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Abstract: This paper discusses the applicability of relevance vector machine (RVM) based 

regression to predict the compressive strength of various self compacting concrete (SCC) 

mixes. Compressive strength data various SCC mixes has been consolidated by considering 

the effect of water cement ratio, water binder ratio and steel fibres. Relevance vector 

machine (RVM) is a machine learning technique that uses Bayesian inference to obtain 

parsimonious solutions for regression and classification. The RVM has an identical 

functional form to the support vector machine, but provides probabilistic classification and 

regression. RVM is based on a Bayesian formulation of a linear model with an appropriate 

prior that results in a sparse representation. Compressive strength model has been 

developed by using MATLAB software for training and prediction. About 75% of the data 

has been used for development of model and 30% of the data is used for validation. The 

predicted compressive strength for SCC mixes is found to be in very good agreement with 

those of the corresponding experimental observations available in the literature.  

Keywords: Relevance Vector Machine, Self-compacting concrete, Compressive strength, 

Variance. 

1 Introduction 

Concrete has been one of the most commonly used construction materials in the world. 

One of the major problems civil engineers face today is concerned with preservation, 

maintenance and retrofitting of structures. It is well know that the self compacting concrete 

is developed in view of free flow of concrete without segregation where reinforcement is 

congested. The Self compacting concrete (SCC) is a concrete which has the ability to flow 

by its own weight and achieve good compaction with no external vibration. In addition, 

SCC is found to have resistance to segregation and bleeding because of its cohesive 

properties [Okamura and Ouchi (2003)]. The raw material selection is an important aspect 

of the mix design process for SCC, since it influences significantly the stability as well as 

the cost of the mix, which are two primarily elements in the successful use of SCC.  

There is no standard method for SCC mix design, but many educational institutions, precast 

and contracting companies and admixture ready-mix have developed their own mix 

proportioning methods for SCC mix design. Mix designs generally employ volume based 
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procedure as one of the key parameters for design. It may be due to filling of voids between 

the aggregate particles. Some studies were reported in the literature on the use of 

ingredients in optimized way [European Project Group (2005)]. However, any SCC mix 

must satisfy the criteria on filling ability, passing ability and segregation resistance. The 

base for SCC mix design is the general method developed by the University of Tokyo and 

since then, many attempts were made to modify this method to suit local conditions or 

specific requirements [Hodws, Sheinn, Ng et al. (2001)]. Broadly, there are some thumb 

rules, rational methods and EFNARC guidelines for proportioning and design of SCC mix 

[European Project Group 2005; Collepardi (2006); Okamura and Ozawa (1995)]. 

In view of difficulty in conducting experiments several times and to reduce time and effort, 

some times, analytical models to predict the required data will be very much useful. There 

are several advanced statistical models such as Artificial Neural Network, Gaussian 

regression process, least squares support vector machine, relevance vector machine, 

extreme learning machine and multivariate adaptive regression splines to predict the 

response of the structural components or concrete mixes [Yuvaraj, Murthy, Iyer et al. 

(2013a); Yuvaraj, Murthy, Iyer et al. (2013b); Yuvaraj, Murthy, Iyer et al.  (2014a); 

Yuvaraj, Murthy, Iyer et al. (2014b); Shantaram, Shah, Samui et al. (2014); Shah, Shah, 

Samui et al. (2014); Dutta, Murthy, Kim et al. (2017); Kaur and Kaur (2017)]. In the present 

investigation, it is proposed to employ relevance vector machine to predict the compressive 

strength of various SCC mixes. 

Tipping [Tipping (2001)] proposed a model, namely, relevance vector machine (RVM) 

which has additional advantages than the base model of support vector machine (SVM). In 

SVM, the target function minimises a measure of error on the training set and 

simultaneously maximises the ‘margin’ between the two classes (in the feature space 

implicitly defined by the kernel). In order to avoid over fitting, this is an effective 

mechanism [Tipping (2001)]. Though there are good predictions of SVM, it was found that 

there are several limitations and demerits [Tipping (2000); Caesarendra, Widodo and Yang 

(2009)]. RVM is a special case of a sparse kernel model, which consists of a Bayesian 

treatment of a generalized linear model of identical functional form as in the case of support 

vector machine (SVM). RVM differs from SVM in the case of solution, which is based on 

probabilistic interpretation of its output [Wei, Yang, Nishikawa et al. (2005)]. RVM evades 

the complexity by producing simple models that have both a structure and a 

parameterization process together in relation to the data type. RVM is a probabilistic based 

approach, introduces a prior over the model weights governed by a set of hyperparameters 

associated with each weight, whose most probable values are iteratively estimated from the 

data. The important feature of RVM is that it requires less kernel functions. RVM based 

regression and classifications are popular in many fields [Han, Cluckie, Kang et al. (2002); 

Wei, Yang, Nishikawa (2005); Das and Samui (2008); Widodo, Kim, Son et al. (2009); 

Wang and Duanmu (2009); Liu and Xu (2011); Yuvaraj, Murthy, Iyer et al. (2014b)]. From 

the above literature, it was found that RVM based models for prediction of data in the field 

of structural engineering is limited.  

In the present study, compressive strength values for SCC mixes are predicted by 

developing a regression model based on relevance vector machine approach. 
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2 Compressive strength of various SCC mixes 

For various SCC mixes, compressive strength data available in the literature has been 

compiled and the data is presented in Tab. 1. Compressive strength is compiled against 

water to binder ratio and water to cement ratio. 

Table 1: Compressive strength of various SCC mixes 

Reference 

 

Water to binder 

ratio 

w/c ratio  Comp. strength, MPa 

Nikbin et al. (2014) 0.23 0.35 75.5 

0.26 0.4 69.2 

0.29 0.45 58.8 

0.32 0.5 54.8 

0.34 0.55 46.0 

0.37 0.6 42.6 

0.39 0.65 35.5 

0.41 0.7 26.0 

0.37 0.47 48.7 

0.31 0.47 52.9 

0.26 0.47 60.6 

0.23 0.47 67.2 

0.48 0.6 37.9 

0.40 0.6 39.7 

0.34 0.6 44.6 

0.30 0.6 45.4 

Burak(2007) 

 

0.37 0.6 67.32 

0.33 0.54 59.64 

0.29 0.48 56.16 

0.25 0.42 51.36 

Leeman (2005) 0.22 0.37 43.56 

0.33 0.42 61.8 

0.35 0.45 63.1 

0.36 0.46 60.8 

0.40 0.51 52.0 

0.46 0.59 48.7 

0.40 0.53 60.5 

0.43 0.56 51.6 
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0.36 0.47 64.0 

0.34 0.44 66.9 

Parra (2011) 0.37 0.65 32.58 

0.34 0.55 39.83 

0.34 0.55 48.46 

0.31 0.45 62.67 

Dinakar (2008) 0.41 2.71 14.64 

0.34 1.13 34.9 

0.33 1.1 34.83 

0.34 0.68 57.9 

0.34 0.68 50.07 

0.31 0.44 77.08 

0.36 0.51 71.62 

0.29 0.322 86.41 

Girish (2007) 0.325 0.487 56.3 

0.33 0.56 47.6 

0.34 0.65 43.8 

0.35 0.78 37.0 

0.356 0.87 31.0 

0.361 0.975 26.5 

0.365 0.5 73.3 

0.371 0.5 66.0 

0.373 0.5 67.3 

0.376 0.5 71.8 

0.377 0.5 65.0 

Mounir (2014) 0.4  30.3 

Brouwers (2005) 0.34 0.55 51.2 

0.36 0.55 50.7 

0.37 0.55 53.6 

Marco (2017) 0.32 0.5 72.22 

Rahmat (2012) 0.32 0.32 45 

0.32 0.34 49.5 

0.32 0.36 54 

0.32 0.38 52 

0.32 0.40 47 
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0.38 0.38 41.5 

0.38 0.40 45.5 

0.38 0.42 49.5 

0.38 0.45 49.5 

0.38 0.475 45.5 

0.45 0.45 31 

0.45 0.47 33 

0.45 0.50 37 

0.45 0.53 38 

0.45 0.56 35 

Subhan (2017) 0.396 44.44 

Alireza (2014) 0.48 0.48 47.64 

Sherif (2016) 0.36 0.45 72.1 

Thiago (2016) 0.34 0.478 43.7 

0.40 0.573 44.4 

Valeria (2011) 0.35 0.4 54 

Farhad (2013) 0.52 1.3 39.96 

Abbas (2013) 0.32 0.49 35.4 

Krishnarao and 

Ravindra (2010) 

0.31 0.62 43.51 

3 Relevance vector machine 

This section provides a brief description about RVM. Full details about model can be found 

in Tipping [Tipping (2000, 2001)]. RVM is a specialization of a spares Bayesian model 

which uses the same data dependent kernel basis [Tipping (2001)]. The key feature of RVM 

is that the inferred predictors are exceedingly sparse in that they contain relatively few 

‘‘relevance vectors”, as well as offers a generalized performance.   

RVM starts with the concept of linear models, i.e. the function of y(x) to be predicted at 

some arbitrary point x given a set of (typically noisy) measurements of the function t=(t1, 

y, tN) and with some training points x=(x1, y, xN): 

  iii εxyt    (1) 

where i is the noise component of the measurement with mean 0 and variance σ2. With a 

linear model assumption, the unknown function y(x) is a linear combination of some 

known basis function i.e. 

(x)φwy(x) i

M

1i

i


   (2) 
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where, wi=(w1,…,wM) =  a vector consisting of the linear combination weights 

y(x) = the output which is a linearly-weighted sum of M, generally nonlinear and fixed 

basis functions       TM21i xφ...,,.........xφ,xφ(x)φ  . 

Analysis of functions shown in Eq. (2) is available in Tipping [Tipping (2001)]. During the 

development of model, the majority of parameters are automatically set to zero in view of 

good predictions [Tipping (2000, 2001)]. 

εΦwt   (3) 

where,  is an NxM design matrix, whose ith column is formed with the values of basis 

function  i(x) at all the training points 

i = (1,…, N), the noise vector. 

As a supervised learning, RVM starts with a set of data input   1x
N
nn   and their 

corresponding target vector  1t
N
nn  . The basic aim of the ‘training’ set is to learn a 

model of the dependency of the target vectors on the inputs to make accurate prediction of 

t for previously unseen value of x.   

For the case of support vector machine (SVM), the prediction is made based on a function 

of the form 

    0i

N

1i

i wxx,Kwxy 


    (4) 

where, wi= (w1, w2,…, wN) is weight vectors 

K(x,xi) = a kernel function and w0 is the bias 

In the present study, Radial basis kernel function is used and the related equation is given 

below 
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where, xi and x are the training and test patterns, respectively. 

d = a dimension of the input vector, σ = width of the basis function. 

For a given a dataset of input-target pairs   1t,x
N
nnn  , it is assumed that p(t|x) is 

Gaussian N(t|y(x), σ2). The mean of this distribution for a given x was modelled by y(x) as 

mentioned in Eq. (4). The likelihood of dataset can be expressed as 
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Where,  TN1i t...,tt  ,  N0i ω,...,ωω   and
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Where,  ni x,xK  is the kernel function. 

It was mentioned in the literature [Tipping (2001)] that the maximum likelihood estimation 

of w and σ2 by using Eq. (6) in general results in overfitting. Tipping [Tipping (2001)] 

recommended by imposing prior constrains on the parameters w by adding a complexity 

to the likelihood or error function. This is a priori information that controls the 

generalization ability of the learning process. Generally, new higher-level parameters are 

preferred to constrain an explicit zero-mean Gaussian prior probability distribution to the 

weights 

   



N

0i

1
ii ,0wNwp  (7a) 

where α is a vector of (N+1) hyperparameters which controls the deviation of weight 

[Caesarendr (2010)]. By using Bayes’ rule, the posterior over all unknowns can be 

computed, given the defined non-informative prior-distributions. In order to complete the 

specification of the prior-distribution, one must define hyperpriors over α and noise 

variance σ2. These quantities are typical scale parameters and suitable prior are Gamma 

Distributions [Tipping (2000)] 

   ,b,aGammap
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Where, β = σ-2 . 

Hence, for α and σ, the distribution is gamma distribution and for w, it is normal 

distribution and after the prior-distributions, Bayes rule is applied.  
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   (8a) 

Then, for a given a new test point (X*), predictions were performed for the corresponding 

target (t*), in terms of the predictive distribution : 

      222

** dσ dα dwtσα,w,pσα,w,tpttp   (8b) 

The solution for the posterior in Eq. 8(a) is difficult due to normalization of integral

    222 dσ  dα  dwtσα,w,pσα,w,tpp(t)  .
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The preferred solution is decomposition of the posterior as shown in Eq. (9) 

  




 





  t,p,,twpt,,wp 222

    (9) 

It can be noted that one can compute analytically the posterior distribution over the weights 

because its normalization integral is convolution of gaussians [Tipping (2000)]. Hence, to 

obtain a solution, Eq. (10) shows the posterior distribution of weights  
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     (10) 

the posterior over the weights is then obtained from Bayes rule 
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The analytical solution for Eq. (11) in terms of the posterior covariance and mean are 

  1T2 A
       (12) 

tT2  
   (13) 

where, A = (α0, α1… αN). 

It can be noted that σ2 is also treated as a hyperparameter, which may be obtained from the 

data. 

Therefore, machine learning process becomes a search for the hyperparameters posterior 

most probable,  

i.e. maximization of      222

nnn
pp,ypy,p










  with respect to a α 

and σ2. For uniform hyperpriors, it is necessary to maximize the term  2

n
,yp


 , which 

can computed and given by 

     dwαwpαw,ypαα,yp 22
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Tipping [Tipping (2000)] arrived at this approximation and found that this is effective after 

confirmation with several experiments. Bayesian models of Eq. (18a) refer to the marginal 

likelihood, and its maximization is known as the type II-maximum likelihood method 

[Ghosh and Mujumdar (2008)]. Hyperparameter estimation is generally performed with an 

iterative formula, namely, a gradient ascent on the objective function [Tipping (2000); 

Ghosh and Mujumdar (2008)]. Predictions for a new data were then made as per integration 
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of the weights to arrive at the marginal likelihood for the hyperparameters. The predictive 

distribution for a given input vector, {x} can be estimated by using following equation. 

The predictions were made based on the posterior distribution over the weights, 

conditioned on the maximized most probable values of α and 
MP

2 α,σ
n

 and 
2

MPσ

respectively. 

     dwσ,αy,wpσw,ypσ,αy,yp 2

MPMP

2

MP

2

MPMP* *   (15) 

This can readily be computed as 

   2

*

2

MPMP σ,tyNσ,αy,yp
***

 (16) 

 *

T

* xΦμt  (17) 

With    *

T

*

2

MP

2

* xΦxΦσσ  (18) 

the outcome of the optimization involved in RVM  (i.e. max of  2

n
,yp


 ), is that many 

of α go to infinity such that 'w' will have only a few nonzero weights that can be considered 

as relevant vectors [Ghosh and  Mujumdar (2008)]. The relevant vectors (RVs) can be 

viewed as counterparts of support vectors (SVs) in SVM. Thus , the developed model 

contains the benefits of SVM (sparsity and generalization) and in addition, provides 

estimates of uncertainty bounds in the predictions [Ghosh and Mujumdar (2008)]. 

4 RVM based analysis 

For prediction of the compressive strength, RVM model has been developed. From the 

experimental studies (Tab. 2), it can be noted that the compressive strength is influenced 

by the water binder ratio and water cement ratio. These two parameters from the input 

vector and it can also be noted that the input vector has different quantitative limit as shown 

in Tab. 2. Hence, a normalization of the data has been performed before presenting the 

input patterns to statistical machine learning algorithm. Thus, Eq. (29) has been used for 

the linear normalization of the data to the data values between 0 and 1. 

minmax

min

ii

i

a

in

i
xx

xx
x






  (19) 

where, 
a

ix
and 

n

ix
 are ith components of the input vector before and after normalization, 

respectively, 

max

ix
and 

min

ix
are the maximum and minimum values of all the components of the input 

vector before the normalization. 
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Table 2: Training data set of various SCC mixes 

Sl No. Water to binder 

ratio 

w/c ratio Comp. strength, MPa 

1 0.23 0.35 75.5 

2 0.26 0.4 69.2 

3 0.29 0.45 58.8 

4 0.32 0.5 54.8 

5 0.34 0.55 46.0 

6 0.34 0.44 66.9 

7 0.37 0.65 32.58 

8 0.34 0.55 39.83 

9 0.34 0.55 48.46 

10 0.31 0.45 62.67 

11 0.41 2.71 14.64 

12 0.34 1.13 34.9 

13 0.33 1.1 34.83 

14 0.34 0.68 57.9 

15 0.34 0.68 50.07 

16 0.31 0.44 77.08 

17 0.36 0.51 71.62 

18 0.29 0.322 86.41 

19 0.325 0.487 56.3 

20 0.33 0.56 47.6 

21 0.34 0.65 43.8 

22 0.35 0.78 37.0 

23 0.356 0.87 31.0 

24 0.361 0.975 26.5 

25 0.365 0.5 73.3 

26 0.371 0.5 66.0 

27 0.373 0.5 67.3 

28 0.376 0.5 71.8 

29 0.377 0.5 65.0 

30 0.4 30.3 

31 0.34 0.55 51.2 

32 0.36 0.55 50.7 
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33 0.37 0.55 53.6 

34 0.32 0.5 72.22 

35 0.32 0.32 45 

36 0.32 0.34 49.5 

37 0.32 0.36 54 

38 0.32 0.38 52 

39 0.32 0.40 47 

40 0.38 0.38 41.5 

41 0.38 0.40 45.5 

42 0.38 0.42 49.5 

43 0.38 0.45 49.5 

44 0.38 0.475 45.5 

45 0.45 0.45 31 

46 0.45 0.47 33 

47 0.45 0.50 37 

48 0.45 0.53 38 

49 0.45 0.56 35 

50 0.396 44.44 

51 0.48 0.48 47.64 

52 0.36 0.45 72.1 

53 0.34 0.478 43.7 

54 0.40 0.573 44.4 

55 0.35 0.4 54 

56 0.52 1.3 39.96 

57 0.32 0.49 35.4 

58 0.31 0.62 43.51 

4.1 Development of RVM model 

A Total of 82 data sets were collected from the literature for various SCC mixes. About 

70% of data set is used for the development of RVM model and about 30% of the data set 

is used for testing and verification of the developed model. Testing and verification of the 

model is done by comparing the experimental compressive strength with the predicted 

compressive strength by using the RVM model. The key aspect of development of RVM 

model is the selection of kernel width which was done by using post modelling analysis 

[Caesarendr, Widodo, Yang et al. (2010)]. Post-modelling analysis of the training and 

testing R values is related to number of relevance vectors (NRV) involved in the model 

and their corresponding weights and variation in the kernel width. The value of σ is 
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assumed initially as 0.13 and for the assumed valued of σ, the model is developed. Fig. 1 

shows the schematic diagram of RVM model. The developed model gives the NRVs used 

and their corresponding weights (wi). The quality of the developed model is assessed based 

on the coefficient of correlation (R) value which is determined using the Eq. (20). 
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where, Eai and Epi are the actual and predicted values, respectively 

aE  and pE  are mean of actual and predicted E values corresponding to n patterns. In 

each iteration, R value is computed and the model is finalized when the R value is closer 

to one. 

Figure 1: Schematic diagram-development of RVM models 

It is observed that the testing R value achieved its maximum at kernel widths shown in 

Tab. 3 for the corresponding models, involving minimum number of relevance vectors. 

The training and testing R values obtained for models are presented in Tab. 3. 
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Table 3:  Performance of developed RVM models 

Parameters 

Coefficient of 

correlation (R) width 

(σ) 

No. of RVs used 

out of total 58 

dataset 

No of RVs (% 

of training 

data set) Training Testing 

Model I (Comp. 

Strength ) 
0.994 0.992 0.13 36 62.06 

Tab. 4 shows the weights for RVM model. 

Table 4: Values of weights (wi) for RVM models 

i =1,2…58 wi i =1,2…58 wi 

1 0 30 0 

2 0.0652 31 0 

3 0 32 0.0253 

4 0 33 0.0252 

5 0 34 0.0841 

6 0.0342 35 0.0345 

7 0 36 0.02785 

8 0.1346 37 0 

9 0 38 0.06541 

10 0.1650 39 0.0982 

11 0.1401 40 0 

12 0.0565 41 0.0653 

13 0.1543 42 0.08761 

14 0.0922 43 0 

15 0.1065 44 0 

16 0.1766 45 0.05415 

17 0.1366 46 0 

18 0 47 0.60243 

19 0.1096 48 0 

20 0.0743 49 0 

21 0.0789 50 0.1421 

22 0 51 0 

23 0.0763 52 0.0356 

24 0.0542 53 0.0976 
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25 0 54 0 

26 0 55 0 

27 0.2431 56 0.5263 

28 0.0842 57 0.0904 

29 0.0983 58 0.0983 

From Eq. (14), (15) and Tab. 4(b) with wo as zero, the following equation has been obtained 

from the developed RVM model. 
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 (21)

The values of weights,  wi for all the training data sets are available in Tab. 4. 

Variance for training and testing data set for the developed model are plotted and shown in 

Fig. 2 and Fig. 3. 
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Figure 2: Variance of training data set for compressive strength 
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Figure 3: Variance of testing data set for compressive strength 

The developed RVM model has been verified with the remaining 24 data sets and the 

results are shown in Tab. 5. 

Table 5:  Predicted and experimental compressive strength 

Sl No. Water to 

binder ratio 

Water to cement 

ratio 

Compressive strength, MPa 

Exptl. Predicted 

1 0.37 0.6 42.6 40.1 

2 0.39 0.65 35.5 37.2 

3 0.41 0.7 26.0 27.3 

4 0.37 0.47 48.7 45.8 

5 0.31 0.47 52.9 47.9 

6 0.26 0.47 60.6 56.87 

7 0.23 0.47 67.2 62.43 

8 0.48 0.6 37.9 39.6 

9 0.40 0.6 39.7 35.76 

10 0.34 0.6 44.6 41.5 

11 0.30 0.6 45.4 42.87 

12 0.37 0.6 67.32 62.34 

13 0.33 0.54 59.64 53.21 

14 0.29 0.48 56.16 52.45 

15 0.25 0.42 51.36 47.42 

16 0.22 0.37 43.56 40.76 
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17 0.33 0.42 61.8 57.65 

18 0.35 0.45 63.1 59.54 

19 0.36 0.46 60.8 58.21 

20 0.40 0.51 52.0 49.64 

21 0.46 0.59 48.7 44.78 

22 0.40 0.53 60.5 56.21 

23 0.43 0.56 51.6 48.31 

24 0.36 0.47 64.0 59.21 

The normalised output vector obtained from the RVM model is converted back to original 

value by using the equation below. 

  minminmax

iii

n

i

a

i xxxxx   (22) 

where, 
n

ix  is the normalized result obtained after the test for the ith component. 

a

ix is the actual result obtained for  ith componenet, and 
max

ix  and 
min

ix are the maximum 

and minimum values of all the components of the corresponding input vector before the 

normalization.  

From Tab. 5, it can be observed that the predicted compressive strength is in very good 

agreement with the corresponding experimental observations. Fig. 4 shows the comparison 

plot of predicted and the corresponding experimental compressive strength. From Tab. 4 

and Fig. 4, it can be concluded that the developed model is robust and reliable. 

 

Figure 4: Predicted and experimental compressive strength 

20

25

30

35

40

45

50

55

60

65

20 30 40 50 60 70

RV
M

 O
ut

pu
t,

 C
om

p.
 S

tr
en

gt
h,

 M
Pa

Experimental Compressive strength, MPa



Prediction of Compressive Strength of Various SCC Mixes       99 

5 Summary and conclusions 

Relevance vector machine, one of the advanced statistical models was developed to predict 

a compressive strength for various SCC mixes. The input parameters are water cement ratio 

and water binder ratio. Compressive strength data available in the literature for various 

SCC mixes has been consolidated to develop and test the model. MATLAB software has 

been used for training and prediction. About 75% of the data has been used for development 

of model and 30% of the data is used validation. The predicted compressive strength for 

SCC mixes is found to be in very good agreement with those of the corresponding 

experimental observations available in the literature. The developed equation for prediction 

of compressive strength can be used for all practical purposes. The R value for the 

developed model is found to be closer to 1 indicating better predictability of the models. 

From the overall study, it can be concluded that the developed RVM model is found to be 

robust and reliable. 
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