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The Interface Stress Field in the Elastic System Consisting of the 

Hollow Cylinder and Surrounding Elastic Medium Under 3D 

Non-Axisymmetric Forced Vibration 

Surkay D. Akbarov1, 2, * and Mahir A. Mehdiyev3 

Abstract: The paper develops and employs analytical-numerical solution method for the 

study of the time-harmonic dynamic stress field in the system consisting of the hollow 

cylinder and surrounding elastic medium under the non-axisymmetric forced vibration of 

this system. It is assumed that in the interior of the hollow cylinder the point-located with 

respect to the cylinder axis, non-axisymmetric with respect to the circumferential direction 

and uniformly distributed time-harmonic forces act. Corresponding boundary value 

problem is solved by employing of the exponential Fourier transformation with respect to 

the axial coordinate and by employing of the Fourier series expansion of these 

transformations. Numerical results on the frequency response of the interface normal 

stresses are presented and discussed.  

Keywords: Interface stress field, frequency response, hollow cylinder, elastic medium, 

forced vibration.  

1 Introduction 

In many cases the system consisting of the cylinder and surrounding elastic medium is used 

as a model for studying static, stability loss and dynamic problems related to the pipelines, 

tunnels, subway lining, mine works and other type underground structures. Therefore, the 

theoretical study on the dynamics of the bi-material elastic system consisting of the hollow 

cylinder and surrounding elastic medium to which the investigations carried out in the 

present paper regard also, has a great significance not only in the theoretical sense but also 

in the practical sense.  

However up to now the related investigations are made mainly for the plane-layered 

systems whose beginning is the investigations carried out in the paper by Lamb [Lamb 

(1904)]. The review of these investigations is made in the monograph by Akbarov 

[Akbarov (2015)] and other ones listed therein. Here we consider a brief review some of 

them which are made approximately in last ten years and begin this review with the papers 

by Akbarov [Akbarov (2006a, 2006b)] in which the axisymmetric time-harmonic Lamb’s 
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problem is investigated for the finite-pre-strained highly elastic bi-material elastic system 

consisting of a covering layer and half-space [Akbarov (2006a)] and for the bi-material 

elastic system consisting of bi-layered slab and of a rigid foundation [Akbarov (2006b)]. 

In these papers it is assumed that the materials of the constituents are incompressible ones. 

In the paper by Akbarov [Akbarov (2013)] the foregoing problem related to the system 

“covering layer+half-space” is studied for the case where materials of the constituents are 

compressible ones. Moreover, in the paper by Akbarov et al. [Akbarov and Guler (2005)] 

the Lamb’s problem is investigated for a “pre-stretched covering layer+ half-space” system 

under a time-harmonic strip-loading.  

In all the reviewed above works it is assumed that the materials of the constituents are 

isotropic. The case where the materials of the system consisting of the pre-stretched 

covering layer and pre-stretched half-plane are orthotropic, is considered in the paper by 

Akbarov and Ilhan [Akbarov and Ilhan (2010)]. The same problem for the case where the 

materials of the system are piezoelectric ones is considered in the paper by Akbarov and 

Ilhan [Akbarov and Ilhan (2013)].  Note that the main attention in these works is focused 

on the frequency response of stresses acting on the interface plane between the covering 

layer and half-space. 

However, the investigations carried out up to now and related to the forced vibration of the 

system consisting of a hollow cylinder and surrounding elastic medium is not so much as 

those made for the plane layered systems. The investigations regarding to the dynamics of 

this system relate mainly to the moving load and wave propagation problems. Now we 

attempt to review briefly these investigations and begin this review with the paper by 

Parnes [Parnes (1969)] in which a dynamics of a ring load moving with constant velocity 

in the axial direction acting in the interior of a circular bore in an infinite homogeneous 

elastic medium, is investigated. It is assumed that the velocity of the moving load is greater 

than the shear wave velocity in the medium and all the theoretical investigations are made 

for the 3D case, however the numerical results on the stress and displacement distributions 

are presented for the corresponding 2D, i.e. for the axisymmetric case. In the paper by 

Parnes [Parnes (1980)] the aforementioned investigations are made for the case where in 

the interior of the cylindrical cavity a torsional moving load acts.  

The investigation on the moving load problem for the system consisting of a thin 

cylindrical shell and surrounding transversally isotropic medium is examined in the paper 

by Pozhuev [Pozhuev (1980)]. The paper Abdulkadirov [Abdulkadirov (1981)] also studies 

the critical velocity of the moving ring load acting on the system “hollow 

cylinder+surrounded elastic medium”. The study of the dynamics of the ring moving load 

acting in the interior of the hollow cylinder which imperfectly bounded to the surrounded 

fluid-saturated permeable formation, is made in the work Hasheminejad and Komeili 

[Hasheminejad and Komeili (2009)]. Similar investigations were also made in recent years 

in the papers by Hussei et al. [Hussei, François, Schevenels et al. (2014)], Yuan et al. [Yuan, 

Bostrom and Cai (2017)] and others listed therein. Moreover, in recent years, numerical 

methods based on various type finite elements are developed and applied for investigations 

of the dynamics and statics of the elastic and piezoelectric systems (see, for instance the 

papers by Fan et al. [Fan, Zhang, Dong et al. (2015); Bui, Zhang, Hirose et al. (2016); 

Babuscu Yesil (2017); Wei, Chen, Chen et al. (2016)] and others listed therein). 
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It follows from the foregoing review that the investigations related to the forced vibration 

of these system are absent almost completely.  

It should be noted that the first attempt on the study of the axisymmetric forced vibration 

of the “hollow cylinder+surrounding elastic medium” under perfect and imperfect contact 

between the constituents is made in the paper by Akbarov et al. [Akbarov and Mehdiyev 

(2017)]. It is assumed that on the inner free face of the cylinder a point-located 

axisymmetric time-harmonic force, with respect to the cylinder’s axis and which is 

uniformly distributed in the circumferential direction, acts.  

However, in many real cases a non-axisymmetric dynamic loading cases in the interior of 

the hollow cylinder surrounded with elastic medium take place. Consequently, for 

controlling and describing of the stress-strain state in the engineering systems modelled as 

“hollow cylinder+surrounding medium” require the study of the corresponding non-

axisymmetric forced vibration problems to which the present paper relates.  

 

2 Formulation of the problem 

Consider the “hollow cylinder+surrounding infinite elastic medium” system and assume 

that the thickness of the cylinder is h  and the external radius of the cross section of this 

cylinder is .R The sketch of the system is shown in Fig. 1, according to which, the 

cylindrical system of coordinate Or z  is associated with the axis of the cylinder. Assume 

that in the interior of the cylinder the point located with respect to the cylinder axis and 

non-uniformly distributed in the circumferential direction time-harmonic normal forces act. 

Within these frameworks we investigate the non-axisymmetric strain-stress state in the 

system under consideration. 

 

 

c 

Figure 1: The sketch of the considered system (a) and the sketch of the distribution of 

the non-axisymmetric normal forces (b); the sketch of the Sommerfeld contour (c) 

Below, we denote the values related to the hollow cylinder and to the surrounding elastic 

medium with the upper indices (2) and (1) respectively.  

Assume that the materials of the cylinder and surrounding elastic medium are 

homogeneous and isotropic, and write the field equations, relations and boundary and 

contact conditions in the selected cylindrical system of coordinates. 
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Equations of motion: 
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 Elasticity relations: 
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In the relations (1) and (2) the conventional notation is used. 

According to the foregoing assumptions and to Fig. 1b, we can write the following 

boundary conditions on the interior surface of the hollow cylinder. 
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where P   is determined from the following relation. 
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The relation (4) means that the vertical component of the summation of the external forces 

does not depend on the angle α (Fig. 1b) and this summation is constant.  

We assume that the perfect contact conditions satisfy and these conditions are written as 

follows. 
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Moreover, we assume that 
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With this the problem formulation is completed. 

3 Method of solution 

For solution to the boundary value problem (1-6) we use the following representation 

described in the monograph by Guz [Guz (1999)]. 
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where the functions ( )m  and ( )m are the solutions to the equations given below. 
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According to the time-harmonic character of the problem, we can use the presentation 

( , , , )f r z t  ( , , ) i tf r z e   where ( , , )f r z  is an amplitude of the sought values. Below, 

we will omit the over-bar on the amplitudes. Thus, according to this presentation, we can 

replace the operators 
2 2t   and 

4 4t   with the 
2  and 

4 respectively and obtain 

the equations, relations, boundary and contact conditions for the amplitudes of the sought 

values from the forgoing equations. Further, we apply the exponential Fourier transform

( ) i s z
Ff f z e dz




  with respect to the coordinate z  (where s  is a transform parameter) 

to all the equations, relations, boundary and contact conditions obtained for the amplitudes.  
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Thus, according to the foregoing discussions and according to the symmetry and 

asymmetry of the amplitudes of the sought values with respect to the 0z   plane their 

original can be presented through their Fourier transform by the following expressions. 
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We use the dimensionless coordinates ' /r r h  and ' /z z h  (the upper prime will be 

omitted below) and introduce the notation 
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Taking the periodicity of the sought quantities with respect to the   into account we can 

represent the functions 
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F  and 
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F in the Fourier series form as follows. 
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Substituting expressions in (12) into the equations in (11) we obtain the equations given 

below for the unknown functions 
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In (13), the unknown constants 
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following equation. 
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Taking the condition in Eq. (6) into consideration, we find the solution to equations in (13) 

as follows. 
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Substituting the expressions in (16), (17) and (9) into the Fourier transform of the equations 

in (9) and (2), we obtain the expressions for the Fourier transforms of the stresses and 

displacements which enter into the boundary (3) and contact (5) conditions. To reduce the 

volume of the paper, here we do not give these expressions. 

It follows from the expressions of the boundary (3) and contact (5) conditions that the 

second and third conditions in (3), and all the contact conditions in (5) remain valid as are 

for the corresponding transforms. However, the first condition in (3) is transformed to the 

following one 
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In this way, substituting the expressions obtained through the relations (2), (7) and (12) 

into the boundary (3) and contact (5) conditions we obtain the equations for the above-

noted unknown constants. Also, to reduce the volume of the paper, here we do not give 

these equations.  

After finding the aforementioned unknown constants from the above-noted equations, we 

determine completely the Fourier transformation of the sought values and applying the 

algorithm which will be detailed below, the originals of these values are determined 

through the calculation of the integrals given in (9). 

 

4 Numerical results and discussions 

In the present section first we note some remarks on the calculation algorithm of the 

integrals in (9).  

4.1 Some remarks on the algorithm for calculation of the integrals in (9) 

Let us make the explanation of this algorithm with respect to the interface normal stress

( , , )rr R z   (2) ( , , )rr R z   (1) ( , , )rr R z  the Fourier transformation ( , , )rrF R s  

(2)
( , , )rrF R s  

(1)
( , , )rrF R s   of which can be presented as follows. ( , , )rrF R s  

(1)
0 ( , )rrF R s +

(1)

1

( , )cos( )
N

nrrF
n

R s n 


 .                                                                              (20) 

According to the Eqs. (9) and (20), the following approximate expression can be written 

for the stress ( , , )rr R z  . 

(1)
0

0 0

( , , ) ( , , )cos( ) ( , )cos( )rr rrF rrFR z R s sz ds R s sz ds    
 

   

(1)

1 0

( , )cos( ) cos( )
N

nrrF
n

R s sz ds n 




 
 
 
 

  ,                                                                             (21) 

 Note that under writing the relation (20) the infinite Fourier series is replaced by the 

corresponding finite one and the number of terms in this finite series, i.e. the number N  

in (20) is determined from the convergence requirement of the numerical results. Moreover 

note that, according to the solution procedure discussed in the previous section, the 

unknowns
(1)
1nB , 

(1)
2nB , 

(1)
3nB  

(2)
1nA , 

(2)
2nA , 

(2)
3nA , 

(2)
1nB , 

(2)
2nB  and 

(2)
3nB  are determined 
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separately for each selected n  from the corresponding complete system of equations 

obtained for 0n   and for 1n  . Denoting by 
(1) (2)( / , / , , )nD h R s    the determinant 

of the matrix, the elements of which are the coefficients of the unknowns in these equations, 

we can conclude that the equation  

(1) (2)( / , / , , ) 0nD h R s    ,                                                                                  (22) 

is the dispersion equation of the corresponding wave propagation. For instance, assuming 

the transform parameter s  as the wavenumber and   as the wave frequency, in the case 

where 0n   the Eq. (22) is the dispersion equation of the axisymmetric longitudinal 

waves, however in the cases where 1n   the Eq. (22) is the dispersion equation of the 

flexural waves of the n th  harmonic in the system under consideration. Thus, solving the 

Eq. (22) with respect to s  and   under fixed values of the ratios /h R and 
(1) (2)/   

we obtain the dispersion diagrams which can be presented as ( )s  . As, according to 

the Cramer's rule, the values of the unknown constants 
(1)
1nB , 

(1)
2nB , 

(1)
3nB  

(2)
1nA , 

(2)
2 ,nA

(2)
3nA , 

(2)
1nB , 

(2)
2nB  and 

(2)
3nB  can be presented through the ratio 

(1) (2)/ ( / , / , , )n nconst D h R s   , 

therefore the values of the Fourier transform parameter which satisfy the dispersion 

diagram equation ( )s   are the singular “points” for the integrated expressions in (21), 

i.e. for the expressions 
(1)

0 ( , )rrF R s  and 
(1)

( , )nrrF R s . Namely, this moment makes the 

integrals in (9) the wavenumber integrals the calculation of which requires the special 

approach which is detailed in the works by Akbarov [Akbarov (2015)], Jensen et al. [Jensen, 

Kuperman, Porter et al. (2011)] and many others listed therein. Note that among these 

algorithms a more suitable and convenient one is the algorithm based on the use of the 

Sommerfeld contour and for employing this algorithm, according to Cauchy’s theorem, the 

contour  0,  is “deformed” into the contour C  (Fig. 1c), which is called the 

Sommerfeld contour in the complex plane 1 2s s is   and in this way the real roots of the 

Eq. (22) are avoided. Hereby, the integrals in (9) can be presented as follows. 

(1)
0( , , ) ( , , )cos( ) ( , )cos( )rr rrF rrFC C

R z R s sz ds R s sz ds         

 (1)

1

( , )cos( ) cos( )
N

nrrFC
n

R s sz ds n 


  .                                                                      (23) 

Taking the configuration of the contour C  given in Fig. 1c into consideration, assuming 

that 1 and doing some mathematical manipulations we obtain the following 

expressions for calculation of the stress ( , , )rr R z  . 

1 1 1

0

( , , ) ( , , )cos(( ) )rr rrFR z R s i s i z ds     


     
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(1)
0 1 1 1

0

( , )cos(( ) )rrF R s i s i z ds  


  

(1)
1 1 1

1 0

( , )cos(( ) ) cos( )
N

nrrF
n

R s i s i z ds n   




 
  
 
 

  .                                                      (24) 

Note that in the calculation procedure the improper integrals with the form 10
( )f ds


•  are 

replaced with the corresponding definite integrals with the form 
10

*
1

( )
S

f ds


•  and the values 

of 
*
1S  are defined from the corresponding convergence requirement. Moreover, note that 

under calculation these definite integrals, the interval *
10, S 

 
 is divided into a certain 

number (denote this number through 1N ) of shorter intervals and within each of these 

intervals, the integrals are calculated by the use of the Gauss algorithm with ten integration 

points. The values of the integrated functions at the integrated points are defined through 

the solution of the corresponding equations obtained from the boundary and contact 

conditions and all these procedures are performed automatically in the PC by use of the 

corresponding programs constructed by the authors of the paper in MATLAB. 

4.2 Testing the calculation algorithm  

Now we attempt to test the foregoing calculation algorithm with respect to the number 1N  

of the shorter intervals, with respect to the 
*
1S  which is the upper value of the integration 

interval in Eq. (24) and with respect to the number N which indicates the number of terms 

selected in the Fourier series in Eq. (24). Under all calculation procedures we assume that 

0.01   which is also determined according to the convergence requirement of the 

numerical results. This latter question is detailed in the monograph by Akbarov [Akbarov 

(2015)] and therefore here we don’t consider it again.  

For aforementioned testing we consider the case where the materials of the cylinder and 

surrounding elastic medium are real ones, i.e. we assume that that the material of the 

cylinder is Steel with the mechanical constants (2) 37680 /kg m  , (2) 0.29   and 

(2) 79.1GPa  , and the material of the surrounding elastic medium is Aluminum with the 

mechanical constants (1) 32700 /kg m  , (1) 0.35   and (1) 26.1GPa  , where the 

symbols  ,  and   indicate the material density, Poisson’s ratio and shear modulus 

respectively. Assume that / 10R h   and /12  .  

Thus, we consider the results given in Fig. 2a which are obtained for the above selected 

materials and illustrate the convergence of the numerical results related to the frequency 

response of the interface normal stress rr  (24) with respect to the number 1N . Note that 

these results are obtained. 
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Figure 2: Convergence of the numerical results with respect to the number 1N  (a); with 

respect to the 
*
1S  (b) and with respect to the number N  in the finite series presentation 

(24) 

In the case where 20N   in the expression in (24) and *
1 11S  . It follows from the results 

given in Fig. 2a that the case where 1 300N  is sufficient for obtaining numerical results 

with accuracy 410 .  

Consider also the results illustrated the convergence of the numerical results with respect 

to the value of the *
1S . These results are given in Fig. 2b which are obtained in the case 

where 20N  and 1 300N  . It follows from these results that in the cases where *
1 10S   

numerical results are convergent with accuracy 510 .  

Finally, we consider numerical results given in Fig. 2c which illustrate the convergence of 

these results with respect to the number N  in the case where / 20R h   under 
1 300N   

and *
1 11S  . The comparison of the results obtained for various values of the number N  

shows that these values are converge to the certain limit ones and the difference between 

the results obtained in the case where 19N   and 20N   is not more than 310 .  

Thus, taking into consideration of the foregoing testing and other ones which are not given 

here we can conclude that the calculation algorithm used in the present investigation is 

sufficiently guaranteed one. Moreover, taking into consideration of the foregoing results 

into consideration under the obtaining all the numerical results which will be discussed 

below it is assumed that 
1 300N  , 

*
1 11S   and 20N  .   

4.3  Numerical results on the frequency response of the interface normal stresses    

We investigate the frequency response of the interface normal stress ( , , )rr R z   

determined by the expression (24). First of all, we note that the main parameter which 

distinguishes the problem under consideration from the corresponding problems related to 

the system "covering layer +half-space", which are detailed in the monograph by Akbarov 

[Akbarov (2015)] and others listed therein, is the parameter /R h . Therefore in the present 

investigation, the main attention is focused on the influence of the ratio /R h  on the 

studied frequency responses for the selected pairs of materials for the constituents of the 

system "hollow cylinder+surrounding elastic medium". Below we will assume that 

0 2   and /12   (if otherwise not specified) and consider the frequency 

responses of the interface normal stress 
0; 0

( , , )rr rr
z

R z


  
 

 . 

First we consider the case where the material of the cylinder is Steel and the material of 

the surrounding elastic medium is Aluminum. The graphs illustrated the frequency 
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response of the stress rr  in this case are given in Fig. 3. These graphs are constructed for 

various values of the ratio /R h  and it follows from those that the absolute values of the 

stress decrease with decreasing of the ratio /R h .  Moreover, it follows from these graphs 

that the dependence between the stress rr and dimensionless frequency   has 

complicated character. For instance, these graphs in the vicinity of certain values of the 

frequency   have "ascent-descent" character. Apparently, the "ascent-descent" cases in 

the graphs are caused by the wave reflections from the interface surface between the 

cylinder and surrounding elastic medium.  

We also note the following statement which follows from the graphs given in Fig. 3. In the 

relatively small values of the ratio /R h  (for instance, in the cases where / 3R h   and 5) 

the absolute values of the stress in the dynamical loading case, in general, are less than the 

corresponding value of this stress in the static loading case, i.e. in the case where  . 

However, in the relatively great values of the ratio /R h (for instance, in the cases where 

/ 10R h   and 20) the mentioned above rule violates in a certain value of the frequency. 

If to say more precisely, this violation takes place only in the first "ascent-descent" case in 

the corresponding graphs. 

 
Figure 3: Frequency response of the stress for the St Al  system 

We recall that the foregoing analysis relates to the case where the material of the cylinder 

is Steel and the material of the surrounding elastic medium is Aluminum and the ratio of 

the modulus of elasticity of the Aluminum (denote is by (1)E ) to the modulus of elasticity 

of the Steel (denote it by (2)E ) is 0.345, i.e.  (1) (2)/ 0.345E E  . Numerical results show 

that the character of the frequency responses depends significantly not only on the values 

of the ratio /R h  but also on the ratio (1) (2)/E E .  For analysis the influence of the ratio 
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(1) (2)/E E   on the character of the frequency responses we consider the corresponding 

results obtained in the cases where  (1) (2)/E E   0.5; 0.8; 1.0; 1.5 and 2.0 and given in Figs. 

4, 5, 6, 7 and 8 respectively. Under construction the graphs given in these figures it is 

assumed that 
(1) (2) 0.3.      

It follows from Fig. 4 that under relatively great value of the ratio (1) (2)/E E  there are 

many cases under which the absolute values of the stress become significantly greater than 

that obtained in the static loading case, i.e. in the case where  . For instance, in the 

case where / 20R h   after some "ascent-descent" cases the graphs becomes smooth non-

monotonic and in the absolute maximum value of the stress in this non-monotonic part is 

greater significantly than that obtained in the corresponding static loading case. Fig. 4 also 

shows that in the relatively small values of the ratio /R h  (for instance in the case where 

/ 3R h  ) the absolute maximum value of the stress has sharp increase in a certain value 

of the vibration frequency. 

We analyze also how the future increase in the value of the ratio (1) (2)/E E  influences on 

the frequency responses obtained in the various values of the /R h . For this purpose, we 

consider graphs given in Fig. 5 which are constructed in the case where (1) (2)/ 0.8E E  .  

It follows from these graphs that in the case under consideration the "period" of the "ascent-

descent" cases increase with decreasing the values of the ratio /R h . Moreover, it follows 

from these graphs that in the "global" sense (i.e. the values of the stress regarding the points 

on the corresponding smooth lines which are obtained from the corresponding graph 

through the fit of that by the use of polynomial with the degree 10) the dependence between 

the stress and frequency has non-monotonic character. According to this character, before 

a certain value of the frequency   an increase of the   causes an increase in the absolute 

values of the stress and  after this "certain" frequency, vice versa, an increase in the values 

of the frequency   causes a decrease in the absolute values of the stress. It should be 

noted that this rule is violated in the case where / 20R h  . Nevertheless, the non-

monotonic character of the frequency response plays a dominant role also in the case where 

/ 20R h  .   
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Figure 4: Frequency response of the stress for the system for which 
(1) (2)/ 0.5E E   

Thus, it follows from the foregoing results that the future increase in the value of the ratio 

(1) (2)/E E causes to increase significantly the absolute values of the interface normal 

stress with respect to the corresponding static stress. This conclusion is also confirmed with 

the results illustrated in Fig. 6 which relate to the case where (1) (2)/ 1E E  . It follows 

from these results that the dependence between the stress and frequency has non-monotonic 

character and this non-monotonic character is not in the "global" sense as in the case where 

(1) (2)/ 0.8E E  , this character is followed directly from the graphs given in Fig. 6. 

Moreover, it follows from these results that these graphs have not any "ascent-descent" 

parts. Consequently, the change of the stress with respect to the frequency in the case where 

(1) (2)/ 1E E   is very smooth. This statement proves again that the "ascent-descent" parts 

in the graphs obtained in the cases where  (1) (2)/ 1E E   (as will be detailed below such 

pats appear also in the corresponding graphs obtained for the cases where (1) (2)/ 1E E  ) 

are caused by the wave reflection from the interface surface between the constituents of 

the system under consideration.  
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Figure 5: Frequency response of the stress for the system for which 
(1) (2)/ 0.8E E   

 

Figure 6: Frequency response of the stress for the system for which  
(1) (2)/ 1E E   

Besides all of these, we recall the fact that in the works by Lamb [Lamb (1904)], Gladwell 

[Gladwell (1968)] and Johnson [Johnson (1985)] the similar non-monotonic character of 

the frequency responses is also obtained for the time-harmonic dynamic problem related 

to the homogeneous isotropic half-space. Further, in the monograph by Akbarov [Akbarov 

(2015)] and in the works listed therein, this fact is also examined for the time-harmonic 

dynamic problems for the plane-layered systems. Consequently, the results given in Fig. 6 

agree in the quantitative sense with the results obtained in the works by Lamb [Lamb 

(1904); Gladwell (1968); Johnson (1985); Akbarov (2015)] and it is confirmed that under 

time-harmonic loading in a certain part of the cylindrical hole the frequency response of 
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the stresses, which appear in the infinite elastic medium contained this hole, has non-

monotonic character. Also, the results given in Fig. 6 shows that the values of the frequency 

under which the absolute values of the stress has its maximum, increase with decreasing of 

the ratio / .R h    

 

Figure 7: Frequency response of the stress for the system for which 
(1) (2)/ 1.5E E   

Now we consider the results given in Figs. 7 and 8 which are obtained in the cases where 

(1) (2)/ 1.5E E  and 2.0, respectively. It follows from these results that frequency responses 

obtained in the cases where (1) (2)/ 1E E   is very similar with the corresponding ones 

obtained in the case where (1) (2)/ 1E E  . However, in the cases where (1) (2)/ 1E E   

the graphs of the frequency responses have also the "ascent-descent" pats which are very 

insignificant than those obtained in the cases where (1) (2)/ 1E E  . 

Consider numerical results related to the distribution of the normal stress with respect to 

the coordinates z  and   the examples for which are given in Figs. 9 and 10. These results 

are obtained for the system St Al  in the case where    .The values of the other 

parameters are shown in the figures field. It follows from these results that the absolute 

values of the stress are decay with the distance of the part at which the external forces act. 

Moreover, it follows from Fig. 10 that the absolute values of the stress decrease with 

increasing of the angle  .    

Comparison of the present results with the corresponding ones obtained in the paper by 

Akbarov et al. [Akbarov and Mehdiyev (2017)] shows that the absolute maximum values 

of the normal stress obtained in the present case are greater significantly than 

corresponding ones obtained in the axisymmetric loading case.  
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Figure 8: Frequency response of the stress for the system for which 
(1) (2)/ 2E E   

 

Figure 9: Distribution of the stress with respect to the coordinate z  

5 Conclusions   

Thus, in the present paper within the scope of 3D exact equations and relations of 

elastodynamics the analytical-numerical method of solution is developed and employed for 

the analysis of the non-axisymmetric dynamic stress state in the system consisting of the 

hollow cylinder and surrounding elastic medium. Numerical results on the frequency 

response of the interface normal stress are presented and discussed. These results illustrate 

the character of the influence of the mechanical and geometrical parameters of the 

considered system on the values of the amplitude of the mentioned stress. 
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Figure 10: Distribution of the stress with respect to the coordinate   

Thus, according to these results the following concrete conclusions can be drawn: 

• The absolute values of the interface normal stress increase with the ratio of the 

external radius of the cross section of the hollow cylinder to its thickness; 

• In the case where the modulus of elasticity of the cylinder material is greater 

significantly than that of the surrounding elastic medium (i.e. in the cases where 

(1) (2)/ 0.5E E  , where 
(1)E  

(2)( )E is a modulus of elasticity of the surrounding 

medium (of the hollow cylinder) material), the character of the frequency 

responses of the stress under consideration have complicated character and these 

responses are accompanied by "ascent-descent" parts which is caused with the 

reflection of the waves from the materials interface; 

• In the case where the modulus of elasticity of the cylinder material is greater 

slightly, than that of the surrounding material (for instance, in the case where 
(1) (2)/ 0.8E E  ), the frequency responses have non-monotonic character in the 

global sense; 

• In the case where the materials of the constituents of the system under 

consideration are the same (i.e. in the case where 
(1) (2)/ 1E E  ) the frequency 

responses have smooth non-monotonic character, i.e. for each selected ratio of the 

cylinder's cross section radius to its thickness there exists such value of the 

frequency, under which the absolute value of the stress has maximum; 

• The aforementioned non-monotonic character of the frequency response occurs 

also in the cases where the modulus of elasticity of the cylinder's material is less 

(i.e. in the cases where 
(1) (2)/ 1E E  ) than that of the surrounding elastic medium; 
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• In all the cases considered the absolute values of the interface stresses increase 

with the ratio /R h  (where R  is an external radius of the cross section of a 

cylinder and h is a thickness of this cylinder) and with the ratio 
(1) (2)/E E ; 

• The absolute maximum values of the normal stress obtained in the present case are 

greater significantly than corresponding ones obtained in the axisymmetric loading 

case [Akbarov and Mehdiyev (2017)].  
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