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Solution of Algebraic Lyapunov Equation on Positive-Definite
Hermitian Matrices by Using Extended Hamiltonian Algorithm

Muhammad Shoaib Arif 1, Mairaj Bibi 2 and Adnan Jhangir 3

Abstract: This communique is opted to study the approximate solution of the Algebraic
Lyapunov equation on the manifold of positive-definite Hermitian matrices. We choose
the geodesic distance between −AHX −XA and P as the cost function, and put forward
the Extended Hamiltonian algorithm (EHA) and Natural gradient algorithm (NGA) for the
solution. Finally, several numerical experiments give you an idea about the effectiveness
of the proposed algorithms. We also show the comparison between these two algorithms
EHA and NGA. Obtained results are provided and analyzed graphically. We also conclude
that the extended Hamiltonian algorithm has better convergence speed than the natural gra-
dient algorithm, whereas the trajectory of the solution matrix is optimal in case of Natural
gradient algorithm (NGA) as compared to Extended Hamiltonian Algorithm (EHA). The
aim of this paper is to show that the Extended Hamiltonian algorithm (EHA) has superior
convergence properties as compared to Natural gradient algorithm (NGA). Upto the best of
author’s knowledge, no approximate solution of the Algebraic Lyapunov equation on the
manifold of positive-definite Hermitian matrices is found so far in the literature.

Keywords: Information geometry, algebraic lyapunov equation, positive-definite hermitian
matrix manifold, natural gradient algorithm, extended hamiltonian algorithm.

1 Introduction
It is well known that many engineering and mathematical problems, say, signal processing,
robot control and computer image processing [Cafaro (2008); Cohn and Parrish (1991);
Barbaresco (2009); Brown and Harris (1994)], can be reduced as obtaining the numerical
solution of the following algebraic Lyapunov equation

AHX +XA+ P = 0, (1)

where P is a positive-definite Hermitian matrix, H denotes the conjugate transpose of a
Hermitian matrix.
The solution of the algebraic Lyapunov equation is gaining more and more attention in
the field of computational mathematics [Datta (2004); Golub, Nash and Vanloan (1979)].
Several algorithms are used to get the approximate solution of the above-mentioned e-
quation. For instance, Ran et al. [Ran and Reurings (2004)] put forward the fixed point
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algorithm, the Cholesky decomposition algorithm was presented by Li et al. [Li and White 
(2002)], and a preconditioned Krylov method to get the solution of the Lyapunov equation 
was given by Jbilou [Jbilou (2010)]. Vandereycken et al. [Vandereycken and Vandewalle 
(2010)] provided a Riemannian optimization approach to compute the low-rank solution of 
the Lyapunov matrix equation. Deng et al. [Deng, Bai and Gao (2006)] designed iterative 
orthogonal direction methods according to the fundamental idea of the classical conjugate 
direction method for the standard system of linear equations to obtain the Hermitian solu-
tions of the linear matrix equations AXB = C and (AX, XB) = (C, D). Recently, Su 
et al. [Su and Chen (2010)] proposed a modified conjugate gradient algorithm (MCGA) to 
solve Lyapunov matrix equations and some other linear matrix equations, which seemed to 
be the generalized results. The traditional method like modified conjugate gradient algo-
rithm (MCGA) are first order learning algorithms, hence the convergence speed of MCGA 
is very slow.
Another interesting approach to solve algebraic Lyapunov equation is by considering the 
set of matrices as a manifold and applying the techniques from differential geometry and 
information geometry. Recently Arif et al. [Arif, Zhang and Sun (2016)] solved the alge-
braic Lyapunov equation on matrix manifold by information geometric algorithm. Duan et 
al. [Duan, Sun and Zhang (2014); Duan, Sun, Peng et al. (2013)] solved continuous 
algebraic Lyapunov equation and discrete Lyapunov equation on the space of positive-
definite symmetric matrices by using natural gradient algorithm. Also, Luo et al. [Luo and 
Sun (2014)] gives the solution of discrete algebraic Lyapunov equation on the space of 
positive-definite symmetric matrices by using Extended Hamiltonian algorithm. In both the 
papers, the authors have considered the set of positive-definite symmetric matrices as a 
matrix manifold and used the geodesic distance between AHX + XA and −P to find the 
solution matrix X .
Up to date, however, there has been few investigation on the solution problem of the Lya-
punov matrix equation in the view of Riemannian manifolds. Chein [Chein (2014)] gives 
the numerical solution of ill posed positive linear system he combines the methods from 
manifold theory and sliding mode control theory and develop an affine nonlinear dynami-
cal system. This system is proven asymptotically stable by using argument from Lyapunov 
stability theory.
In this article, a new frame work is proposed to calculate the numerical solution of con-
tinuous algebraic Lyapunov matrix equation on the space of positive-definite Hermitian 
matrices by using natural gradient algorithm and Extended Hamiltonian algorithm. More-
over, we present the comparison of the solution obtained by the two algorithms.
Note that this solution is a positive definite Hermitian matrices is a  global asymptotically 
stable linear system and the set of all the positive definite Hermitian matrices can be taken 
as a manifold. Thus, it is more convenient to investigate the solution problem with the 
help of these attractive features on the manifold. To address such a need, we focus on a 
numerical method to solve the Lyapunov matrix equation on the manifold.
The gradient is usually adapted to minimize the cost function by adjusting the parameters 
of the manifold. However, the convergence speed can be seen to be slow if a small change 
in the parameters changes largely the cost function. In order to overcome this problem of 
poor convergence, the work has been done in two different directions. Firstly, Amari et al.
[Amari (1998); Amari and Douglas (2000); Amari (1999)] introduced the Natural Gradi-
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ent Algorithm (NGA) which employed the Fisher information matrix on the Riemannian 
structure of manifold based on differential geometry. Another approach is based on the 
inclusion of momentum term in the ordinary gradient method to enhance the convergence 
speed. This is a second-order learning algorithm that was developed by Fiori et al. [Fiori 
(2011, 2012)], which is called the Extended Hamiltonian Algorithm (EHA).
Although, both the natural gradient algorithm and extended Hamiltonian algorithm defines 
the steepest descent direction, but we must compute explicitly the Fisher information ma-
trix in the natural gradient algorithm and the steepest descent direction in the extended 
Hamiltonian algorithm at each iterative step. So the computational cost of both the algo-
rithms are comparatively high. Moreover, the trajectory of the parameters obtained by the 
implementation of extended Hamiltonian algorithm is closer to the geodesic as compared 
to one obtained by natural gradient algorithm.
Rest of the paper is organized as follows. Section 2 is a preliminary survey on the mani-
folds of positive-definite Hermitian m atrices. Third section presents the solution of alge-
braic Lyapunov matrix equation by Extended Hamiltonian algorithm and Natural gradient 
algorithm and also illustrates the convergence speed of EHA compared with NGA using 
numerical examples. Section 4 concludes the results presented in section 3.

2 The Riemannian structure on the manifold of positive-definite Hermitian matrices
In this paper, we denote the set of n×n Positive-definite Hermitian matrices by H (n). This 
set can be considered as a Riemannian manifold by defining the Riemannian metric on it. 
Moakher [Moakher (2005)] in his paper, gives the concept of geodesic connecting two 
matrices on H(n). Observing that the geodesic distance represents the infimum of 
lengths of the curves connecting any two matrices. Here, we take geodesic distance as 
the cost function to minimize the distance between two matrices in H(n). The following 
background material and important results are taken from Zhang [Zhang (2004)], Moakher 
et al. [Moakher and Batcherlor (2006)].
All n × n positive-definite Hermitian matrices forms an n2-dimensional manifold, which 
is denoted by H(n). Also denote the space of all n × n Hermitian matrices by H ′(n). The 
exponential map from H ′(n) to H(n), given by:

exp(X) =

∞∑
m=0

Xm

m!
,

is one-to-one and onto. Its inverse i.e., the logarithmic map from H(n) to H ′(n), defined
by

ln(X) =

∞∑
m=1

(−1)m+1 (X − I)m

m
,

for X in a neighbourhood of the identity I of H(n).
Let Ekl denotes matrix whose all entries are zero except the k − th line and l− th column
which is 1, then the basis of the manifold H(n) can be given as

Ep =


Ekl, k = l,

Ekl + Elk, k < l,

i(Ekl − Elk), k > l

(2)
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where i2 = −1, p is obtained by some rule from the pair (k, l). Hence, any positive-definite
Hermitian matrix Q ∈ H(n) can be shown as

Q =

n2∑
i=1

θiEi, θ
i ∈ R,

where {θi} satisfy positive-definite and belong to some open subset of Rn2

. Therefore,
{θi} form a coordinate of the manifold H(n). As H(n) is an open subset of H ′(n), so for
each Q ∈ H(n), the tangent space TQH(n) is identified by H ′(n) and { ∂

∂θi }
n2

i=1 can serve
as the basis of the tangent space.
Definition 2.1 (Duan et al. [Duan, Sun, Peng and Zhao (2013)]). Let g be the Riemannian
metric on the positive-definite Hermitian matrix manifold H(n), for Q ∈ H(n) the inner
product on TQH(n) can be defined as

gQ(M,N) =
1

2
tr(Q−1MQ−1N), (3)

where M,N ∈ TQH(n).

Obviously, the metric defined above satisfies the fundamental properties of Riemannian
metric and keeps invariant under base transformation on the tangent space.
Definition 2.2 (Duan et al. [Duan, Sun and Zhang (2014); Luo and Sun (2014)]). Let
γ : [0, 1]→M be a piecewise smooth curve on manifold M, we define the length of γ as

l(γ) =

∫ 1

0

√
< γ̇(t), γ̇(t) >γ(t)dt =

∫ 1

0

√
tr(γ−1(t)γ̇(t))2dt, (4)

then the distance between any two point x, y ∈M can be defined as
d(x, y) = inf{l(γ)|γ : [0, 1]→M,γ(0) = x, γ(1) = y}. (5)
Proposition 2.1 (Duan et al. [Duan, Sun, Peng et al. (2013); Luo and Sun (2014)]). For 
the defined Riemannian metric (3) on the positive-definite Hermitian matrix manifold 
H(n). We get the geodesic originating from Q along X direction as follows

γ(t) = Q
1

2 exp(tQ−
1

2XQ−
1

2 )Q
1

2 . (6)
Hence, the geodesic distance between Q1, Q2 is shown as

d(Q1, Q2) =
∥∥∥log(Q− 1

2

1 Q2Q
− 1

2

1 )
∥∥∥
F
. (7)

According to Hopf-Rinow theorem, the positive-definite Hermitian matrix manifold is
complete, which means we can always find a geodesic that connects any two pointsQ1, Q2 ∈
H(n).

In our case, the geodesic curve γ(t) is given by

γ(t) = x1/2(x−1/2yx−1/2)tx1/2 ∈M
with γ(0) = x; γ(1) = y and ˙γ(0) = x1/2 ln(x−1/2yx−1/2)x1/2 ∈ H(n) then the midpoint
of x and y is defined by x ◦ y = x1/2(x−1/2yx−1/2)x1/2 and the geodesic distance d(x, y)
can be computed explicitly by

d(x, y) =
∥∥∥log(x− 1

2 yx−
1

2 )
∥∥∥
F
=

(
n∑
i=1

ln(λi)
2

)1/2

(8)

where λi are eigenvalues of x−1/2yx−1/2. or x−1y,.
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3 Solution of Algebraic Lyapunov matrix equation

Suppose the state of the system X(t) is ẋ (t) = Ax(t). Consider the Lyapunov function 

y(t) = x(t)HXx(t)

on the complex field, we have

ẏ(t) = ẋ (t)HXx(t) + x(t)HXẋ (t),

then

ẏ(t) = (Ax(t))HXx(t) + x(t)HX(Ax(t)),
(9)

= x(t)H(AHX + XA)x(t)

In order to make the system stable, the state Eq. (9) must be negative definite, which yields

AHX + XA = −P,
where P is a positive-definite Hermitian matrix.
The uniqueness of the solution of Algebraic Lyapunov Eq. (1) is a well-known fact, stated 
below (see Davis et al. [Davis, Gravagne, Robert et al. (2010)]):
Theorem 3.1. Given a positive-definite H e rmitian m a trix P  >  0 ,  t h ere e x ists a  unique 
positive-definite Hermitian X  >  0 satisfying (1) if and only if the linear system x˙ =  Ax is 
globally asymptotically stable i.e. the real part of eigenvalues of A is less than 0.

3.1 Extended Hamiltonian algorithm

Considering the algebraic Lyapunov Eq. (1) on the positive-definite Hermitian matrix man-
ifold, its solution can be described as finding a positive-definite Hermitian matrix X on 
H(n) such that the matrix −AHX − XA is as close as P (see Fig. 1).

Figure 1: Geodesic distance on positive-definite hermitian matrix manifold

To describe the distance between −AHX − XA and P , we choose the geodesic distance
between them as the measure, that is to say the target function is

J(X) = d2(−AHX −XA,P ) =
∥∥∥log(P− 1

2 (−AHX −XA)P−
1

2 )
∥∥∥2
F
, (10)

then the optimal solution of the Eq. (1) is

X∗ = arg
X∈H(n)

min J(X). (11)

Let X = (ζ1, ζ2, . . . , ζm) ∈ Rm be a parameter space of the matrix manifold H(n) on
which cost function J(Xt) is defined. Following Lemma can be used to find the gradient
of the cost function J(Xt):
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Lemma 3.1 (Zhang [Zhang (2004)]). Let f(X) be the scalar function of the matrix X , if
df(X) = tr(WdX) holds, then the gradient of f(X) with respect to X is

∂Xf(X) =WH . (12)

Theorem 3.2. Let J(X) be the function in (10), then the gradient of J(X) with respect to
the positive-definite Hermitian matrix X is

∂xJ(X) = P−
1

2Y HP
1

2 (AHX +XA)−1AH +AP−
1

2Y HP
1

2 (AHX +XA)−1

+ A(AHX +XA)−1P
1

2Y HP−
1

2 + (AHX +XA)−1P
1

2Y P−
1

2AH . (13)

Proof of the above Theorem see the Appendix.
Theorem 3.3. On the positive definite Hermitian matrix system, if the i-th iteration matrix
and direction matrix are Xi, Vi respectively, then (i + 1)-th iteration matrix and direction
matrix Xi+1, Vi+1 satisfy{
Xi+1 = X

1

2

i exp(ηX
− 1

2

i ViX
− 1

2

i )X
1

2

i ,

Vi+1 = η(ViX
−1
i Vi −∇Xi

J(Xi)) + (1− ηµ)Vi,
(14)

where

∇Xi
J(Xi) = Xi∂Xi

J(Xi)Xi,

the sufficient small number η is the learning rate, µ satisfies
√
2λm < µ < 1

η , λm is
the largest eigenvalue of the Hessian matrix of the cost function. The X and V iteration
continue until the stopping criterion is met. See Fiori [Fiori (2011, 2012)] for more details.

By these discussion, we present the extended Hamiltonian algorithm to find the solution of
the algebraic Lyapunov Eq. (1) on the positive-definite Hermitian matrix manifold H(n).
Algorithm 3.1. For the manifold H(n) the algorithm is given as follows. Here J(X) is
the cost function (10).

1. Input initial matrix X0, initial direction V0, step size η and error tolerance ε > 0;

2. Calculate the gradient ∂Xi
J(Xi) by (13);

3. If J(Xi) < ε, then halt;
4. Update X , V according to (14) and go back to step 2.

3.1.1 Numerical experiment

Consider the submanifold PH(2) of H(2) defined by:

PH(2) =

{[
ζ1 ζ2 + iζ3

ζ2 − iζ3 ζ4

]
; ζi ∈ R, ζ1 > 0, ζ1ζ4 − (ζ2)2 − (ζ3)2 > 0

}
. (15)

Now we consider the algebraic Lyapunov equation on the manifold of positive-definite
Hermitian matrices.

AHX +XA+ P = 0,

where

A =

[
−2 −1− i
i −1

]
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is any matrix with real part of its eigenvalues negative by Theorem 3.1,
and

P =

[
3 1 + 3

2 i
1− 3

2 i 3

]
∈ PH(2).

In this experiment, we choose initial guess X0 and initial direction V0 as

X0 =

[
0.8 −0.3i
0.3i 2.2

]
∈ PH(2)

V0 =

[
−0.5 −0.1 + 0.2i

−0.1− 0.2i −0.5

]
∈ H ′(2)

Taking the step size η = 0.1 and µ = 6, then after 41 iterations, we obtain the optimal
solution under the error tolerance ε = 10−3 as follows,[

0.9968 0.0013− 0.4947i
0.0013 + 0.4947i 1.9895

]
.

In fact, the exact solution of (1) on the positive-definite Hermitian matrix manifold in this
example is[

1 −0.5i
0.5i 2

]
.

In Fig. 2, ζ1, ζ2, ζ3, ζ4 represent coordinates of the manifold PH(2), S and A denote the
initial matrix and the goal matrix respectively. The coordinates ζ1, ζ3, ζ4 are taken along
coordinate axes and ζ2 is represented by colour bar. The curve from S to A shows us the
optimal trajectory by EHA. Fig. 2 also shows the geodesic connecting S and A obtained
by (6).

Figure 2: The optimal trajectory of EHA where η = 0.1, µ = 6 and ε = 10−3

Futhermore, we compare the efficiency of the algorithm with different step sizes. In Fig. 3,
the descent curves corresponding to η = 0.1, 0.15, 0.2 show us the relation between J(X)
and iterations.
From the Fig. 3, we can find that if η is too small, the iterations are many and the algorithm
converges slowly. However, the step size can not be too large and may result in divergence
of this algorithm. Therefore, we need to adjust the step size to obtain the best convergence
speed.
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Figure 3: The efficiency of the Algorithm with different step size

3.2 Natural Gradient Algorithm

Since H(n) is a Riemannian manifold, not a Euclidean space, therefore, it is non optimal
to make use of the classical Frobenius inner product:

〈A,B〉 = tr(ATB) (16)

as a flat metric on manifold H(n) for this geometric problem ?. Moreover, since the
geodesic A + t(B − A) is a negative metric for some values of t, so it is not appropriate
to apply the ordinary gradient methods on the manifold H(n) with metric (16). Observing
that the geodesic is the shortest path between two points on a manifold, therefore we take
geodesic distance as the cost function, denoted by:

J(X) = d2(P,−AHX −XA), (17)

then the optimal solution of Algebric Lyapunov equation is obtained by

X∗ = arg
X∈H(n)

min J(X). (18)

As stated above, the ordinary gradient can not give the steepest descent direction of the
cost function J(Xt) on manifold H(n), whereas the natural gradient algorithm (NGA)
does. Below we state an important Lemma, which gives the iterative step in the natural
gradient algorithm.
Lemma 3.2 (Amari [Amari (1998)]). Let X = (ζ1, ζ2, . . . ζm) ∈ Rm be a parameter
space on the Riemannian manifold H(n), and consider a function L(ζ). Then the natural
gradient algorithm is given by:

ζt+1 = ζt − ηtG−1∇L(ζt) (19)

where G−1 = (gij) is the inverse of the Riemannian metric G = (gij) and

∂

∂Xi
J(Xt) = (20)

2tr

(
P−

1

2 log(P−
1

2 (−AHXt −XtA)P
− 1

2 )P
1

2 (AHXt +XtA)
−1

(AH
∂Xt

∂Xi
+
∂Xt

∂Xi
A)

)
,
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Now, we will give the natural gradient descent algorithm for the considered Eq. (1), taking
the geodesic distance J(Xt) as the cost function and the negative of the gradient of the cost
function J(Xt) about Xt to give the descent direction in the iterative equation.
Theorem 3.4. The iteration on manifold H(n) is given by

Xt+1 = Xt − ηG−1∇J(Xt), (21)

where the component of gradient ∇J(Xt) satisfies

∂J(Xt)

∂Xi
= 2tr(P−

1

2 log(P−
1

2 (−AHXt −XtA)P
− 1

2

(AHXt +XtA)
−1(AH

∂Xt

∂Xi
+
∂Xt

∂Xi
A), (22)

where i = 1, 2, . . . ,m.

For Proof of above Theorem See the Appendix.
By these discussion, we present the natural gradient algorithm to find the solution of the
algebraic Lyapunov Eq. (1) on the manifold H(n) of positive-definite Hermitian matrices.
Algorithm 3.2. For the coordinateX = (ζ1, ζ2, . . . , ζm) of the considered manifold H(n),
the natural gradient algorithm is given by;

1. Set X◦ = (ζ1◦ , ζ
2
◦ , . . . , ζ

m
◦ ) as the initial input matrix X and choose required toler-

ance ε◦ > 0.

2. Compute J(Xt) = d2(P,−AHXt −XtA)

3. If ‖∇J(Xt)‖F < ε◦, then halt.

4. Update the vector X by Xt+1 = Xt−ηG−1∇J(Xt), where Xt = (ζ1t , ζ
2
t , . . . , ζ

m
t ),

η is learning rate and go back to step 2.

3.2.1 Numerical Simulations

Consider the submanifold PH(2) of H(2) defined by:

PH(2) =

{[
ζ1 ζ2 + iζ3

ζ2 − iζ3 ζ4

]
; ζi ∈ R, ζ1 > 0, ζ1ζ4 − (ζ2)2 − (ζ3)2 > 0

}
. (23)

Now we consider the algebraic Lyapunov equation on the manifold of positive-definite
Hermitian matrices:

AHX +XA+ P = 0,

where

A =

[
−2 −1− i
i −1

]
is any matrix with real part of its eigenvalues negative by Theorem 3.1,
and

P =

[
3 1 + 3

2 i
1− 3

2 i 3

]
∈ PH(2).
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In this experiment, we choose initial guess X0 as

X0 =

[
0.8 −0.3i
0.3i 2.2

]
∈ PH(2)

Taking the step size η = 0.035, then after 44 iterations, we obtain the optimal solution
under the error tolerance ε = 10−2 as follows,[

1.0046 −0.0002− 0.5048i
−0.0002 + 0.5048i 2.0146

]
.

In fact, the exact solution of (1) in this example is:[
1 −0.5i

0.5i 2

]
.

In Fig. 4, ζ1, ζ2, ζ3, ζ4 represent coordinates of the manifold PH(2), S and A denote the
initial matrix and the goal matrix respectively. The coordinates ζ1, ζ3, ζ4 are taken along
coordinate axes and ζ2 is represented by colour bar. The curve from S to A shows us the
optimal trajectory by NGA. Fig. 4 also shows the geodesic connecting S and A obtained
by (6).

Figure 4: The optimal trajectory of NGA where η = 0.035 and ε = 10−2

Futhermore, we compare the efficiency of the algorithm with different step sizes. In Fig. 5,
the descent curves corresponding to η = 0.015, 0.025, 0.035 show us the relation between
J(X) and iterations.
From the Fig. 5, we can find that if η is too smaller, the iterations are many and the
algorithm convergent slowly. However, the step size can not be too large, which may result
in divergence in this algorithm. Therefore, we need to adjust the step size in order to obtain
the best convergence speed.

3.3 Comparison of NGA and EHA

We apply the natural gradient algorithm 3.2 and extended Hamiltonian algorithm 3.1 to
solve the algebraic Lyapunov Eq. (1). From the following example, we can see the effi-
ciency of the two proposed algorithms.
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Figure 5: The efficiency of the Natural gradient Algorithm with different step size

Consider the submanifold PH(2) of H(2) defined by:

PH(2) =

{[
ζ1 ζ2 + iζ3

ζ2 − iζ3 ζ4

]
; ζi ∈ R, ζ1 > 0, ζ1ζ4 − (ζ2)2 − (ζ3)2 > 0

}
. (24)

Now we consider the algebraic Lyapunov equation on the manifold of positive-definite
Hermitian matrices.

AHX +XA+ P = 0,

where

A =

[
−2 −1− i
i −1

]
is any matrix with real part of its eigenvalues negative by Theorem 3.1,
and

P =

[
3 1 + 3

2 i
1− 3

2 i 3

]
∈ PH(2).

In this experiment, we choose initial guess X0 and initial direction V0 as

X0 =

[
0.8 −0.3i
0.3i 2.2

]
∈ PH(2)

V0 =

[
−0.5 −0.1 + 0.2i

−0.1− 0.2i −0.5

]
∈ H ′(2)

According to algorithm 3.1, we get the solution of algebraic Lyapunov equation with η =
0.07, µ = 4 and error tolerance ε = 10−3 as[

0.9975 0.0006− 0.4971i
0.0006− 0.4971i 1.9930

]
.

According to algorithm 3.2, we get the solution of the algebraic Lyapunov equation with
η = 0.07 and error tolerance ε = 10−3 as[

1.0005 −0.0001− 0.5006i
−0.0001 + 0.5006i 2.0016

]
.
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Figure 6: The optimal trajectory of X(t) by NGA and EHA where η = 0.07, µ = 4 and
ε = 10−3

Besides, the optimal trajectory of X(t) from the initial input to the target matrix is shown
in Fig. 6.
In Fig. 6, ζ1, ζ2, ζ3, ζ4 represent parameters of the vector X(t), S and A denote the initial
matrix and the goal matrix respectively. The parameters ζ1, ζ2, ζ3 are taken along coordi-
nate axes and ζ4 is represented by colour bar. The curves from S toA shows us the optimal
trajectory of X(t) by NGA and EHA. Fig. 6 also shows the geodesic connecting S and A
obtained by (6). In addition, although the trajectory of the input X(t) given by EHA is not
optimal, but the convergence is faster than NGA.
The EHA and NGA are respectively applied to get the solution of the algebraic Lyapunov
equation. In particular, the behaviour of the cost function is shown in Fig. 7. In early stages
of learning, the EHA decreases much faster than NGA with the same learning rate. The
result shows that the EHA has faster convergence speed and need 95 iterations to obtain
optimal solution of Algebraic Lyapunov equation as compared to NGA which converges
after 155 iterations.

Figure 7: Comparison of convergence speed of EHA an NGA
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4 Conclusion
We studied the solution of continuous algebraic Lyapunov equation by considering the
positive-definite Hermitian matrices as a Riemannian manifold and used geodesic distance
to find the solution. Here we used two algorithms, the extended Hamiltonian algorithm and
the natural gradient algorithm to get the approximate solution of algebraic Lyapunov matrix
equation. Finally, several numerical experiments give you an idea about the effectiveness
of the proposed algorithms. We also show the comparison between these two algorithm-
s EHA and NGA. Henceforth we conclude that the extended Hamiltonian algorithm has
better convergence speed than the natural gradient algorithm, whereas the trajectory of the
solution matrix is optimal in case of NGA as compared to EHA.

5 Appendix
Proof of Theorem 3.2
Proof. Since −AHX −XA is Hermitian. Let Y = log(P−

1

2 (−AHX −XA)P−
1

2 )

dY = dlog(P−
1

2 (−AHX −XA)P−
1

2 )

= (P−
1

2 (−AHX −XA)P−
1

2 )−1P−
1

2 (−AHdX − dXA)P−
1

2 )

= P
1

2 (−AHX −XA)−1(−AHdX − dXA)P−
1

2

then, we have

dJ(X) = d(tr(Y HY )) = tr(dY HY + Y HdY )

According to Lemma 4.3.1, the geodesic of J(X) with respect to X is

∂xJ(X) = P−
1

2Y HP
1

2 (AHX +XA)−1AH +AP−
1

2Y HP
1

2 (AHX +XA)−1

+A(AHX +XA)−1P
1

2Y HP−
1

2 + (AHX +XA)−1P
1

2Y P−
1

2AH .

Proof of Theorem 3.4
Proof. According to above Lemma, we can get the iterative process

Xt+1 = Xt − ηG−1∇J(Xt),

where the Fisher metric matrix G is obtained by 3. Let X(t) = log((−AHXt −XtA)
− 1

2

P (−AHXt − XtA)
− 1

2 ), it is easy to show that X(t) is Hermitian from (20) in Lemma
3.2 and the properties of the trace of a matrix, we have the components of the gradient
∇J(Xt):

∂

∂Xi
J(Xt)=2tr

(
log(P−

1

2 (−AHXt−XtA)P
− 1

2 )
∂

∂Xi
(log(P−

1

2 (−AHXt−XtA)P
− 1

2 ))

)
=2tr

(
P−

1

2 log(P−
1

2 (−AHXt−XtA)P
− 1

2 )P
1

2 (−AHXt−XtA)
−1(AH

∂Xt

∂Xi
+
∂Xt

∂Xi
A)

)
,

where i = 1, 2, . . . ,m.

Acknowledgement: The authors wish to express their appreciation to the reviewers for
their helpful suggestions which greatly improved the presentation of this paper.



194 Copyright c© 2018 Tech Science Press CMC, vol.54, no.2, pp.181-195, 2018

References
Amari, S. (1998): Natural gradient works efficiently in learning. Neural Computation, vol. 
10, no. 2, pp. 251-276.
Amari, S. (1999): Natural gradient for over-and under-complete bases in ica. Neural Com-
putation, vol. 11, no. 8, pp. 1875-1883.
Amari, S.; Douglas, S. C. (2000): Why natural gradient, acoustics. Speech and Signal 
Processing, vol. 2, pp. 1213-1216.
Arif, M. S.; Zhang, E. C.; Sun, H. (2016): An information geometric algorithm for 
algebraic lyapunov equation on positive definite matrix manifolds. Transaction of Beijing 
institute of Technology, vol. 36, no. 2, pp. 205-208.
Barbaresco, F. (2009): Interactions between symmetric cone and information geometries. 
Bruhat-Tits and Siegel Spaces Models for High Resolution Autoregressive Doppler Im-
agery, ETVC, vol. 5416, pp. 124-163.
Brown, M.; Harris, C. (1994): Neurofuzzy Adaptive Modelling and Control. Prentice Hall 
New York.
Cafaro, C. (2008): Information-geometric indicators of chaos in gaussian models on sta-
tistical manifolds of negative ricci curvature. International Journal of Theoretical Physics, 
vol. 47, no. 11, pp. 2924-2933.
Chein, S. L. (2014): A sliding mode control algorithm for solving an ill-posed positive 
linear system. Computers, Materials & Continua, vol. 39, no. 2, pp. 153-178.
Cohn, S. E.; Parrish, D. F. (1991): The behavior of forecast covariances for a kalman 
filter in two dimensions. Neural Computation, vol. 119, no. 8, pp. 1757-1785.
Datta, B. N. (2004): Numerical Methods for Linear Control Systems. Elsvier Academic-
Press.
Davis, J. M.; Gravagne, I. A.; Robert, J.; Marks, I. (2010): Algebraic and dynamic 
lyapunov equations on time scales. 42nd South Eastern Symposium on System Theory at 
University of Texas, USA, pp. 329-334.
Deng, Y. B.; Bai, Z. Z.; Gao, Y. H. (2006): Iterative orthogonal direction methods for 
hermitian minimum norm solutions of two consistent matrix equations. Numerical Linear 
Algebra with Applications, vol. 13, no. 10, pp. 801-823.
Duan, X.; Sun, H.; Peng, L.; Zhao, X. (2013): A natural gradient descent algorithm 
for the solution of discrete algebraic lyapunov equations based on the geodesic distance. 
Applied Mathematics and Computation, vol. 219, no. 19, pp. 9899-9905.
Duan, X.; Sun, H.; Zhang, Z. (2014): A natural gradient algorithm for the solution of lya-
punov equations based on the geodesic distance. Journal of Computational Mathematics, 
vol. 32, no. 1, pp. 93-106.
Fiori, S. (2011): Extended hamiltonian learning on riemannian manifolds, theoretical as-
pects. IEEE Transactions on Neural Networks, vol. 22, no. 5, pp. 687-700.
Fiori, S. (2012): Extended hamiltonian learning on riemannian manifolds, numerical as-
pects. IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 1, pp. 
7-21.
Golub, G. H.; Nash, S.; Vanloan, C. (1979): A hessenberg-schur method for the problem 
ax + xb = c. IEEE Transactions on Automatic Control, vol. 24, no. 6, pp. 909-913.



Solution of Algebraic Lyapunov Equation 195

Jbilou, K. (2010): Adi preconditioned krylov methods for large lyapunov matrix equations. 
Linear Algebra & Its Applications, vol. 432, no. 10, pp. 2473-2485.
Li, J. R.; White, J. (2002): Low-rank solution of lyapunov equations. SIAM Journal 
on Matrix Analysis and Applications, vol. 24, no. 1, pp. 260-280.
Luo, Z.; Sun, H. (2014): Extended hamiltonian algorithm for the solution of discrete 
algebraic lyapunov equations. Applied Mathematics and Computation, vol. 234, pp. 
245-252.
Moakher, M. (2005): A differential geometric approach to the geometric mean of sym-
metric positive-definite matrices. SIAM Journal on Matrix Analysis and Applications, vol. 
26, no. 3, pp. 735-747.
Moakher, M.; Batcherlor, P. G. (2006): Symmetric Positive-Definite M atrices: From 
Geometry to Applications and Visualizatin, Visualization and Processing of Tensor Fields. 
Springer.
Ran, A. C. M.; Reurings, M. C. B. (2004): A fixed point theorem in partially ordered sets 
and some applications to matrix equations. Proceedings of the American Mathematical 
Society, vol. 132, pp. 1435-1443.
Su, Y. F.; Chen, G. L. (2010): Iterative methods for solving linear matrix equation and 
linear matrix system. Numerical Linear Algebra with Applications, vol. 87, no. 4, pp. 
763-774.
Vandereycken, B.; Vandewalle, S. (2010): A riemannian optimization approach for com-
puting low-rank solutions of lyapunov equations. SIAM Journal on Matrix Analysis and 
Applications, vol. 31, no. 5, pp. 2553-2579.
Zhang, X. D. (2004): Matrix Analysis and Application. Springer, Beijing.




