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Abstract: As a good measure to tackle the challenges from energy shortages and environmental 

pollution, Electric Vehicles (EVs) have entered a period of rapid growth. Battery swapping 

station is a very important way of energy supply to EVs, and it is urgently needed to explore 

a coordinated control strategy to effectively smooth the load fluctuation in order to adopt the 

large-scale EVs. Considering bidirectional power flow between the station and power grid, 

this paper proposed a SFLA-based control strategy to smooth the load profile. Finally, 

compared simulations were performed according to the related data. Compared to particle 

swarm optimization (PSO) method, the presented SFLA-based strategy can effectively lower 

the peak-valley difference with the faster convergence rate and higher convergence precision. 

It is important for the swapping station that energy exchanging mode can supply energy for 

large-scale EVs with a smoother load profile than one-way charging mode. 

Keywords: SFLA, bidirectional coordinated control, battery swapping station, optimization.  

1  Introduction 

In recent decades, the issues of energy shortage and environment pollution have 

increasingly become worldwide concerns. As a new green traffic tool, EVs have been 

demonstrated considerable advantages in solving the energy crisis and reducing the 

emissions of carbon dioxide, as well as in providing a means to drastically reduce the 

man-made pollution [Williams, DeBenedictis, Ghanadan et al. (2012); Aziz, Oda, Mitani 

et al. (2015); Du, Wang and Lv (2016)]. As the large-scale EVs participate in power grid 

operation, the power load would rise significantly. The charging behavior of EVs is of 

randomness and intermittence, and the impact of large-scale EVs on the grid would 

gradually appear as follows: the EVs charging time may be concentrated, thus resulting in 

local load peak and drastic fluctuations in the load of power grid. Therefore, coordinated 
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charging is urgent to effectively smooth the load profile. Furthermore, it could potentially 

provide flexible services to the grid, e.g. load shifting, balancing power, and frequency 

response [Zhang, Zhang, Xiong et al. (2014); Yang, Zhang, Niu et al. (2015); Zhao, Huang and 

Qiang (2015); Xia, Lai, Zhong et al. (2016); Vahedipour-Dahraie, Rashidizaheh-Kermani and Najafi 

(2017)].  

Enabling bidirectional power flow, V2G services offer a wide range of benefits and 

revenues. And in fact, the coordinated strategies proposed in most researches are applied 

to control over the charging/discharging behavior of huge EVs batteries. Aggregated 

many batteries, battery swapping stations could be regarded as energy storage power 

stations, which effectively could carry out the coordinated strategies to achieve the 

benefits and revenues offered by V2G. Rao R. et al. [Tan, Ramachandaramurthy and 

Yong. (2016)] proposed an optimization charging mode (OCM) and simulated the 

impacts of OCM on the power grid side and generation side. Xie P. et al [Xie, Li, Zhu et 

al. (2016)] applied Monte-Carlo stochastic simulation method to estimate the equivalent 

controllable capacity of battery swapping stations, presented the lumped S2G equivalent 

model subject to SOC limits and CC constrains, and proposed a filter-based AGC 

coordinated strategy. Zhang Q.D. et al. [Zhang, Huang, Chen et al. (2015)] used genetic 

algorithm to solve the scheduling model which took the economic operation of battery 

swapping stations and the optimal switching frequency of charging/discharging machine 

as the goals. Yang J. et al. [Yang and Sun (2015)] proposed a modified genetic algorithm 

to study the electric vehicles battery swap station location and inventory problem which 

was formulated as an integer program. Sun L. et al. [Sun, Wang, Liu et al. (2015)] 

analyzed the start-up characteristics of a generator powered by batteries and proposed a 

bi-level optimisation-based network reconfiguration model to determine the restoration 

paths with an objective of maximizing the overall generation capability, and solved this 

problem by the well-established particle swarm algorithm. Kang Q. et al. [Kang, Wang, 

Zhou et al. (2015)] presented a novel centralized charging strategy of EVs under the 

battery swapping scenario by considering optimal charging priority and charging 

location (station or bus node in a power system) based on spot electric price, and 

introduces a dynamic crossover and adaptive mutation strategy into a hybrid algorithm of 

particle swarm optimization and genetic algorithm to implement the charging strategy. 

With the popularization of EVs, battery swapping stations will increase rapidly and 

arouse more and more attentions. In this paper, we mainly investigated the bidirectional 

power flow between the station and power grid and designed a SFLA-based control 

strategy to smooth the load profile. Compared to particle swarm optimization (PSO) 

method, the presented SFLA-based strategy can effectively lower the peak-valley 

difference with the faster convergence rate and higher convergence precision. 

2  Optimization model of EV battery swapping station 

According to the “technical guide for electric vehicle battery-swap station” presented by 

the State Grid Corporation of China (SGCC), one charger for EV is used to charge one 

battery box. In the battery box, there is a battery pack, which consists of a plurality of 

battery cells. The battery mentioned in this paper refers to the battery pack. There are 
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two types of battery in EV battery swapping stations, which are called regulated batteries, 

connected to EV battery chargers and participating in the grid coordinated control, and 

full-charged reserve batteries, disconnected to chargers and only used when not meeting 

the demand for swapping battery. Only regulated batteries are considered in this paper. 

In order to investigate the bidirectional coordinated control strategy for EV battery swapping 

stations, some assumptions are made as follows. 

1) Under normal circumstances, there are sufficient chargers, and batteries in the state 

can meet the user's needs. 

2) Irrespective of the diversity of batteries [Chen, Li and Hong (2015)], all batteries are 

considered of the same type, and with the same initial charging state (SOCb) of 20% and 

the same end-charging SOC of 100%. 

3) In optimization model, meeting the energy exchange purpose is a priority. And the 

constraint of battery continuous charging would be ignored. Furthermore, we assume 

that the charging or discharging power would be achieved within an allowable range. 

4) At the beginning of optimization period, set as 0:00, the regulated batteries with full 

charge are only swapped out for the user’s demand, and don’t perform the charge and 

discharge operations. 

2.1  Optimization objective function  

In energy exchange model, EV battery-swap stations can play its positive role in 

smoothing the load fluctuation and improving the grid operation. Then, the minimum 

variance of the load profile including the charging load generated by EV battery-swap 

stations in one area is treated as the optimization objective. 

In view of assumption (3), batteries would not be charged by the typical two-stage 

method mentioned in Qiang (2015). Therefore, one optimization period TO could be 

arbitrarily divided into multi-sections (Mb), and each section has the same duration Tb. 

b O b/T T M
                                                     

(1) 

Obviously, a larger Mb implies the higher precision of the model with the greater amount 

of computation, and vice versa. 

Then, the optimization objective can be expressed as Huang, Qiang, Zhang et al. (2013). 
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where Pd,j represents the predicted daily load power of the jth section excluding the 

charging load generated by EV swap station; N is the total number of EV battery 

chargers; Pi,j stands for the charging or discharging power of the ith battery in the jth 

section. A positive Pi,j indicates that the battery is charging, and a negative Pi,j indicates 

that the battery in a discharged state. If Pi,j equals to zero, it indicates that the battery is in 

the off-working state. 
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2.2  Constraints  

In addition to meeting the user demand for battery replacement, EV battery swapping 

station plays an active role as energy storage unit in the grid operation. Then, the 

charging or discharging power and battery capacity must be considered. 

2.2.1  Power constraint  

The overlarge power may cause damage to the charge-discharge device, which is used to 

exchange energy between the batteries and grid. Therefore, 

dmax , cmax

dmax device_d max battery_dmax

cmax device_cma x battery_cmax

min[ , ]

min[ , ]

i jP P P

P P P

P P P

  




                                        

(4) 

where Pdevice_dmax and Pdevice_cmax respectively represent the maximum charging and 

discharging power of devices；Pbattery_dmax and Pbattery_cmax stand for those of batteries. 

2.2.2  Battery capacity constraint  

According to the battery specification, there are upper and lower limits to battery 

capacity. Namely, the battery would be charged up to the upper limit and stopped 

discharging when its capacity drops down to the lower limit. Based on the assumption 

(2), all the batteries have the identical capacity and it can be expressed as 

min maxQ Q Q 
                                                    

(5) 

where Qmax and Qmin are the upper and lower limits of battery capacity when charging or 

discharging. Considering the relationship between SOC and capacity of batteries, it is 

easy to deduce that at any time the SOC should meet 

min min full max full maxSOC / SOC / SOCQ Q Q Q   
             

(6) 

where Qfull stands for the battery capacity in the full charge state. 

For the battery i, tin(i) denotes its swap-in section. And according to the assumption, the 

charging or discharging operation of the battery would be performed from the next 

section tin(i)+1. Then at the beginning of section j, its capacity Qi, j can be expressed as 

the accumulation of the initial capacity deduced with the SOCb and the change of 

capacity from the section tin(i) + 1 to j due to charging or discharging, 

 in
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Substitute Eq. (7) into Eq. (6) and yield 
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In order to reduce the variables of the model, the further assumption is made 

min b

max e

SOC SOC

SOC SOC =1




                                                    

(9) 

Substitute Eq. (7) and Eq. (9) into Eq. (8), then yield 
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(10) 

2.2.3  User demand constraint  

As the main means of energy supply to EVs, the primary function of swap station is to 

provide sufficient full-charged batteries to satisfy the user’s demands. Therefore, it is 

obvious that the charging or discharging operation of the battery would be done during the 

section tin(i)+1 to the section tout(i)-1, where tout(i) denotes the swap-out section of the ith 

battery. Then the section j would be an integer and meet 

in out( ) 1 ( ) 1t i j t i   
                                                

(11) 

Batteries must be full-charged when they are swapped out. So, 

out out, ( )-1 , ( )-1 b fulli t i i t iQ P T Q  
                                            

(12) 

Evidently, Pi,tout(i)-1 is non-negative. So the battery would not be discharged in the section 

tout(i) - 1. 

Substitute Eq. (7) into Eq. (12) and yield the charging power in the section tout(i)–1. 

out
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(13) 

Through the above analysis, it is important to note that the full-charged regulated 

batteries could be charged only after discharged, while the batteries swapped into station 

would be discharged just after charged. 

3  SFLA-based energy exchange optimal control strategy 

3.1  Shuffled frog leaping algorithm  

SFLA is a bio-inspired optimization technique and imitates and models the behavior of 

frogs searching for food laid on discrete stones randomly located in a pond [Huang, 

Qiang, Zhang et al. (2013); Eusuff and Lansey (2003); Ebrahimi, Hosseinian and 

Gharehpetian (2011)]. In SFLA there is a population, which consists of a set of frogs 

(solutions). The set of frogs is partitioned into subsets referred to as memeplexes. 

Different memeplexes are considered as different cultures of frogs, and each memeplex 

performs a local search. Within each memeplex, the individual frogs hold ideas, which can 

be influenced by those of other frogs, and evolve through a process of memetic evolution. 
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Frog leaping improves an individual’s meme and enhances its performance towards the 

goal. After a predefined number of memetic evolution steps, ideas are passed among 

memeplexes in a shuffling process. The local search and the shuffling processes continue 

until the defined convergence criteria are satisfied. 

SFLA involves a population of possible solutions defined by a set of p randomly 

generated frogs denoted as ),...,,(,],...,,[ 2121 iSi

T

p xxxXwhereXXXQ   is the 

position of the ith frog in the S dimensions search space. All the frogs are sorted in a 

descending order according to their fitness, and the population is divided into m 

memeplexes, each containing n frogs (i.e., p=m×n), in such a way that the first frog goes 

to the first memeplex, the second frog goes to the second memeplex, the mth frog goes to 

the mth memeplex, and the (m+1)th frog goes back to the first memeplex, and the process 

continues in this manner. 

In each memeplex the frogs with the best and the worst fitness are represented by Xb and 

Xw, respectively. The best frog in the whole population is denoted by Xg. During 

memeplex evolution, the worst frog Xw leaps toward the best frog Xb, which is 

formulated as the following updating rule 

_ max max

(0,1) ( )

,

b w

w new w

X rand X X

X X X X X X

   

      
                            

(14) 

where, ΔX denotes the updated step size for frog leaping; rand (0,1) generates a random 

number between (0, 1); and ΔX max is the maximum distance in one leaping. If Xw_new has 

better fitness, the worst frog Xw will be replaced. Otherwise, the calculations in (1) are 

repeated with replacement of Xb by Xg.  

If no improvement occurs in this case, a new solution is randomly generated within the 

feasible space to replace the worst frog Xw. Then, the calculations continue for a specific 

number of iterations. After a prespecified number of memetic evolutionary steps within 

each memeplex, to ensure global exploration, ideas passed within memeplexes are 

combined in the shuffling process. All the frogs are resorted, and the population is 

redivided into m memeplexes. The concurrently implemented local search and global 

shuffling continue alternatively until predefined convergence criteria are satisfied. 

3.2  SFLA_based optimization model  

To achieve the minimum variance of the load profile including the load generated by EV 

battery swapping stations in one area, the position of the virtual frog consists of the 

charging or discharging power of each battery in each section. Based on Eq. (13), the 

charging power in the last section could be derived by the powers in other sections. It 

indicates that the number of independent variable of the ith battery is tout (i)-tin(i)-2. Then 

the position vector of frog can be defined as 

in in out b in b b out b

b

1, (1) 1 1, (1) 2 , ( )+1 , ( ) 2 , ( ) 1 , ( ) 2
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And the dimension D of the vector is 

b

out in

1

( ( ) ( ) 2)
N

i

D t i t i


  
                                             

(16) 

Then the updating rule of position on each dimension within each memeplex could be 

expressed as 

b w b in out
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( , ) (0,1) ( ( , ) ( , )) 0 , [ ( ) 1, ( ) 1]

( , ) ( , ) ( , ) ( , ) ( , ) ( , )

P j t rand P j t P j t j N t t j t j

P j t P j t P j t P j t P j t P j t

        

      
 

(17) 

where Pb(j,t) and Pw(j,t) represent the Pj,t of the best and worst frog position vectors within 

a memeplex respectively; Pw_new(j,t) represents the updated power. If there is a batter 

fitness with Pw_new(j,t), replace Pw with Pw_new(j,t). Otherwise, use Pg(j,t), which is the Pj,t 

of the best frog position vector within the whole population, to replace Pb(j,t) and repeat 

iterative update. If there is still no improvement, randomly generate a Pw_new(j,t) and 

substitute the original Pw(j,t) for further iteration. 

3.3  Steps of SFLA  

The overall process of SFLA consists of the following main steps. 

Step 1: Initialize the parameters, which include the number of frogs (p) in the whole 

population, the number of frogs (n) in each memeplex, the maximum iteration number 

(ite_m) for each memeplex and the maximum shuffling iteration number (ite_p) for the 

whole population. Obviously, the whole population is divided into m (p/n) memeplexes. 

Step 2: Initialize the population, which is formed by p randomly generated frogs X1, X2, ..., 

Xp. Compute the fitness value F(Xi) according to (2) for each frog Xi. It is noted that in the 

position vector X, the dimension of every battery is various, and it is relatively difficult to 

deal with X1, X2, ..., Xp. Therefore, we set the power to “0” in those non-effective sections 

those are before tin(i)+1 and after tout (i)-1. Then every battery has the same dimension of 

Mb. As a result, the position vector of frog can be modified as 

in b in b b out b b out b

b

b

1, (1) 1 1, (1) 2 1, (1) 1 , ( ) 1 , ( ) 2 , ( ) 2

battery1 battery

A optimal period o with  sections

(0, ,0, , , ,0, ,0, 0, ,0, , , , ,
out outt t t N t N N t N N t N

N

T M

X P P P P P P      ，

bA optimal period o with  sections

0, ,0)

T M

 

(18) 

Step 3: Shuffle the frogs. Firstly, sort the p frogs in order of decreasing fitness, and then 

partition all frogs into m memeplexes. The first frog goes to the first memplex, the second 

frog goes to the second memeplex, the mth frog goes to the mth memeplex, the (m+1)th frog 

goes back to the first memeplex, and at last the pth frog goes to the mth memeplex. 

Step 4: Memetic evolution. Repeat the following operations for ite_m times: Firstly, find 

the worst frog Xw and the best frog Xb in each memeplex, then update Xw according to Eq. 

(17), and yield Xw_new. If Xw_new has a better fitness, replace Xw by Xw_new. Otherwise, repeat 

the updated strategy with Xg replacing Xb. If this still cannot produce a better solution, 

replace the Xw by a randomly generated frog. In fact, Xw_new is obtained by updating the D 

powers in Eq. (15). The updating flow chart of the ith battery is shown in Figure 1. 
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Figure 1: Updating flow chart of the ith battery 

In Figure 1, as much as possible in order to satisfy the constraint conditions of Eq. (13), if 

the updated charging power exceeds a certain boundary, absorption method is used to 

handle the boundary, setting the power to the boundary value; if the updated discharging 

power does, reflection method is applied to change (reduce) the power. 

Step 5: Check convergence. If the convergence criteria are satisfied, stop and output the 

best frog Xg in the whole population. Otherwise, return to Step 3.  

Step 6: Output the results and quit the program. 

Here, the convergence criteria are defined as the maximum number of shuffling iterations 

for whole population (ite_p). 

4  Numerical simulation 

In this paper, the optimization period To is set to a day and divided into 24 sections with 

the duration Tb of one hour. 

4.1  Parameters of EV battery  

In the EV market, there are different types such as NiMH, Lead Acid, and Li-Ion. And 

the market share of Li-Ion with its technical advantages has increased year by year. The 

“E6 pioneer” EV developed by BYD Co., Ltd., has been configured a Li-Ion battery with 
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the energy density of 100 W•h per kilogram (i.e., a battery of 600 kg can store power of 

60 kW•h for each charging). Its main parameters are shown in Table 1. 

Table 1: Basic parameters of battery 

Umax 

(V) 

Imax 

 (A) 

Constant current 

charging duration (h) 

Constant voltage 

charging duration (h) 

58.8 120 1.5 2.5 

4.2  Area daily load 

In a certain area, its daily load power regardless of EV swap station can be predicted and 

shown in Table 2. 

Table 2: Predicted daily load without the load generated by EV battery swapping station 

Time 

(h) 

Power 

(MW) 

Time 

(h) 

Power 

(MW) 

Time 

(h) 

Power 

(MW) 

Time 

(h) 

Power 

(MW) 

1 5.25 7 9 13 8 19 17.75 

2 4.25 8 10.5 14 7.5 20 16 

3 4 9 9.5 15 7.75 21 14.25 

4 4 10 9.25 16 8.25 22 9.75 

5 4.25 11 9.75 17 13 23 7.25 

6 5.75 12 12 18 18 24 5.75 

4.3  Parameters of the EV battery swapping station  

At the beginning of one optimization period, there are 600 batteries in the swapping 

station, including 350 full-charged batteries, 200 un-full changed batteries, and 50 

reserved batteries. All batteries except the reserved batteries participate in the optimal 

control of coordinated charging. By predicting the demand of EV owners for swapping 

batteries during each optimization section, the number can be derived and shown in 

Table 3. 

 

Table 3: Predicted number of batteries swapped in during each optimization section 

Time 

(h) 

Numbe

r 

Time 

(h) 

Numbe

r 

Time 

(h) 

Numbe

r 

Time 

(h) 

Numbe

r 

1 3 7 53 13 30 19 28 

2 3 8 68 14 30 20 28 

3 1 9 46 15 37 21 25 

4 2 10 31 16 50 22 18 

5 10 11 17 17 67 23 13 

6 18 12 24 18 42 24 6 
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4.4  Simulation and analysis  

According to [Chen, Li and Hong (2015)], the maximum charging and discharging power 

of battery are set to 8 kW and 6 kW respectively, which are less than those of device. 

The main parameters of SFLA are shown in Table 4. 

Table 4: Parameters of SFLA 

Parameter p n m ite_m ite_p 

Value 200 20 10 5 100 

Compared with the traditional one-way charging mode, the energy exchanging mode, 

bidirectional coordinated control has more efficient at smoothing the fluctuation of power 

load. Figure 2 shows the load profiles under various conditions and the variances are 

compared in Table 5. 
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Figure 2: Area load profiles under different conditions 

Table 5: Variances under different conditions 

Condition 
Uncontrolled 

charging 

Based_SFLA coordinated charging 

One-way charging Energy exchanging 

Variance 

(×107kW2) 
1.836 1.6105 1.5380 

Result - Declining 12.28% Declining 16.23% 

In Figure 2, the load profile under bidirectional coordinated control is the smoothest. 

Under this coordinated control, the batteries are recharged in the valley load time period 

and discharged in the peak load time period. During the daytime, the optimal load profile 
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is closer to the profile of no EVs. And for making the swapping station the same state at 

the beginning of every optimization period To, there are many batteries which would be 

charged to full in the last section. Therefore, at the end of To, the charging power rises 

obviously. Fortunately, it happened in the night, which is the valley load time period. 

Furthermore, it is obvious that in Table 5 the coordinated charging can smooth the load 

fluctuation and shift peak load. And the variance has reduced from 1.836 × 107 kW2 to 

1.538 × 107 kW2 in energy exchanging mode, which is more efficient to decline 16.23%, 

greater than that in one-way mode of 12.28%. 

Particle swarm optimization (PSO) is usually used to solve optimization problems [Tian, 

Jing-Han, Jiang, et al. (2012); Han, He, Wang, et al. (2011); Rajanna and Saini (2016); 

Xuewei, Ke and Potter (2016)]. Then, the compared simulations are carried out with 200 

particles and the results are shown in Figure 3. 
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Figure 3: Area load profiles optimized with PSO and SFLA 

In Figure 3, SFLA and PSO can lower the load peak-valley difference and smooth the 

load profile. But the convergence characteristics of two algorithms in the numerical 

simulation differ greatly and are shown in Figure 4. 
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Figure 4: Convergence characteristics of SFLA and PSO 

Clearly, the convergence rate of SFLA is much faster (100) than that of PSO (more than 

1000) and the minimum variance of the load profile generated by SFLA is less than that 

generated by PSO, shown in Table 6. 

Table 6: Variances generated by PSO and SFLA 

Condition 
Uncontrolled 

charging 

Coordinated charging 

PSO SFLA 

Variance 

(×107kW2) 
1.836 1.6967 1.5380 

Iterations - 100 More than 1000 

Result - Declining 7.59% Declining 16.23% 

5  Conclusion 

As a main way of energy supply to EVs, the optimal control strategy for coordinated 

charging of the swapping station is very important in smoothing the load profile. 

Considering bidirectional power flow between the station and power grid, this paper 

presented an optimization model of EV battery swapping station and proposed a 

SFLA-based control strategy to optimize the operation of station. Compared simulations 

were carried out and the main conclusions of this paper are as follows: 

• For the swapping station, energy exchanging mode can supply energy for large-scale 

EVs with a smoother load profile than one-way charging mode. 
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• Compared to particle swarm optimization (PSO) method, the presented SFLA-based 

strategy can effectively lower the peak-valley difference with the faster convergence 

rate and higher convergence precision. 
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