on 
3
1/ ( )p .  For these 

considerations, we analyze the results given in Tabs. 2, 3 and 4 which illustrate the 

influence of the ratios 3 1/ , 1/s , 1/q E , 23 1/G E  (Tab. 2, under 12 1/G E 



 

 

 

Mathematical Modelling and 3D FEM Analysis                                                              259 

 

13 1/ 0.1G E  ), 12 1/G E  (Tab. 3, under 23 1/G E  13 1/ 0.1G E  ) and 13 1/G E  (Tab. 

4, under 12 1/G E  23 1/ 0.1G E  ) in the case where 3 1 2 1/ / 0.5E E E E  , 

0 12 0.25  and 1/ 0.1uh   (i.e. / 2uh h ). It follows from these results that in 

the relatively small values of the ratio 3 1/  (for instance for the case where 3 1/ 1 ) 

the absolute maximum value of the ERR, (as can be predicted) appears at 1/ 0s   and 

the values of the ERR monotonically decrease with 1/s .  However, for the relatively 

greater values of the ratio 3 1/  (for instance in the cases where 3 1/ 2  and 3) in a 

certain part of the crack front (denoted as 1 10 / */s s   ) the values of the ERR 

remain approximately constant and under 1 1/ */s s  the values of the ERR decrease 

with 1/s . Note that, according to the data given in Tabs. 2, 3 and 4 it can be taken that 

1*/ 0.4s   and 1*/ 1s   for the cases where 3 1/ 2  and 3, respectively.  

Table 2: The influence of the ratio 23 1/G E  on the values of 
3
1/ ( )p  in the various 

3 1 , 1/q E  and 1/s  in the case where 12 1 13 1/ / 0.1G E G E  , 

2 1 3 1/ / 0.5E E E E  , 0 12   0.25 and 1 1/ 0.5 /uh h . 

23 1/G E  1/q E  
1/s 3 1( / 1)  

0 0.03 0.1 0.2 0.3 0.36 0.4 

0.1 

-0.01 22.4196 22.3137 21.4884 18.3288 12.753 7.8909 2.9469 

0 13.7697 13.7254 13.1533 11.8825 8.8454 5.8233 2.3612 

0.01 9.5049 9.4871 9.3305 8.6141 6.8231 4.7522 3.4568 

0.05 

-0.01 27.6317 27.5539 26.9055 24.3008 16.429 13.333 5.9291 

0 16.9657 16.9472 16.7838 15.9965 12.265 10.391 5.0978 

0.01 11.7580 11.7579 11.7743 11.7016 10.820 8.8186 7.0541 

 
1/s 3 1( / 2)  

0 0.2 0.4 0.6 0.73 0.8 0.86 

0.1 

-0.01 28.3165 28.5390 28.7312 26.3608 20.389 15.431 9.4171 

0 15.9994 16.1381 16.4526 15.8959 13.207 10.506 6.8140 

0.01 10.5282 10.5992 10.8283 10.8240 9.5547 7.9512 5.4498 

0.05 

-0.01 32.772 32.8424 32.7727 30.9957 26.304 21.687 14.939 

0 18.972 18.9856 18.9817 18.6702 17.255 15.232 11.410 

0.01 12.7603 11.7743 11.7016 11.8004 12.580 11.800 9.5144 

 
1/s 3 1( / 3)  

0 0.6 0.9 1 1.1 1.2 1.3 
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0.1 

-0.01 30.9739 31.4613 31.9778 31.2755 29.091 24.397 16.496 

0 17.3966 17.5582 18.0691 18.0336 17.364 15.341 11.140 

0.01 11.3317 11.3797 11.7095 11.8273 11.688 10.779 8.3722 

0.05 

-0.01 34.7238 34.9761 35.0308 34.5291 33.101 29.277 22.752 

0 19.7975 19.8684 19.8775 19.8259 19.414 18.758 15.873 

0.01 13.0817 13.1043 12.9833 12.9796 13.100 13.208 12.239 

Table 3: The influence of the ratio 12 1/G E  on the values of 
3
1/ ( )p  in the various 

3 1 , 1/q E  and 1/s  in the case where 23 1 13 1/ / 0.1G E G E  , 

2 1 3 1/ / 0.5E E E E  , 0 12   0.25 and 1 1/ 0.5 /uh h . 

12 1/G E  1/q E

 

1/s 3 1( / 1)  

0 0.03 0.1 0.2 0.3 0.36 0.4 

0.1 

-0.01 22.4196 22.3137 21.4884 18.3288 12.753 7.8909 2.9469 

0 13.7697 13.7254 13.1533 11.8825 8.8454 5.8233 2.3612 

0.01 9.5049 9.4871 9.3305 8.6141 6.8231 4.7522 3.4568 

0.05 

-0.01 36.9888 36.7496 34.8144 28.3804 18.388 10.464 6.9465 

0 18.3204 18.2374 17.5588 15.1016 10.662 6.7160 4.6076 

0.01 11.4425 11.4120 11.1515 10.0736 7.7003 5.2014 3.7167 

 
1/s 3 1( / 2)  

0 0.2 0.4 0.6 0.73 0.8 0.86 

 

0.1 

-0.01 28.3165 28.5390 28.7312 26.3608 20.389 15.431 9.4171 

0 15.9994 16.1381 16.4526 15.8959 13.207 10.506 6.8140 

0.01 10.5282 10.5992 10.8283 10.8240 9.5547 7.9512 5.4498 

0.05 

-0.01 59.4964 59.4485 57.6707 48.4793 34.116 24.401 13.986 

0 23.3897 23.6312 23.9270 22.2096 17.443 13.378 8.3248 

0.01 13.0614 13.1854 13.5231 13.6452 11.418 9.2818 6.1848 

 
1/s 3 1( / 3)  

0 0.6 0.9 1 1.1 1.2 1.3 

0.1 

-0.01 30.9739 31.4613 31.9778 31.2755 29.091 24.397 16.496 

0 17.3966 17.5582 18.0691 18.0336 17.364 15.341 11.140 

0.01 11.3317 11.3797 11.7095 11.8273 11.688 10.779 8.3722 

0.05 

-0.01 66.8953 66.9283 66.9283 63.0712 55.659 43.635 27.262 

0 25.9496 26.4227 27.0723 26.6093 24.930 21.151 14.586 

0.01 14.2577 14.3679 14.8824 14.9846 14.643 13.233 9.9246 

 



 

 

 

Mathematical Modelling and 3D FEM Analysis                                                              261 

 

Table 4: The influence of the ratio 13 1/G E  on the values of 
3
1/ ( )p  in the various 

3 1 , 1/q E  and 1/s  in the case where 12 1 23 1/ / 0.1G E G E  , 

2 1 3 1/ / 0.5E E E E  , 0 12   0.25 and 1 1/ 0.5 /uh h . 

13 1/G E

 
1/q E

 

3/s 3 1( / 1)  

0 0.03 0.1 0.2 0.3 0.36 0.4 

0.1 

-0.01 22.4196 22.3137 21.4884 18.3288 12.753 7.8909 2.9469 

0 13.7697 13.7254 13.1533 11.8825 8.8454 5.8233 2.3612 

0.01 9.5049 9.4871 9.3305 8.6141 6.8231 4.7522 3.4568 

0.05 

-0.01 22.0752 21.9584 21.0068 17.6241 11.784 6.9517 4.5526 

0 13.2181 13.1680 12.7489 11.1250 7.9252 4.9490 3.3565 

0.01 8.9495 8.9282 8.7419 7.9187 5.9964 3.9568 2.7750 

 3/s 3 1( / 2)  

0 0.2 0.4 0.6 0.73 0.8 0.86 

0.1 

-0.01 28.3165 28.5390 28.7312 26.3608 20.389 15.431 9.4171 

0 15.9994 16.1381 16.4526 15.8959 13.207 10.506 6.8140 

0.01 10.5282 10.5992 10.8283 10.8240 9.5547 7.9512 5.4498 

0.05 

-0.01 27.4571 27.8129 28.3319 26.0447 19.685 14.508 8.4808 

0 15.2527 15.4588 15.9621 15.4782 12.524 9.6561 5.9580 

0.01 9.9055 10.0142 10.3668 10.4273 8.9491 7.1956 4.6759 

 
3/s 3 1( / 3)  

0 0.6 0.9 1 1.1 1.2 1.3 

0.1 

-0.01 30.9739 31.4613 31.9778 31.2755 29.091 24.397 16.496 

0 17.3966 17.5582 18.0691 18.0336 17.364 15.341 11.140 

0.01 11.3317 11.3797 11.7095 11.8273 11.688 10.779 8.3722 

0.05 

-0.01 30.1893 30.8428 31.8617 31.2387 28.921 23.836 15.519 

0 16.7773 16.9874 17.7865 17.8137 17.067 14.767 10.244 

0.01 10.8312 10.8941 11.4134 11.5863 11.400 10.291 7.5781 

At the same time, the results given in Tabs. 2, 3 and 4 show that a decrease in the values 

of the shear modulus 23G  and 12G  causes an increase in the values of the ERR and the 

magnitude of this increase is considerable. However, the influence of a decrease of the 

shear modulus 13G  on the ERR is insignificant. Besides all of these, the foregoing results 

show that the initial stretching (compressing) of the plate in the 1Ox  axis direction (Fig. 1) 

causes a decrease (an increase) in the values of the ERR. Note that the influence of the 

initial stress on the values of the ERR depends also on the geometrical parameters such as 
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0 1/  (dimensionless crack’s length) and 1/uh  (the distance of the crack from the 

upper face plane of the plate). This dependence is illustrated with the results given in Tabs. 

5 and 6 which are obtained for various 0 1/ 2  (Tab. 5, under 1 1/ 0.5 /uh h ) and 

1/uh  (Tab. 6, under 0 12 0.25 ) in the case where 23 1/G E 

13 1 12 1/ / 0.1G E G E  , 3 1 2 1/ / 0.5E E E E   and 1/ 0s  .  It follows from Tabs. 

5 and 6 that an increase in the crack length 0 1/  and a decrease in the values of the ratio 

1/uh  cause an increase in the values of the ERR and an increase in the magnitude of the 

influence of the initial stress 1/q E  on the ERR.  

Table 5: The values of 
3
1/ ( )p  calculated at 1/ 0s   and obtained for various 

0 12 and 1/q E  in the case where 12 1 23 1 13 1/ / / 0.1G E G E G E   , 

2 1 3 1/ / 0.5E E E E  , 3 1 1  and  1/uh   10.5 /h . 

0 1/ 2  

1/q E  

0 
0.001

0.001




 

0.005

0.005




 

0.01

0.01




 

0.10 1.5054 
1.4744

1.5377
 

1.3622

1.6816
  

1.2440

1.9020
 

0.15 3.7503 
3.6461

3.8599
 

3.2740

4.3616
 

2.9036

5.1713
 

0.20 7.6623 
7.3974

7.9436
 

6.4790

9.2639
 

5.58040

11.5054
 

0.25 13.7697 
13.2100

14.3694
 

11.3078

17.2556
 

9.5049

22.4196
 

Table 6: The values of 
3
1/ ( )p  calculated at 1/ 0s   and obtained for various 

1/uh  and 1/q E  in the case where 12 1 23 1 13 1/ / / 0.1G E G E G E   , 

2 1 3 1/ / 0.5E E E E  , 3 1 1  and  0 12 0.25 . 

1/uh  

1/q E  

0 
0.001

0.001




 

0.005

0.005




 

0.01

0.01




 

0.10  13.7697 
13.2100

14.3694
 

11.3078

17.2556
 

9.5049

22.4196
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0.0833 14.6570 
14.0107

15.3549
 

11.8495

18.7900
 

9.8517

25.2556
 

0.0666 17.9324 
16.9306

19.0396
 

13.7435

24.8809
 

11.0160

37.7048
 

0.0500 26.1155 
23.9975

28.5639
 

17.8596

43.4137
 

13.3117

88.5157
 

 

Numerical results given in Tab. 7 show that the influence of the change of the ratios 

3 1/E E  and 2 1/E E  on the ERR is insignificant.  Note that these results are obtained in 

the case where 23 1/G E  13 1 12 1/ / 0.1G E G E  , 0 12 0.25 , 

1 1/ 0.5 /uh h , 3 1/ 1  and 1/ 0s  . 

Table 7: The influence of the ratios 2 1/E E  and 3 1/E E  on the values of 
3
1/ ( )p  

calculated at  1/ 0s   for various 1/q E  in the case where 12 1 23 1/ /G E G E   

13 1/ 0.1G E  ,  0 12   0.25, 3 1 1  and 1 1/ 0.5 /uh h . 

3 1E E  

2 1E E  

0.5 0.3 

1/q E  1/q E  

0 
0.001

0.001




 

0.005

0.005




 

0.01

0.01




 0 

0.001

0.001




 

0.005

0.005




 

0.01

0.01




 

0.5 13.7697 
13.2100

14.3694
 

11.3078

17.2556
 

9.5049

22.4196
 14.1682 

13.5992

14.7777
 
11.6625

17.7054
 

9.8229

22.9249
 

0.3 12.6710 
12.2055

13.1668
 

10.6018

15.5119
 

9.0484

19.5597
 12.9163 

12.4567

13.4050
 
10.8668

15.7046
 

9.3165

19.6325
 

 

Now we turn again to consideration of the results related to the influence of the initial stress 

1/q E  on the ERR. We recall that, according to the results discussed above, the initial 

stretching (compressing) of the plate causes to decrease (to increase) the ERR. However, 

under initial compression of the plate at a certain value of the compression force 1/q E , 

buckling delamination around the crack takes place and this "certain" value is called the 

critical value and is denoted through 1/crq E .  Note that corresponding buckling 

delamination problems are investigated in the papers [Akbarov and Yahnioğlu (2010); 

Akbarov, Yahnioğlu, and Karatas (2010)] and also are detailed in the monograph [Akbarov 
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(2013)]. Thus, the numerical results obtained in the present investigations show that if the 

plate is compressed initially and the absolute values of the ratio 1/q E  increase and 

approach 1/crq E , then the values of the ERR increase monotonically and approach 

infinity as 1/q E   1/crq E . For illustration of this statement, the dependence between 

3
1/ ( )p   and 1/q E  is given graphically in Figs. 2 and 3 which are constructed for the 

case where 3 1/ 1 , 13 1/ 0.1G E  , 3 1 2 1/ / 0.5E E E E  , and 1 1/ 0.5 /uh h . 

In these figures, the graphs grouped by the letter a (by the letter b) are constructed at 

1/ 0s   (at 1/ 0.4s  ). The graphs given in Fig. 2 (in Fig. 3) are constructed for 

various values of the ratio 23 1/G E  under 12 1/ 0.1G E   (of the ratio 12 1/G E  under 

23 1/ 0.1G E  ). Note that in these figures the values of  1/crq E  are also indicated by the 

vertical dashed lines. As the influence of the change of 23 1/G E  on the values of 1/crq E  

is insignificant and as the values coincide with each other with very high accuracy, 

therefore in Fig. 2, 1/crq E  is indicated only for the case where 23 1/ 0.1G E  . However, 

as the influence of the change of 12 1/G E  on 1/crq E  is considerable, therefore, in Fig. 3, 

all the values of 1/crq E   which correspond to the selected values of 12 1/G E , are 

indicated.  

 

        

(a)      (b) 

Figure 2:  Graphs of the dependence between 
3
1/ ( )p  and 1/q E  constructed for 

various 23 1/G E  in the cases where 1/ 0s   (a) and 1/ 0.4s   (b) under 

12 1 13 1/ / 0.1G E G E  , 2 1 3 1/ / 0.5E E E E  , 3 1 1   and  0 12 0.25 . 
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(a)      (b) 

Figure 3:  Graphs of the dependence between 
3
1/ ( )p  and 1/q E  constructed for 

various 12 1/G E  in the cases where 1/ 0s   (a) and 1/ 0.4s   (b) under 

23 1 13 1/ / 0.1G E G E  , 2 1 3 1/ / 0.5E E E E  , 3 1 1   and  0 12 0.25 . 

 

We recall that all the numerical results discussed above are obtained in the cases where 

3 1/ 1  and it is established that the initial stretching of the plate causes a decrease, but 

the initial compression causes an increase of the ERR. The detailed numerical investigation 

carried out for the cases where 3 1/ 1  shows that the character of the influence of the 

initial stress of the plate on the ERR remains valid before a certain value of the ratio 3 1/  

(denote it as  3 1/ * 1 ) but after this the character changes. In other words, in the cases 

where  3 1/    3 1/ *  the initial stretching of the plate causes an increase, but the 

initial compression causes a decrease of the ERR. For a clear illustration of this statement, 

we consider the graphs of the dependence between 
3
1/ ( )d p   (where d 

1/ 0
(

q E



  

1/ 0q E



) / 

1/ 0q E



)and 1 .q E These graphs are given in Figs. 4 and 5 which are 

constructed for various 3 1/  under 13 1/ 0.1,G E  3 1 2 1/ / 0.5E E E E  , 

1 1/ 0.5 /uh h  and 1/ 0s   for the cases where 23 1/ 0.05G E   (Fig. 4a) and 

23 1/G E 0.03 (Fig. 4b) for 13 1/ 0.1G E   and for the cases where 12 1/ 0.05G E   (Fig. 

5a) and 12 1/G E  0.03 (Fig. 5b) for 23 1/ 0.1G E  .  
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
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


) as a result of the initial stress and the ratio 3 1  

in the cases where 12 1/ 0.05G E   (a) and 12 1/ 0.03G E   (b) under 

23 1 13 1/ / 0.1G E G E  , 2 1 3 1/ / 0.5E E E E  , 0 12 0.25  and 1/ 0s  . 

Note that the aforementioned change of the character of the influence of the initial stress 

of the plate on the values of the ERR can be explained with the three-dimensionality of the 

problem under consideration and with the restriction of the crack’s opening displacements, 

with the condition 2 0u   on the surfaces of the ends of the plate at 3 0x  , and 3 3x  .     

Now we attempt to describe the possible method for experimental determination of the 

influence of the initial stresses on the ERR. First of we note that for this purpose it is 

necessary to appear the homogeneous initial stretching or compressing stress in the 

specimen-plate or specimen-beam acting along the direction which is parallel to the crack's 

edges and perpendicular to the crack's front. According to this statement, in the present 

case it is impossible to use the double cantilever beam (DCB) specimens which are used 

almost all experimental studies of the ERR (see, for instance the paper [Shah and Tarfaoui 

(2017)] and many others listed therein) at a crack tip in the classical cases. Consequently, 

in order to appear the aforementioned initial stresses it is necessary to use the specimen 

which contain the band crack and to apply firstly  corresponding external forces for 

appearing the initial stresses and then to apply the additional external forces for opening 

the crack' edges. Namely, determining experimentally the values of the displacements 

caused by these additional forces and using the corresponding plate or beam theory, such 

as in [Shah and Tarfaoui (2017)], it can be calculated the corresponding ERR 

experimentally. It should be noted that, in the present case the mentioned plate or beam 

theories must take into consideration of the corresponding initial stretching or compressing 

of that.    

5    Conclusions 

Thus, in the present paper, the mathematical modelling and 3D FEM study of the ERR are 

undertaken in the band crack’s front contained in the orthotropic thick rectangular plate 

which is stretched or compressed initially before the loading of the crack's edge planes. 

The initial stretching or compressing of the plate causes the uniformly normal stress acting 

in the direction which is parallel to the plane on which the band crack is located, to appear. 

After the appearance of the initial stress in the plate it is assumed that the crack's edge 

planes are loaded with additional uniformly distributed normal forces and the ERR caused 

with this additional loading is studied. 

The corresponding boundary value problem is formulated within the scope of the so-called 

3D linearized theory of elasticity which allows us to take into consideration the initial stress 

on the values of the ERR but it is impossible to study this influence within the scope of the 

3D linear theory of elasticity. Under formulation of the problem related to determination 

of the stress-strain state which is caused by, among other conditions, the aforementioned 

additional loading acting on the crack’s edge planes on the plate ends, it is also assumed 

that the displacement along the plate thickness is equal to zero.  
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The problem under consideration is solved numerically by employing the 3D FEM.  

Numerical results on the influence of the initial stress, orthotropic properties of the plate 

material, crack’s length and its distance from the upper face plane of the plate on the values 

of the ERR, are presented and discussed. According to these results and discussions the 

following concrete conclusions can be drawn.  

 Before a certain length of the crack’s band, the initial stretching of the plate causes a 

decrease, but that initial compression causes an increase in the values of the ERR; 

 In the cases where the crack’s band length is less than the aforementioned “certain 

length”, the character of the influence of the initial stress on the ERR changes and this 

change may be caused by the restriction of the band’s ends opening displacement;   

 The magnitude of the influence of the initial stress on the ERR increases with the crack 

length and with the convergence of the crack to the plate’s upper plane; 

 A decrease in the values of the shear modulus of the plate material in the planes which 

are perpendicular to the crack’s location plane causes a considerable increase in the 

values of the ERR;  

 Under initial compression of the plate, the values of the ERR approach infinity with 

the approaching of the absolute values of the initial compression force to the critical 

force which causes the buckling-delamination of the plate around the band crack; 

 Under a relatively greater length of the crack's band, the values of the ERR obtained 

in a certain part of the crack's front which is around the center of this front along the 

band direction, can be taken as the corresponding ones related to the plane strain state. 
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