
 
 
 
Copyright © 2018 Tech Science Press                      CMC, vol.54, no.2, pp.103-136, 2018 

CMC. doi: 10.3970/cmc.2018.054.103                                                                     www.techscience.com/cmc 

 

 

The Influence of the Imperfectness of Contact Conditions on the 

Critical Velocity of the Moving Load Acting in the Interior of the 

Cylinder Surrounded with Elastic Medium 

 

M. Ozisik1, *, M. A. Mehdiyev2 and S. D. Akbarov2, 3 

 

 

Abstract: The dynamics of the moving-with-constant-velocity internal pressure acting on 

the inner surface of the hollow circular cylinder surrounded by an infinite elastic medium 

is studied within the scope of the piecewise homogeneous body model by employing the 

exact field equations of the linear theory of elastodynamics. It is assumed that the internal 

pressure is point-located with respect to the cylinder axis and is axisymmetric in the 

circumferential direction. Moreover, it is assumed that shear-spring type imperfect 

contact conditions on the interface between the cylinder and surrounding elastic medium 

are satisfied. The focus is on the influence of the mentioned imperfectness on the critical 

velocity of the moving load and this is the main contribution and difference of the present 

paper the related other ones. The other difference of the present work from the related 

other ones is the study of the response of the interface stresses to the load moving 

velocity, distribution of these stresses with respect to the axial coordinates and to the time. 

At the same time, the present work contains detail analyses of the influence of problem 

parameters such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to 

the cylinder radius, and the shear-spring type parameter which characterizes the degree of 

the contact imperfection on the values of the critical velocity and stress distribution.  

Corresponding numerical results are presented and discussed. In particular, it is established 

that the values of the critical velocity of the moving pressure decrease with the external 

radius of the cylinder under constant thickness of that.    

Keywords: Moving internal pressure, critical velocity, circular hollow cylinder surrounded 

by elastic medium, shear-spring type imperfection, interface stresses. 
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1 Introduction 

The development and successful application of modern high-speed underground trains 

and other types of underground moving wheels requires fundamental study of the 

corresponding dynamic problems. As usual, underground structures into which such 

high-speed wheels move are modelled as infinite hollow cylinders surrounded by an 

elastic or viscoelastic medium. Consequently, the aforementioned dynamical problems 

can be modelled as the problem of the moving pressure acting on the internal surface of 

an infinite hollow cylinder surrounded by an elastic or viscoelastic medium. The present 

paper is concerned namely with these types of problems and it studies the dynamics of 

the moving point-located, with respect to the cylinder axis, normal forces which are 

uniformly distributed in the circumferential direction acting on the inner surface of the 

circular cylinder which is surrounded by an elastic medium. 

It should be noted that, in general, the main issue in the investigations of the moving load 

acting on layered systems is the determination of both the critical velocity of this moving 

load under which resonance type behavior takes place and of the influence of the problem 

parameters on the values of this velocity. At the same time, another issue which is also 

important is to determine the rules of attenuation of the perturbations of the stresses and 

displacements caused by the moving load with the distance from the point at which this 

load acts.  

Now we consider a brief review of related investigations regarding layered systems and 

note that the first attempt in this field was made by Achenbach et al. [Achenbach, Keshava 

and Hermann (1967)] in which the dynamic response of the system consisting of the 

covering layer and half plane to a moving load was investigated with the use of the 

Timoshenko theory for describing the motion of the plate. However, the motion of the 

half-plane was described by using the exact equations of the theory of linear 

elastodynamics and the plane-strain state was considered. It was established that critical 

velocity exists in the cases where the plate material is stiffer than that of the half-plane 

material. Reviews of later investigations, which can be taken as developments of those 

started in the paper by Achenbach et al. [Achenbach, Keshava and Hermann (1967)], are 

described in the papers by Dieterman et al. [Dieterman and Metrikine (1997)] and by 

Metrikine et al. [Metrikine and Vrouwenvelder (2000)]. At the same time, in the paper by 

Dieterman et al. [Dieterman and Metrikine (1997)], the critical velocity of a point-located 

time-harmonic varying and unidirectional moving load which acts on the free face plane 

of the plate resting on the rigid foundation, was investigated. The investigations were 

made within the scope of the 3D exact equations of the linear theory of elastodynamics 

and it was established that as a result of the time-harmonic variation of the moving load, 

two types of critical velocities appear: the first (the second) of which is lower (higher) 

than the Rayleigh wave velocity in the plate material. Later, similar results were also 

obtained by Akbarov et al. [Akbarov and Salmanova (2009)], Akbarov et al. [Akbarov 

and Ilhan (2009)], and Akbarov et al. [Akbarov, Ilhan and Temugan (2015)], which were 

also discussed in the monograph by Akbarov [Akbarov (2015)]. 

The aforementioned paper by Metrikine et al. [Metrikine and Vrouwenvelder (2000)] 

deals with the study of the surface vibration of the layer resting on the rigid foundation 

and containing a beam on which the moving load acts. In this paper, a two-dimensional 
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problem is considered and the motion of the layer is described by the exact equations of 

elastodynamics, however, the motion of the beam is described by the Euler-Bernoulli 

theory. At the same time, it is assumed that the material of the layer has a small viscosity 

and three types of load are examined, namely constant, harmonically varying and a 

stationary random load. Note that all the investigations carried out in the papers by 

Metrikine et al. [Metrikine and Vrouwenvelder (2000)], and Dieterman et al. [Dieterman 

and Metrikine (1997)] are based on the concept of the critical velocity which is 

determined through the dispersion diagrams of the corresponding wave propagation.   

Up to now, a certain number of investigations have also been made related to the 

dynamics of the moving load acting on the prestressed system. For instance, in the paper 

by Kerr [Kerr (1983)], the initial stresses on the values of the critical velocity of the 

moving load acting on an ice plate resting on water were taken into account. In this paper, 

the motion of the plate is described by employing the Kirchhoff plate theory and it is 

established that the initial stretching (compression) of the plate along the load moving 

direction causes an increase (a decrease) in the values of the critical velocity. 

Moreover, in the paper by Metrikine et al. [Metrikine and Dieterman (1999)], under 

investigation of the lateral vibration of the beam on an elastic half-space due to a moving 

lateral time-harmonic load acting on the beam, the initial axial compression of this beam 

is also taken into consideration. In this investigation, the motion of the beam is written 

through the Euler-Bernoulli beam theory, however, the motion of the half-space is 

described by the 3D exact equations of elastodynamics and it is assumed there are no 

initial stresses in the half-space. 

The influence of the initial stresses acting in the half-plane on the critical velocity of the 

moving load which acts on the plate which covers this half-plane was studied in the 

papers by Babich et al. [Babich, Glukhov and Guz (1986, 1988, 2008a)]. Note that in 

these studies, the plane strain state was considered and the motion of the half-plane was 

written within the scope of the three-dimensional linearized theory of elastic waves in 

initially stressed bodies (see Guz [Guz (1999, 2004)]). However, the motion of the 

covering layer, which does not have any initial stresses, as in the paper by Achenbach et 

al. [Achenbach, Keshava and Hermann (1967)], was written by employing the 

Timoshenko plate theory and the plane-strain state is considered. For more detail, we 

note that in the paper by Babich et al. [Babich, Glukhov and Guz (1986)], the 

corresponding boundary value problem for the highly-elastic compressible half-plane was 

solved by employing the Fourier transformation with respect to the spatial coordinate 

along the plate-lying direction. Numerical results on the critical velocity of the moving 

load were presented for the case where the elasticity relations of the half-plane material 

are described through the harmonic potential. In the other paper by Babich et al. [Babich, 

Glukhov and Guz (1988)], the same problem which was considered in the paper by 

Babich et al. [Babich, Glukhov and Guz (1986)] was solved by employing the complex 

potentials of the three-dimensional linearized theory of elastic waves in initially stressed 

bodies, which are developed and presented in the monograph by Guz [Guz (1981)]. Note 

that in the papers by Babich et al. [Babich, Glukhov and Guz (1986, 1988)], the subsonic 

regime was considered. However, in the papers by Babich et al. [Babich, Glukhov and 

Guz (2008a)], the foregoing investigations of these authors were developed for the 
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supersonic moving velocity of the external load for the case where the material of the 

half-plane is incompressible [Babich, Glukhov and Guz (2008a)] as well as for the case 

where this material is compressible [Babich, Glukhov and Guz (2008b)].   

Furthermore, in the works of the first author of the present paper and his collaborators, 

the investigations of the problems related to the dynamics of the moving load acting on 

the layered systems were developed and under these investigations not only the motion of 

the half-plane but also the motion of the covering layer was written within the scope of 

the exact equations of the three-dimensional linearized theory of elastic waves in initially 

stressed bodies. Some of these works are as follows.  

In the paper by Akbarov et al. [Akbarov, Guler and Dincoy (2007)], the influence of the 

initial stresses in the covering layer and half-plane on the critical velocity of the moving 

load acting on the plate covering the half-plane, was studied. The same moving load 

problem for the system consisting of the covering layer, substrate and half-plane was 

studied in the paper by Dincsoy et al. [Dincsoy, Guler and Akbarov (2009)]. The 

dynamics of the system consisting of the orthotropic covering layer and orthotropic half 

plane under action of the moving and oscillating moving load were investigated in the 

papers by Akbarov et al. [Akbarov and Ilhan (2008, 2009)] and the influence of the initial 

stresses in the constituents of this system on the values of the critical velocity was 

examined in the paper by Ilhan [Ilhan (2012)]. Moreover, in the paper by Akbarov et al. 

[Akbarov and Salmanova (2009)], the dynamics of the oscillating moving load acting on 

the pre-strained bi-layered slab made of highly elastic material and resting on a rigid 

foundation was studied. The 3D problems of the dynamics of the moving and oscillating 

moving load acting on the system consisting of a pre-stressed covering layer and half-

space were considered in the paper by Akbarov et al. [Akbarov, Ilhan and Temugan 

(2015)] and, in particular, it was established that the minimal values of the critical 

velocities determined within the scope of the 3D formulation coincide with the critical 

velocity determined within the scope of the corresponding 2D formulation. These and 

other related results were also detailed in the monograph by Akbarov [Akbarov (2015)].  

Finally, we note the paper by Akbarov et al. [Akbarov, Ilhan and Temugan (2015)] in 

which the dynamics of the lineally-located moving load acting on the hydro-elastic 

system consisting of elastic plate, compressible viscous fluid and rigid wall were studied. 

It was established that there exist cases under which the critical velocities appear.   

Note that related non-linear problems regarding the moving and interaction of two 

solitary waves was examined in the paper by Demiray [Demiray (2014)] and other ones 

cited therein. At the same time, non-stationary dynamic problems for viscoelastic and 

elastic mediums were studied in the papers by Ilyasov [Ilyasov (2011)], Akbarov 

[Akbarov (2010)] and other works cited in these papers.  Moreover, it should be noted 

that up to now it has been made considerable number investigations on fluid flow-moving 

around the stagnation-point (see the paper by Aman et al. [Aman and Ishak (2014)] and 

other works listed therein). Some problems related to the effects of magnetic field and the 

free stream flow-moving of incompressible viscous fluid passing through magnetized 

vertical plate were studied by Ashraf et al. [Ashraf, Asghar and Hossain (2014)]. 
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The investigations related to the fluid-plate and fluid-moving plate interaction were 

considered the papers by Akbarov et al. [Akbarov and Panachli (2015)] and Akbarov et al. 

[Akbarov and Ismailov (2015, 2016)]. 

It follows from the foregoing brief review that almost all investigations on the dynamics 

of the moving and oscillating moving load relate to flat-layered systems. However, as 

noted in the beginning of this section, cases often occur in practice in which it is 

necessary to apply a model consisting of cylindrical layered systems, one of which is the 

hollow cylinder surrounded by an infinite or finite deformable medium under 

investigation of the dynamics of a moving or oscillating moving load. It should be noted 

that up to now some investigations have already been made in this field. For instance, in the 

paper by Abdulkadirov [Abdulkadirov (1981)] and others listed therein, the low-frequency 

resonance axisymmetric longitudinal waves in a cylindrical layer surrounded by an elastic 

medium were investigated. Note that under “resonance waves” the cases under which the 

relation 0dc dk   
occurs, is understood, where c  is the wave propagation velocity and 

k  is the wavenumber. It is evident that the velocity of these “resonance waves” is the 

critical velocity of the corresponding moving load. Some numerical examples of 

“resonance waves” are presented and discussed. It should be noted that in the paper by 

Abdulkadirov [Abdulkadirov (1981)], in obtaining dispersion curves, the motion of the 

hollow cylinder and surrounding elastic medium is described through the exact equations 

of elastodynamics, however, under investigation of the displacements and strains in the 

hollow cylinder under the wave process, the motion of the hollow cylinder is described 

by the classical Kirchhoff-Love theory. 

Another example of the investigations related to the problems of the moving load acting 

on the cylindrical layered system is the investigation carried out in the paper by Zhou et 

al. [Zhou, Deng and Hou (2008)] in which the critical velocity of the moving internal 

pressure acting in the sandwich shell was studied. Under this investigation, two types of 

approaches were used, the first of which is based on first order refined sandwich shell 

theories, while the second approach is based on the exact equations of linear 

elastodynamics for orthotropic bodies with effective mechanical constants, the values of 

which are determined by the well-known expressions through the values of the 

mechanical constants and volumetric fraction of each layer of the sandwich shell. 

Numerical results on the critical velocity obtained within these approaches are presented 

and discussed. Comparison of the corresponding results obtained by these approaches 

shows that they are sufficiently close to each other for the low wavenumber cases, 

however, the difference between these results increases with the wavenumber and 

becomes so great that it appears necessary to determine which approach is more accurate. 

It is evident that for this determination it is necessary to investigate these problems by 

employing the exact field equations of elastodynamics within the scope of the piecewise 

homogeneous body model, which is also used in the present paper. 

Finally, we note the works by Hung et al. [Hung, Chen and Yang (2013); Hussein, 

François, Schevenels et al. (2014); Yuan, Bostrom and Cai (2017)] and others listed 

therein, in which numerical and analytical solution methods have been developed for 

studying the dynamical response of system consisting of the system consisting of the 

circular hollow cylinder and surrounding elastic medium to the moving load acting on the 
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interior of the cylinder. However, the main aim of these investigations is the study of a 

displacement distribution of the surrounding elastic medium caused by the moving load 

and the analyses related to the critical velocity and to the response of the interface 

stresses to the moving load are almost completely absent. Moreover we note the 

development in recent years numerical methods based on various type finite elements and 

applied for investigations of the dynamics and statics of the related bi-material elastic and 

piezoelectric systems (see, for instance the papers by Fan et al. [Fan, Zhang, Dong et al. 

(2015)], Babuscu [Babuscu (2017)], Wei et al. [Wei, Chen, Chen et al. (2016)] and others 

listed in these papers. 

With this we restrict ourselves to reviewing related investigations, from which it follows 

that up to now there have not been any systematic investigations on the dynamics of the 

moving internal pressure acting on the hollow cylinder surrounded by an elastic medium 

carried out within the scope of the piecewise homogeneous body model by employing the 

exact field equations of linear elastodynamics. There have not been any systematic 

investigations not only for the cases where between the constituents of the “hollow 

cylinder+surrounding infinite elastic medium” system the imperfect contact conditions 

exist but also in the cases where these conditions are perfect. There are also no results on 

the interface stress and displacement distributions caused by this moving load. Namely 

these and other related questions are studied in the present paper.    

It should be noted that the related study of the axisymmetric forced vibration of the 

“hollow cylinder+surrounding infinite elastic medium” system under perfect and 

imperfect contact between the constituents is carried out in the paper by Akbarov et al. 

[Akbarov and Mehdiyev (2017)].  

2 Mathematical Formulation of the Problem 

Consider a hollow circular cylinder with thickness h which is surrounded by an infinite 

elastic medium. We associate the cylindrical and cartesian systems of coordinates Or z
and 1 2 3Ox x x  (Fig. 1) with the central axis of this cylinder. Assume that the external 

radius of the cross section of the cylinder is R  and on its inner surface axisymmetric 

uniformly distributed normal forces act in the circumferential direction moving with 

constant velocity V which is point-located with respect to the cylinder central axis. 

Within this framework, we investigate the axisymmetric stress-strain state in this system 

by employing the exact equations of the linear theory of elastodynamics within the scope 

of the piecewise homogeneous body model. Below, the values related to the cylinder and 

to the surrounding elastic medium will be denoted by upper indices (2) and (1), 

respectively.  
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Figure 1: The sketch of the elastic system under consideration 

We suppose that the materials of the constituents are homogeneous and isotropic. 

We write the field equations and contact conditions as follows.  

Equations of motion: 

( ) ( ) 2 ( )
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Elasticity relations: 

( )( ) ( ) ( ) ( ) ( ) ( )( ) 2
kk k k k k k
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Strain-displacement relations: 
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Note that the Eq. (1), (2) and (3) are the complete system of the field equations of the 

linear theory of elastodynamics in the case under consideration and in these equations 

conventional notation is used. 

Consider the formulation of the boundary and contact conditions. According to the 

foregoing description of the problem, the boundary conditions on the inner face surface 

of the cylinder can be formulated as follows. 

(2)
0 ( )rr

r R h
P z Vt 

 
   ,  

(2) 0rz
r R h


 

   (4) 

We assume that the contact conditions with respect to the forces and radial displacement 

are continuous and can be written as follows: 
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(1) (2)
rr rr

r R r R
 

 
 ,  

(1) (2)
rz rz

r R r R
 

 
 ,  

(1) (2)
r r

r R r R
u u

 
   (5) 

At the same time, we assume that shear-spring type imperfection occurs in the contact 

conditions related to the axial displacements and, according to Akbarov [Akbarov (2015)] 

and others listed therein, these conditions are formulated by the following equation:   

(1) (2) (1)
(1)z z rz

r R r R r R

FR
u u 

  
   (6) 

The dimensionless parameter F  in (6) characterizes the degree of the imperfection and 

the range of change of this parameter is F  . Note that the case where 0F   

corresponds to complete contact, but the cases where F   correspond to full slipping 

contact conditions. Note that the main contribution of the present investigation is caused 

with the condition (6). 

We will also assume that 

 (1) (2)
2 2

min ;V c c  , 
( ) ( ) ( )
2
n n nc   , 1, 2n  ,    (7) 

i.e. we will consider the subsonic moving velocity. 

According to (7), we can write that  

(1)(1) (1) (1) (1) (1); ; ; ; ; 0rr zz rz r zu u      as 2 2r z   for each [0,2 ]   

and 

(2)(2) (2) (2) (2) (2); ; ; ; ; 0rr zz rz r zu u      as z    for each [0,2 ]         (8) 

This completes formulation of the problem and consideration of the governing field 

equations. 

3 Method of solution 

For solution to the problem formulated above we use the well-known, classical Lame (or 

Helmholtz) decomposition (see, for instance, Eringen et al. [Eringen and Suhubi (1975)]): 
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where ( )k  and ( )k  satisfy the following equations: 
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where 
( ) ( ) ( ) ( )
1

( )
k k k kc      and 

( ) ( ) ( )
2
k k kc   . 

We use the moving coordinate system 

  'r r , 'z z Vt         (11) 

which moves with the loading internal pressure and by rewriting the Eq. (10) with the 

coordinates 'r  and 'z , we obtain:   
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where the primes on the r  and z  have been omitted and V  in Eq. (11) and (12) is the  

moving velocity of the internal pressure. After coordinate transformation (11) the first 

condition in (4) transforms to the following one: 

(2)
0 ( )rr

r R h
P z 

 
                          (13) 

but the other relations and conditions in (1-8) remain valid in the new coordinates 

determined by (11). 

Below we will use the dimensionless coordinates /r r h  and /z z h  instead of the 

coordinates r  and z , respectively and the over-bar in r  and z will be omitted.

Thus, the solution of the considered boundary value problem is reduced to the solution to 

the equations in (12). For this purpose we use the Fourier transformation with respect to 

the coordinate z  and by taking the problem symmetry with respect to the point 0z   

into consideration, the functions ( )k  and ( )k ,   can be presented as follows. 
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Substituting the expressions in (14) into the foregoing equations, relations and contact 

and boundary conditions, we obtain the corresponding ones for the Fourier 

transformations of the sought values. Note that after this substitution, the relation (2), the 

first and second relation in (3), the second condition in (4) and all the conditions in (5) 

and (6) remain as for their Fourier transformations. However, the third and fourth relation 

in (3) and the condition (13) and the relations in (9) transform to the following ones:

( ) ( )k k
zzF zFsu  , 

( )
( ) ( )1

( )
2

k
k kzF

rzF rF

du
su

dr
   ,

(2)
0rrF

r R h
P

 
 



112   Copyright © 2018 Tech Science Press       CMC, vol.54, no.2, pp.103-136, 2018 

 

( ) ( )
( )

k k
k F F

rF

d d
u s

dr dr

 
  ,  

2
( ) ( ) ( )2

( ) 2
2

(1 )
( )

k k k
zF F Fk

V
u s s

c
                            (15) 

Moreover, after the aforementioned substitution we obtain the following equations for 
( )k
F and ( )k  from the equations in (12). 

2 2
( )2

2 ( ) 2
1

1
(1 ) 0

( )

k
Fk

d d V
s

r drdr c


 
    
 
 

,  

2 2
( )2

2 ( ) 2
2

1
(1 ) 0

( )

k
Fk

d d V
s

r drdr c


 
    
 
 

      (16) 

According to the condition (7) and to the first row of conditions in (8) from which 

follows that 
(1)(1) (1) (1) (1) (1); ; ; ; ; 0rr zz rz r zu u      as r  under z const , the 

solution to the equations in (16) we find as follows: 

(2) (2) (2) (2) (2)
0 01 1 2 1

( ) ( )F A I q r A K q r   , 
(1) (1) (1)

02 1
( )F A K q r 

(2) (2) (2) (2) (2)
0 01 2 2 2

( ) ( )F B I q r B K q r   , 
(1) (1) (1)

02 2
( )F B K q r   

2
( ) 2
1 ( ) 2

1

(1 )
( )

k

k

V
q s

c
   , 

2
( ) 2
2 ( ) 2

2

(1 )
( )

k

k

V
q s

c
      (17) 

Here 0( )I x  and 0( )K x  are modified Bessel functions for the purely imaginary arguments

of the first and second kind, respectively with the zeroth order. 

Thus, using the expressions (2), (3), (9), (15) and (17) we obtain the following 

expressions of the Fourier transformations of the sought values. 

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
1 1 1 11 1 1 2 1 1 1 2 2 2 2 2
( ) ( ) ( ) ( )rFu A q I q r A q K q r B sq I q r B sq K q r     

(1) (1) (1) (1) (1) (1) (1)
1 12 1 1 2 2 2
( ) ( )rFu A q K q r B sq K q r  

(2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)
0 0 0 01 1 2 1 1 2 1 2 2 1

( ) ( ) ( ) ( )zFu A sI q r A sK q r B q I q r B q K q r    

(1) (1) (1) (1) (1) (1)
0 02 1 2 2 1

( ) ( )zFu A sK q r B q K q r  

 (2) (2) (2) (2) (2) (2)(2) 2 2
0 2 01 1 1 1 1

0.5( ) ( ( ) ( )) ( )rzF A q I q r I q r s I q r     


 (2) (2) (2) (2) (2)2 2
0 2 02 1 1 1 1

0.5( ) ( ( ) ( )) ( )A q K q r K q r s K q r    
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 (2) (2) (2) (2) (2) (2)2
0 2 01 2 2 2 2 2

0.5 ( ) ( ( ) ( )) ( )B s q I q r I q r sq I q r    

 (2) (2) (2) (2) (2) (2)2
0 2 02 2 2 2 2 2

0.5 ( ) ( ( ) ( )) ( )B s q K q r K q r sq K q r  


 (1) (1) (2) (1) (1) (1)(2) 2 2
0 2 02 1 1 1 1

0.5( ) ( ( ) ( )) ( )rzF A q K q r K q r s K q r     


 (1) (1) (1) (1) (1) (1)2
0 2 02 2 2 2 2 2

0.5 ( ) ( ( ) ( )) ( )B s q K q r K q r sq K q r  


(2)
(2) (2) (2) (2) (2)(2) 2

0 21 1 1 1(2)
2 (1 )( ) 0.5( ( ) ( ))

2
rrF A q I q r I q r


 



 
   
 

(2)(2)
(2) (2)21

1 01 1(2)
( ( ) ( ))

2

q
I q r s I q r

r






 



(2)
(2) (2) (2) (2)2

0 22 1 1 1(2)
(1 )( ) 0.5( ( ) ( ))

2
A q K q r K q r






  



 

(2)(2)
(2) (2)21

1 01 1(2)
( ( ) ( ))

2

q
K q r s K q r

r






  



(2)
(2) (2) (2) (2)2

0 21 2 2 2(2)
(1 ) ( ) 0.5( ( ) ( ))

2
B s q I q r I q r






 



 

(2)(2)
(2) (2) (2)2

1 02 2 2(2)
( ( ) ( ))

2

sq
I q r sq I q r

r






  



(2)
(2) (2) (2) (2)2

0 22 2 2 2(2)
(1 ) ( ) 0.5( ( ) ( ))

2
B s q K q r K q r






  



(2)(2)
(2) (2) (2)2

1 02 2 2(2)
( ( ) ( ))

2

sq
K q r sq K q r

r






 


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(1)
(1) (1) (1) (2) (1)(1) 2

0 22 1 1 1(1)
2 (1 )( ) 0.5( ( ) ( ))

2
rrF A q K q r K q r


 



 
   
 

 

(1)(1)
(1) (1)21

1 01 1(1)
( ( ) ( ))

2

q
K q r s K q r

r






  



(1)
(1) (1) (1) (1)2

0 22 2 2 2(1)
(1 ) ( ) 0.5( ( ) ( ))

2
B s q K q r K q r






  



(1)(1)
(1) (1) (1)2

1 02 2 2(1)
( ( ) ( ))

2

sq
K q r sq K q r

r






 



(2)
(2) (2) (2) (2) (2)(2) 2

0 21 1 1 1(2)
2 (( ) 0.5( ( ) ( ))

2
F

A q I q r I q r


 


 
  
 

 

(2)(2)
(2) (2)2 1

0 11 1(2)
( )) (1 ) ( )

2

q
s I q r I q r

r






  



(2)
(2) (2) (2) (2) (2)2 2

0 2 02 1 1 1 1(2)
(( ) 0.5( ( ) ( )) ( ))

2
A q K q r K q r s K q r






  



(2)(2)
(2)1

1 1(2)
(1 )( ( ))

2

q
K q r

r






  



(2)
(2) (2) (2) (2) (2) (2)2

0 2 01 2 2 2 2 2(2)
( ( ) 0.5( ( ) ( )) ( ))

2
B s q I q r I q r sq I q r






  



 

(2)(2)
(2)2

1 2(2)
(1 ) ( )

sq
I q r

r






 



(2)
(2) (2) (2) (2) (2) (2)2

0 2 02 2 2 2 2 2(2)
( ( ) 0.5( ( ) ( )) ( ))

2
B s q K q r K q r sq K q r






  


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(2)(2)
(2)2

1 2(2)
(1 )( ( )

sq
K q r

r






 



(1)
(1) (1) (1) (1) (1) (1)(1) 2 2

0 2 02 1 1 1 1(1)
2 (( ) 0.5( ( ) ( )) ( ))

2
F

A q K q r K q r s K q r


 



  
 

(1)(1)
(1)1

1 1(1)
(1 )( ( ))

2

q
K q r

r






   



(1)
(1) (1) (1) (1) (1) (1)2

0 2 02 2 2 2 2 2(1)
( ( ) 0.5( ( ) ( )) ( ))

2
B s q K q r K q r sq K q r






  



(1)(1)
(1)2

1 2(1)
(1 )( ( )

sq
K q r

r






 



(2)
(2) (2) (2) (2) (2)(2) 2

0 21 1 1 1(2)
2 (( ) 0.5( ( ) ( ))

2
zzF A q I q r I q r


 



 
  
 

(2) (2)
(2) (2)21

1 01 1(2)
( )) (1 ) ( ))

2

q
I q r s I q r

r






  



(2)(2)
(2) (2) (2) (2) (2)2 1

0 2 12 1 1 1 1(2)
(( ) 0.5( ( ) ( )) ( ))

2

q
A q K q r K q r K q r

r






  



 

(2)
(2)2

0 1(2)
(1 ) ( )

2
s K q r






 



(2)
(2) (2) (2) (2)2

0 21 2 2 2(2)
( ( ) 0.5( ( ) ( ))

2
B s q I q r I q r






 



(2) (2)
(2) (2) (2)2

1 02 2 2(2)
( )) (1 ) ( )

2

sq
I q r sq I q r

r






  


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(2)(2)
(2) (2) (2) (2) (2)2 2

0 2 12 2 2 2 2(2)
( ( ) 0.5( ( ) ( )) ( ))

2

sq
B s q K q r K q r K q r

r






  



 

(2)
(2) (2)

02 2(2)
(1 ) ( )

2
sq K q r






 


(1)
(1) (1) (1) (2) (2)(1) 2

0 22 1 1 1(1)
2 (( ) 0.5( ( ) ( ))

2
zzF A q K q r K q r


 



 
  
 

 

(1) (1)
(1) (1)21

1 01 1(1)
( )) (1 ) ( )

2

q
K q r s K q r

r






  



 

(1)
(1) (1) (1) (1)2

0 22 2 2 2(1)
( ( ) 0.5( ( ) ( ))

2
B s q K q r K q r










(1) (1)
(1) (1) (1)2

1 02 2 2(1)
( )) (1 ) ( ))

2

sq
K q r sq K q r

r






  



.         (18) 

Thus, using the expressions in (18) we attempt to satisfy the Fourier transformations of 

the conditions (13) and (4-6), according to which, the following expressions can be 

written. 

(2) (2) (2) (2) (2) (1) (1)
0 11 12 13 14 15 16 01 2 1 2 1 2rrF

r R h
P A A B B B B P      

 
           

(2) (2) (2) (2) (2) (1) (1)
21 22 23 24 25 261 2 1 2 1 2

0 0rzF
r R h

A A B B B B      
 

         

(2) (2) (2) (2) (1) (1)(1) (2)
31 32 33 34 35 361 2 1 2 1 2

0rr rr
r R r R

A A B B B B       
 

         

(2) (2) (2) (2) (1) (1)(1) (2)
41 42 43 44 45 461 2 1 2 1 2

0rz rz
r R r R

A A B B B B       
 

         

(2) (2) (2) (2) (1) (1)(1) (2)
51 52 53 54 55 561 2 1 2 1 2

0r r
r R r R

u u A A B B B B     
 

         

(2) (2) (2)(1) (2) (1)
61 62 631 2 1(1)z z rz

r R r R r R

FR
u u A A B   

  
       

(2) (1) (1)
64 65 662 1 2

0B B B     . (19) 
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The coefficients ij , where ; 1,2,3,...,6i j 
 
can be easily determined from the

expressions in (18). 

Thus, solving the equations in (19) with respect to the unknowns (2) (2) (2)
1 2 1

, , ,A A B  (2)
2

,B  

(1)
2

A and (1)
2

B we determine completely the Fourier transformations of all the sought 

values and,  substituting these values into the integrals in (14) and calculating these 

integrals, we determine the originals of the stresses and displacements in the system 

under consideration caused by the action of the external moving load.   

This completes the consideration of the solution method. 

4 Numerical results and discussions 

4.1 The criteria and algorithm for calculation of the critical velocity 

First we consider the criterion for determination of the critical velocity under which the 

values of the stresses and displacements become infinity and resonance-type behavior 

occurs. For this purpose, we detail the expressions of the unknown constants 
(2) (2) (2) (2) (1)
1 2 1 2 2

, , , ,A A B B A  and (1)
2

B  which are obtained from the Eq. (19) and can be 

presented as follows: 

 
(2) (2)
1 2(2) (2) (2) (2) (1) (1)

1 2 1 2 2 2

1
; ; ; ; ; det ;det ;

det

A A

ij ij
ij

A A B B A B  



 



 

(2) (2) (1) (1)
1 2 2 2det ;det ;det det

B B A B

ij ij ij ij   




   (20) 

where the matrices 
(2)
1

A

ij
 
 
 
 

, 
(2)
2

A

ij
 
 
 
 

, 
(2)
1

B

ij
 
 
 
 

, 
(2)
2

B

ij
 
 
 
 

, 
(1)
2

A

ij
 
 
 
 

 and 

(1)
2

B

ij
 
 
 
 

are obtained from the matrix ( )ij  by replacing the first, second, third, fourth,

fifth and sixth columns with the column  0 ,0,0,0,0,0
T

P , respectively.  

At the same time, for the selected value of the load moving velocity V , the equation 

det 0ij     (21) 

has roots with respect to the Fourier transformation parameter s  and as a result of the 

solution of the equation (21), the relation ( )V V s  
is obtained. It is obvious that if the 

order of this root is one, then the integrals in (18) at the vicinity of this root can be 

calculated in Cauchy’s principal value sense. However, if there is a root the order of 

which is two, then the integrals in (18) have infinite values and namely the velocities 
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corresponding to this root are called the critical velocity. In other words, the critical 

velocity is determined as the velocity corresponding to the case where  

0
dV

ds
 .   (22) 

It should also be noted that if we rename the Fourier transformation parameter s  with the 

wavenumber and the load moving velocity with the wave propagation velocity, then the 

Eq. (21) coincides with the dispersion equation of the corresponding near-surface wave 

propagation problem. So, the relation ( )V V s obtained from the solution of the Eq. (21), 

which is made by employing the well-known “bisection” method, is also the dispersion 

relation of the near-surface wave. Therefore, in some investigations (for instance in the 

paper by Abdulkadirov [Abdulkadirov (1981)] the critical velocity is renamed as 

“resonance waves” and is determined from the dispersion curves of the corresponding 

wave propagation problem.  

This completes the consideration of the criteria and algorithm for determination of the 

critical velocity under which the resonance-type phenomenon takes place.  

4.2 Algorithm for calculation of the integrals in (18) 

First of all, we note that the integrals in (18) and similar types of integrals are called 

wavenumber integrals, for calculation of which, special algorithms are employed. These 

algorithms are discussed in the works by Akbarov [Akbarov (2015)], Jensen et al. [Jensen, 

Kuperman, Porter et al. (2011)], Tsang [Tsang (1978)] and others listed therein. 

According to these discussions, in the present investigation we prefer to apply the 

Sommerfeld contour integration method. This method is based on Cauchy’s theorem on 

the values of the analytic functions over the closed contour, and according to this theorem 

the contour  0, is “deformed” into the contour C  (Fig. 2), which is called the

Sommerfeld contour in the complex plane 1 2s s is   and in this way the real roots of the

Eq. (21) are avoided under calculation of the wavenumber integrals.   

Figure 2: The sketch of the Sommerfeld contour 

Thus, according to this method, the integrals in (18) are transformed into the following 

ones. 
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   ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 1
; ; ; ( , ) Re ; ; ; ( , ) cos( )

k k k kk k k k
r nn nn F rF nnF nnF

C

u r z u r s sz ds     


  ,

; ;nn rr zz

   ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 1
; ; ; ; ( , ) Re ; ; ; ( , )sin( )

k k k kk k k k
z rz rz F zF rzF rzF

C

u r z u r s sz ds     


  .  (23) 

Taking the configuration of the contour C given in Fig. 2, we can write the following 

relations. 

1 2 1 2 1 2 2 2

0 0

( ) cos( ) ( )cos( ) ( )cos( )

C

f s sz ds f s i s i ds i f is is ds



 



      ,  

1 2 1 2 1 2 2 2

0 0

( )sin( ) ( )sin( ) ( )sin( )

C

f s sz ds f s i s i ds i f is is ds



 



      .  (24) 

Assuming that 1 , we can neglect the integrals with respect to 2s  in (24) and obtain

the following expressions for calculation of the integrals in (23).   

   ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 1

0

1
; ; ; ( , ) Re ; ; ; ( , ) cos(( ) )

k k k kk k k k
r nn nn F rF nnF nnFu r z u r s i s i z ds       





  
, 

   ( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 2 1 1

0

1
; ; ; ; ( , ) Re ; ; ; ( , )sin(( ) )

k k k kk k k k
z rz rz F zF rzF rzFu r z u r s is s i z ds      





  
      (25) 

Under calculation of the integrals in (25) the improper integral 10
( )ds


• is replaced with 

the corresponding definite integral 
*
1

10
( )

S
ds• and the values of

*
1S are determined from the

corresponding convergence requirement. Moreover, under calculation of the integral
*
1

10
( )

S
ds• , the interval *

1[0, ]S  is divided into a certain number (denote this number

through N ) of shorter intervals and within each of these shorter intervals the integrals are 

calculated by the use of the Gauss algorithm with ten integration points. The values of the 

integrated functions at these integration points are calculated through the solution of the 

Eq. (19) and it is assumed that in each of the shorter intervals the sampling interval 1s

of the numerical integration must satisfy the relation  1 min ,1s z . All these

procedures are performed automatically in the PC by use of the corresponding programs 

constructed by the authors of the present paper in MATLAB.   
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4.3 Numerical results related to the critical velocity 

All numerical results which will be considered in the present subsection are obtained 

through the solution to the Eq.  21. First, we consider the numerical results obtained in 

the following two cases: 

Case 1: 
(1)

(2)
0.35

E

E
 , (1) (2) 0.25   , 

(1)

(2)
0.1




 ;         (26) 

Case 2:  
(1)

(2)
0.05

E

E
 , (1) (2) 0.25   , 

(1)

(2)
0.01




 .               (27) 

Note that these cases were also considered in the paper by Abdulkadirov [Abdulkadirov 

(1981)] within the assumption that / 0.5h R   and the existence of the critical velocity 

was observed in Case 1 (in Case 2) under F   (under 0F  ) in (6), i.e. under full 

slipping imperfect (perfect) contact conditions between the hollow cylinder and 

surrounding elastic medium. In the present investigation we obtain numerical results not 

only for the cases where 0F   and F  , but also for the cases where 0F   and 

0 F   . The graphs of the dependencies between the dimensionless critical velocity 
(2)
2crV c  and the imperfection parameter F constructed under / 0.5h R   are given in Fig.

3 and 4 for Case 1 and Case 2, respectively.  

It follows from these graphs that the results obtained in the present paper in these 

particular cases coincide with the corresponding ones obtained in the paper by 

Abdulkadirov [Abdulkadirov (1981)] and in addition, these results show that there exist 

the following relations: 

0 0cr cr crF F F
V V V

  
  and 0cr cr F

V V


   as F   ,         (28) 

' 0 0cr cr crF F F F
V V V

   
  and 0cr cr F

V V


   as F   .       (29) 

Note that the aforementioned coinciding of the present results obtained in the particular 

cases with the corresponding ones given in the paper by Abdulkadirov [Abdulkadirov 

(1981)] proves the reliability of the calculation algorithm and PC programs used in the 

present investigation. 

Now we attempt to explain the meaning of 'F which is in the relation (29) and for this 

purpose, as an example, we consider the corresponding dispersion curves obtained in 

Case 2 for the first lowest mode and given in Fig. 5. To prevent misunderstandings, we 

note that under construction of the graphs given in Fig. 5, the cases where 

 (1) (2)
2 2

min ;V c c  are also considered and in these cases in the solution of the 

corresponding equations considered above, the functions ( )nI x  and ( )nK x  in (17) are

changed with ( )nJ x  and ( )nY x  respectively, where ( )nJ x  and ( )nY x  
are Bessel

functions of the first and second kind of the n th  order. However, the critical velocities 
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are determined from the results which relate to the subsonic velocity of the moving load, 

i.e. to the cases where  (1) (2)
2 2

min ;V c c .

Thus, we turn to the analyses of the results given in Fig. 5 which show that in the case 

where 0F  , the dispersion curves are limited to the dispersion curves obtained in the 

case where 0F   (upper limit) and in the case where F   (lower limit). However, in 

the case where 0F  , the dispersion curve of the first mode has two branches. The first

branch has cut off values . .( )c fsR  after which the wave propagation velocities in this

branch are less than those obtained in the perfect contact case, i.e. by denoting the wave 

propagation velocity for the first branch through IV  we can write the following relation:

0I F
V V


 under . .( )c fsR sR       (30) 

However, the second branch of the dispersion curve has no cut off value of sR  and the 

wave propagation velocity of this branch (denote it by IIV ) is less than that obtained in

the perfect contact case, i.e. for the second branch we can write the following relation: 

0II F
V V


  for each 0sR  .                 (31) 

Moreover, it follows from Fig. 5 that the point at which (2)
2

( / ) ( ) 0d V c d sR   on the first 

branch of the dispersion curves appears after a certain value of the parameter F (denote 

this value by 'F ). For instance, in the case under consideration, it can be seen that 

0.2 ' 0.3F  . Namely, this value of the parameter F enters into the relation (29).  

We continue the discussion of the dispersion curves given in Fig. 5 and note that the 

point at which (2)
2

( / ) ( ) 0d V c d sR   on the second branch of the dispersion curves appears 

in each value of the parameter F  under 0F  , and the values of the critical velocities 

(i.e. the velocities corresponding to the point at which (2)
2

( / ) ( ) 0d V c d sR  ) are greater

than those obtained in the perfect contact case and increase with F , while after a certain 

value of F  they proceed to the subsonic regime, which is not considered in the present 

paper. However, the critical velocities obtained on the first branches of the dispersion 

curves are less than those obtained in the perfect contact case. Therefore, all the results 

given in the present subsection and regarding the case where 0F   are determined 

according to the first branches of the dispersion curves.   

We also note the meanings of the cases where 0F   and 0F   where under selected 

forms of the contact condition (6), the case where 0F  means that if (1) (2) 0rz rz
r R r R

 
 

 

( (1) (2) 0rz rz
r R r R

 
 

  ) and (1) 0z
r R

u


 , (2) 0z
r R

u


 , then the displacement of the hollow

cylinder along the Oz  axis at the interface surface is greater (less) than that of the 

surrounding elastic medium. Analogically, the case 0F   means that under satisfaction 

of the foregoing conditions, the displacement of the hollow cylinder along the Oz  axis 

on the interface surface is less (greater) than that of the surrounding elastic medium.  It is 
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evident that each of these cases has real application fields and therefore the results 

obtained in the cases where 0F   also have a real physico-mechanical meaning.   

We recall that the foregoing results were obtained in the case where / 0.5h R  . It should 

be noted that similar types of results are also obtained in the other values of the ratio 

/h R . As an example of this, in Fig. 6 and 7 the graphs of the dependence between 
(2)
2

/crV c  and the parameter F  constructed under / 0.2h R   are given for Case 1 (26)

and Case 2 (27), respectively. It follows from these graphs that the foregoing conclusions 

on the character of the influence of the parameter F on the values of the critical velocity 

do not depend on the ratio /h R in the qualitative sense.  

Now we consider in more detail the results illustrating the influence of the ratio /h R  on 

the values of the critical velocity obtained in the cases where 0F  and F  . These 

results, i.e. the values of (2)
2

/crV c  are given in Tab. 1 and 2 for Case 1 and Case 2,

respectively under various values of the ratio /h R . It follows from these tables that the 

values of the critical velocity decrease monotonically with decreasing of the ratio /h R , 

and the magnitude of this decrease in Case 2 is more considerable than in Case 1.  

According to physico-mechanical considerations, the values of the critical velocity 

obtained for the system under consideration must approach the corresponding ones 

obtained for the system consisting of the covering layer and half-plane with decreasing of 

the ratio /h R . For illustration of this, we consider the values of the critical velocity 

obtained in the case where (1) (2)/ 0.5   , (1) (2) 0.3    and (1) (2) 0.5E E  , which 

are given in Tab. 3, although this consideration is also proven with the data given in Tab. 

1 and 2. Note that in this case, the values of the critical velocity for the corresponding 

system consisting of the covering layer and half-plane were considered in the paper by 

Akbarov et al. [Akbarov, Guler and Dincoy (2007)] and in the paper by Babich et al. 

[Babich, Glukhov and Guz (1986)] under 0F  . Thus, it follows from Tab. 3 that the 

values of the critical velocity obtained for the system consisting of the hollow cylinder 

and surrounding elastic medium approach the corresponding ones obtained for the system 

consisting of the covering layer and half-plane. This situation confirms again the 

reliability of the calculation algorithm and corresponding PC programs which are used to 

obtain the numerical results discussed in the present subsection. 

As noted above, the influence of the ratio /h R  on the values of the critical velocity in 

Case 2 is more considerable than in Case 1. We think that the considerable influence of 

/h R  on the critical velocity in Case 2 is caused by the ratio (1) (2)E E , the value of 

which is significantly less than in Case 1. This explanation is also proven with the data 

given in Tab. 4 which show the values of the dimensionless critical velocity (2)
2

/crV c  in

the cases where (1) (2) (1) (2)/ E E   and (1) (2) 0.3    under 0F   and F   for 

various values of /h R and (1) (2)E E . Thus, it follows from Tab. 4 that a decrease in the 

values of /h R  and (1) (2)E E causes a decrease in the values of the critical velocity, and 
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the magnitude of the influence of /h R  on the values of this velocity become more 

considerable with decreasing of the ratio (1) (2)E E . 

This completes consideration of the results related to the critical velocity. 

Note that the results detailed in the foregoing eight paragraphs and corresponding 

numerical results used in this detailing can be taken as a part of the main contribution of 

the present paper into the related investigations. The other part of this contribution is 

detailed in the next subsection  

4.4 Numerical results related to the stress and displacement distributions 

The results discussed in the present subsection are obtained within the scope of the 

algorithm developed in the subsection 4.2. First of all we consider convergence of the 

values of the integrals in (25) with respect to N and 1S  in the cases where crV V . For

simplicity of the consideration, we introduce the notation (2)
2

/c V c  and consider the 

dependence between 0/rrh P , where 

(1) (2)( ) ( , ) ( , )rr rr rrz R z R z    ,       (32) 

and c  at the point / 0z h  . 

All numerical results which will be considered in the present subsection are obtained in 

the perfect contact case, i.e. in the case where 0F   in (6). According to the results 

given in Fig. 5, in the cases where crV V  under 0F  the integrated expressions do not

have any singularity over an arbitrary integrated interval *
10, S 

  
. However, in this case the 

integrated expressions have the fast oscillating terms- cos( )sz  or sin( )sz , and this also 

causes difficulties in the convergence sense of the integrals in (25). This difficulty can 

also be prevented by the use of the Sommerfeld contour integration method which is also 

used in the present study. As a result of the corresponding numerical investigations, it is 

established that in the accuracy and convergence senses it is enough to assume that 
30010 0.01    in the integrals in (25). Note that the values of the integrals calculated 

for each value of the parameter   selected from the interval 30010 ,0.01 
  

 coincide with 

each other with accuracy 7 910 10  . Under obtaining the numerical results considered 

below, it is assumed that 0.0001  . 
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Figure 3: The dependence of the critical 

velocity on the imperfection parameter F

in Case 1 (26) under  0.5h R   

Figure 4: The dependence of the critical 

velocity on the imperfection parameter 

F in Case 2 (26) under  0.5h R   

Table 1: The values of the dimensionless critical velocity (2)
2crV c  obtained for various

h R  under (1) (2) 0.1   , (1) (2) 0.25    and (1) (2) 0.35E E   in the cases where 

0F   (upper number) and F   (lower number) 

/h R

0.5 0.2 0.1 0.05 0.04 0.0333 0.0125 0.01 

0.9355

0.8809

0.8642

0.7642

0.8437

0.7311

0.8360

0.7186

0.8347

0.7166

0.8339

0.7154

0.8317

0.7120

0.8315

0.7116

It should also be noted that under using the Sommerfeld contour integration method in 

the cases where crV V  there is no difficulty in convergence of the integrals in (25) with

respect to the values of N  and the results obtained for the case where 1N   coincide 

with the results obtained for each case where 1N  . We recall that N  shows the number 

of the shorter integration intervals, the summation of which gives the interval *
10, S 

  
. 

Thus, in the cases under consideration, there is no meaning to the convergence of the 

numerical results with respect to the number N . Therefore, here we consider only the 

examples illustrating the convergence of the numerical results with respect to the length 

of the integration interval, i.e. with respect to the values of *
1S . These results for Case 1

(for Case 2) under / 0.2h R   are given in Fig. 8 (Fig. 9). It follows from these results, 

that the results obtained in the cases where *
1 9S   coincide with accuracy 6 710 10 

with those obtained in the case where *
1 9S  . Taking the foregoing situations into



The Influence of the Imperfectness of Contact Conditions      125 

consideration, under obtaining all the numerical results which will be discussed below, 

we assume that 10N   and *
1 10S  .

Table 2: The values of the dimensionless critical velocity (2)
2crV c  obtained for various

h R  unde (1) (2) 0.01   , (1) (2) 0.25    and (1) (2) 0.05E E   in the cases where 

0F   (upper number) and F   (lower number) 

/h R

0.5 0.2 0.1 0.05 0.04 0.0333 0.0125 0.01 

0.8261

0.8101

0.6176

0.5876

0.5291

0.4900

0.4885

0.4437

0.4821

0.4360

0.4781

0.4314

0.4690

0.4205

0.4683

0.4196

Thus, we analyze the numerical results obtained within the scope of the foregoing 

assumptions and calculation algorithm. First we consider the graphs of the dependence 

between the dimensionless normal stress 0/rrh P  calculated at point / 0z h   (where

rr  is determined through the expression (32)) and dimensionless load moving velocity

c . These graphs for Case 1 (26) and Case 2 (27) are given in Fig. 10 and 11, respectively. 

The graphs of the same dependence for the dimensionless shear stress ( )rz z , where

(1) (2)( ) ( , ) ( , )rz rz rzz R z R z    ,     (33) 

calculated at point / 0.5z h   for Case 1 and Case 2 are given in Fig. 12 and 13. 

Table 3: The values of the dimensionless critical velocity (2)
2crV c  obtained for various

h R  under (1) (2) 0.5   , (1) (2) 0.3    and (1) (2) 0.5E E   in the cases where 

0F   (upper number) and F   (lower number) 

/h R

0.5 0.2 0.1 0.05 0.02 0.01   ( 0F   ) 

0.9396

0.8615

0.8743

0.7563

0.8547

0.7274

0.8470

0.7166

0.8443

0.7118

0.8423

0.7105

0.8451 (by Akbarov et 

al. [Akbarov, Guler 

and Dincoy (2007)]; 

0.8320 (by Babich et 

al. [Babich, Glukhov 

and Guz (1986)]) 
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Table 4: The influence of the ratios 
(1) (2)E E and /h R  on the values of the

dimensionless critical velocity (2)
2crV c under

(1) (2) (1) (2)E E   , (1) (2) 0.3    

in the cases where 0F   (upper number) and F   (lower number). 

/h R (1) (2)E E

0.3 0.1 0.05 0.02 

0.50 0.9098

0.8456

0.8514

0.8216

0.8299

0.8136

0.8150

0.8081

0.20 0.8071

0.7106

0.6736

0.6247

0.6170

0.5887

0.5742

0.5617

0.10 0.7762

0.6703

0.6074

0.5494

0.5250

0.4892

0.4541

0.4369

0.05 0.7645

0.6554

0.5806

0.5183

0.4825

0.4419

0.3869

0.3655

0.02 0.7595

0.6491

0.5701

0.5059

0.4647

0.4217

0.3530

0.3284

0.01 0.7582

0.6475

0.5678

0.5033

0.4613

0.4187

0.3461

0.3206

Figure 5: The influence of the imperfection parameter F  on the dispersion curves in 

Case 2 (27) under 0.2h R   
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Figure 6: The dependence of the critical 

velocity on the imperfection parameter F in 

Case 1 (26) under  0.2h R   

Figure 7: The dependence of the critical 

velocity on the imperfection parameter 

F in Case 2 (26) under  0.2h R   

Figure 8: Convergence of the results with 

respect to the integration interval *
1S  in Case1

Figure 9: Convergence of the results 

with respect to the integration interval 
*
1S  in Case 2
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Figure 10: Dependence of the interface 

normal stress rr on the dimensionless

load moving velocity c  in Case 1 

Figure 11: Dependence of the interface 

normal stress rr on the dimensionless

load moving velocity c  in Case 2 

Figure 12: Dependence of the interface 

normal stress rz  on the dimensionless

load moving velocity c  in Case 1 

Figure 13: Dependence of the interface 

normal stress rz  on the dimensionless

load moving velocity c  in Case 2 
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Now we consider the results related to the distribution of the stresses and displacements 

on the interface surface with respect to the dimensionless coordinate z h . The diagrams 

of these distributions for the stress rr  ( rz ) are given in Fig. 16 and 17 (in Fig. 18 and

19) in Case 1 and Case 2, respectively for the various values of the ratio h R . The same

distributions for the displacement ru (= (1) (2)( , ) ( , )r ru R z u R z  (for the displacement zu

(= (1) (2)( , ) ( , )z zu R z u R z ) are given in Fig. 20 and 21 (in Fig. 22 and 23) also in Case 1

and Case 2, respectively under various h R .  It follows from these figures that the 

absolute values of the stresses and displacements after some insignificant “oscillations” 

are dicey.   

Thus, it follows from Fig. 10-13 that both in Case 1 and in Case 2 the absolute values of 

the stresses increase monotonically with the load moving velocity c. It should be noted 

that in Case 2 the absolute values of the stresses increase more rapidly than those in Case 

1 as crc c . Analyses of these and other numerical results allow us to conclude that the 

character of the foregoing dependencies does not depend not only on the ratio /h R  but 

also on the ratio (1) (2)E E . In connection with this we consider the graphs given in Fig. 

14 and 15 which illustrate the foregoing dependence for the stresses rr  and rz ,

respectively for various values of (1) (2)E E  under / 0.5h R  , (1) (2) 0.3   and

(1) (2)   (1) (2)E E . Thus, it follows from Fig. 14 and 15 that the dependence 

between the stresses and load moving velocity is monotonic for each selected value of the 

ratio (1) (2)E E . Moreover, it follows from these results that the absolute values of the 

normal rr  and shear rz stresses decrease with decreasing of the ratio (1) (2)E E . Note

that these results agree in the qualitative sense with the corresponding results related to 

the dynamics of the moving load acting on the layered half-space and discussed in the 

monograph by Akbarov [Akbarov (2015)] and in other works listed therein. Moreover, 

these results agree also with the well-known mechanical and engineering considerations 

and can be taken as validation in a certain sense of the used calculation algorithm and PC 

programs. 
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Figure 14: The influence of the modulus of 

elasticity of the cylinder material on the 

dependence between rr  and c  in Case 1

Figure 15: The influence of the modulus of 

elasticity of the cylinder material on the 

dependence between rz  and c  in Case 1

We recall that the z  in the Fig. 16-23 is the coordinate in the moving coordinate system 

determined through the relations in (11). Thus, according to the relations in (11), the 

graphs given in Fig. 16-23 can be considered as a change of the studied quantities with 

time at a fixed point in the fixed coordinate system.    

Figure 16: The distribution of the normal 

stress rr  with respect to the coordinate

z h  in Case 1 

Figure 17: The distribution of the normal 

stress rr  with respect to the coordinate

z h  in Case 2 



The Influence of the Imperfectness of Contact Conditions      131 

Figure 18: The distribution of the shear 

stress rz  with respect to the coordinate

z h  in Case 1 

Figure 19: The distribution of the shear 

stress rz  with respect to the coordinate

z h  in Case 2 

Figure 20: The distribution of the radial 

displacement ru  with respect to the

coordinate z h  in Case 1 

Figure 21: The distribution of the radial 

displacement zu  with respect to the

coordinate z h  in Case 2 
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Figure 22: The distribution of the radial 

displacement zu  with respect to the 

coordinate z h  in Case 1 

Figure 23: The distribution of the radial 

displacement zu  with respect to the 

coordinate z h  in Case 2 

5 Conclusions 

Thus, in the present paper the dynamics of the moving axisymmetric and rotationally, 

uniformly distributed point, located with respect to the cylinder axis, moving internal 

pressure acting on the internal face of the hollow cylinder surrounded by an elastic 

medium has been investigated within the scope of the piecewise homogeneous body 

model by employing the exact equations of elastodynamics. It is assumed that the contact 

conditions between the cylinder and surrounding elastic medium have shear-spring type 

imperfection. The subsonic regime is considered and for solution of the corresponding 

boundary value problem both the method of moving the coordinate system and the 

Fourier transformation, with respect to the coordinate directed along the cylinder axis in 

the moving coordinate system, are applied. Analytical expressions for the Fourier 

transformations of the sought values are determined and the algorithm for determination 

of the critical velocity and inverse Fourier transformations are discussed. Numerical 

results on the critical velocity and the stress and displacement distribution on the 

interface surface between the cylinder and surrounding elastic medium are presented and 

discussed. Analyses of these numerical results allow us to make the following concrete 

conclusions: 

- The values of the critical velocity depend significantly on the values and sign of 

the parameter F  which characterizes the degree of the shear-spring type 

imperfection between the hollow cylinder and surrounding elastic medium and 

this imperfection causes a decrease in the values of the critical velocity; 

- In the case where the shear-spring type imperfection is given, as in (6) the 

following two states appear: a) if 0F   then the critical velocity obtained for 
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each F is limited with the corresponding critical velocity obtained in the cases 

where 0F   (upper limit) and F   (lower limit); and b) if 0F   then after a 

certain value of F (denoted by 'F ) the critical velocity is obtained, the values of 

which are less than those obtained in the case where F    and decrease 

monotonically as 'F F ; 

-  The values of the critical velocity decrease with increasing of the external radius 

of the cross section of the cylinder under constant thickness and approach the 

critical velocity obtained for the corresponding system consisting of the covering 

layer and half-plane; 

- The increase in the values of the modulus of elasticity of the material of the 

hollow cylinder causes a decrease in the values of the critical velocity; 

- The absolute values of the interface normal and shear stresses increase 

monotonically with load moving velocity for the relatively greater values of the 

ratio of the modulus of elasticity of the surrounding material to the modulus of 

elasticity of the cylinder material. However, the dependence of the stresses on the 

load moving velocity becomes non monotonic with decreasing of the ratio of the 

modulus of elasticities;   

- The absolute values of the interface stresses and displacements increase with 

external radius of the cross section of the cylinder under fixed thickness; 

- An increase in the values of the modulus of elasticity of the cylinder material 

causes a decrease in the absolute values of the interface normal and shear stresses; 

- The attenuation of the interface stresses and displacements with respect to time 

(or with the distance from the point at which the moving load acts) becomes 

more significant with increasing of the modulus of elasticity of the cylinder 

material.   
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