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A Nonlinear Magneto-Mechanical Coupled Constitutive Model 

for the Magnetostrictive Material Galfenol 
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Abstract: In order to predict the performance of magnetostrictive smart material and push 

its applications in engineering, it is necessary to build the constitutive relations for the 

magnetostrictive material Galfenol. For Galfenol rods under the action of the pre-stress and 

magnetic field along the axial direction, the one-dimensional nonlinear magneto-mechanical 

coupling constitutive model is proposed based on the elastic Gibbs free energy, where the 

Taylor expansion of the elastic Gibbs free energy is made to obtain the polynomial forms. And 

then the constitutive relations are derived by replacing the polynomial forms with the proper 

transcendental functions based on the microscopic magneto-mechanical coupling mechanism. 

From the perspective of microscopic mechanism, the nonlinear strain related to magnetic 

domain rotation results in magnetostrictive strain changing with the pre-stress among the 

elastic strains induced by the pre-stress. By comparison, the predicted stress-strain, 

magnetostrictive strain, magnetic induction and magnetization curves agreed well with 

experimental results under the different pre-stresses. The proposed model can describe not 

only the influences of pre-stress on magnetostrictive strain and magnetization curves, but 

also nonlinear magneto-mechanical coupling effect of magnetostrictive material 

systematically, such as the Young’s modulus varying with stress and magnetic field. In the 

proposed constitutive model, the key material constants are not chosen to obtain a good fit 

with the experimental data, but are measured directly by experiments, such as the saturation 

magnetization, saturation magnetostrictive coefficient, saturation Young’s modulus, linear 

magnetic susceptibility and so on. In addition, the forms of the new constitutive relations 

are simpler than the existing constitutive models. Therefore, this model could be applied 

conveniently in the engineering applications.  

Keywords: Magnetostrictive materials, one-dimensional constitutive relations, galfenol 

rods, nonlinear magneto-mechanical coupling. 

1 Introduction 

Compared with giant magnetostrictive material Terfenol-D being brittle, lower magnetic 

permeability and high cost, the Galfenol alloys of iron substituted with non-magnetic 

gallium have obtained much attention due to the advantages of large magnetostriction 

under very low magnetic fields and high tension strength [Kellogg (2003); Atulasimha and 
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Flatau (2011)], twisted extrusion and welding [Emdadi, Cifre, Dementeva et al. (2015); Weng, 

Li, Sun et al. (2017); Datta, Atulasimha, Mudivarthi et al. (2010); Liu, Wang, Jiang et al. (2010); 

Palacheva, Emdadi, Emeis et al. (2017); Scheidler and Dapino (2013)]. These unique 

advantages of Galfenol alloys make it drive flexibly by tension and compression in smart 

devices applications and be used to prepare various sensor and actuator applied in complex 

environment, such as sonar transducer elements, underwater acoustic sensors, hydrophone, 

robot medical sensor and tactile sensor and osteosynthesis plate bending [Palacheva, 
Emdadi, Emeis et al. (2017); Scheidler and Dapino (2013); Sauer, Marschner, Adolphi et al. 

(2012)]. However, it was found from lots of experimental results [Datta, Atulasimha, 

Mudivarthi et al. (2010); Estrine, Hein, Robbins et al. (2014); Wun-Fogle, Restorff and Clark 

(2006); Atulasimha (2006); Yoo, Na, Flatau et al. (2014); Evans and Dapino (2013); Weng, 

Walker, Deng et al. (2013)] that the Galfenol alloys exhibit complex enhanced nonlinear 

magneto-mechanical coupling effect under the interaction of pre-stress and magnetic field. 

Both magnetostriction and magnetization curves show saturation phenomenon. Moreover, 

the curves of magnetostriction and magnetization are influenced complicatedly by pre-

stress. What’s more, as a key mechanical parameter, the Young’s modulus also varies with 

the pre-stress and bias magnetic field changing (i.e. E  effect [Datta, Atulasimha, 

Mudivarthi et al. (2010)]). Due to the nonlinear magneto-mechanical coupling behaviors, 

the related mechanical analysis and design in the engineering applications for smart 

structures and devices with Galfenol alloys become very complex. Thus, it is urgent to 

build the constitutive relations, which can describe accurately the magnetostrictive 

response of the Galfenol rods under the interaction of pre-stress and magnetic field. 

Till now, much effort has been taken [Atulasimha and Flatau (2011)] related to magneto-

mechanical constitutive model of magnetostrictive materials. The most typical Jiles-

Atherton model [Jiles and Atherton (1984a, 1984b)] is to describe magnetostrictive behavior 

including domain rotation and domain wall pinning, but the model is an empirical model 

and its parameters were estimated from experimental data. Afterwards, Jiles introduced the 

concept of a stress equivalent field to model the effect of stress [Li and Jiles (2003); Jiles and Li 

(2004)], magnetocrystalline anisotropy [Ramesh, Bi and Jiles (1997); Raghunathan, Melikhov, 

Snyder et al. (2009)] and temperature [Raghunathan, Melikhov, Snyder et al. (2010)] on 

hysteresis, which was extended to simulate the response of magnetostriction and 

magnetization under multi-physical field loading. And Smith et al. [Smith, Dapino and 

Seelecke (2003); Smith, Seelecke, Dapino et al. (2006)] built a class of free-energy 

constitutive model based on a two-well Helmholtz potential as a function of magnetization 

for the uniaxial case. The approach incorporated the effect of material inhomogeneities and 

non-constant effective field through a stochastic distribution to evaluate magnetization and 

incorporated stress effect by introducing the appropriate term in the Gibbs energy, which 

has also been extended to model magneto-mechanical behavior in 3D [Oates (2007); Evans 

and Dapino (2008)] and then was developed by Armstrong [Armstrong (1997)]. In the 

Armstrong model, the magnetocrystalline, magnetoelastic and magnetic field energy terms 

corresponding to the magnetization vector being oriented along different directions are 

considered, which uses a brief description of mathematical formulation and numerical 

solution procedure by introducing the two constants of magnetocrystalline anisotropy 

energy and the direction cosines for orientation of the magnetic moment. Altogether, the 

energy model incorporated many parameters, which are not easy to measure directly by 
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experiment. But the modified free-energy constitutive model is well fit to simulate the 

actuation and sensing behavior of Galfenol alloys [Atulasimha, Flatau and Cullen (2008)], 

and its extension is further used to model the magneto-mechanical behavior of polycrystals 

[Atulasimha, Flatau and Summers (2007)] and modified for tetragonal symmetries to 

describe the magneto-mechanical behavior of highly textured stress annealed Galfenol 

alloys [Restorff and Wun-Fogle (2006)]. Later, Evans et al. [Evans and Dapino (2013)] have 

built a magneto-mechanical coupling constitutive model of magnetization and strain based 

on thermodynamics law of stochastic homogenization, but the computational process of 

magnetization and strain in the model touches upon some material physical parameters, 

such as magnetic orientation, domain orientation, smooth factor and internal variables. 

Recently, Weng et al. [Weng, Zhao, Sun et al. (2016)] measured hysteresis between the strain 

and magnetic field, which increases with frequency increasing. They proposed a dynamic 

hysteresis model of Galfenol based on the energy-weighted average hysteresis equation, 

eddy current loss and anomalous loss. Although the predicted results agree well with the 

experimental results when the frequency being below 200 Hz  , the free-energy 

computational formulation as well touches upon empirical parameters and parameters 

difficult to measure. And Shu et al. [Shu, Wu, Chen et al. (2016)] presented the modeling of 

galfenol bending actuator based on the Gibbs free energy by introducing cubic anisotropy 

constant and the internal energy of a magnetic domain with orientation. The calculation of 

the macroscopic magnetization and magnetostriction is very complex and difficult. So it is 

essential for engineering application of Galfenol alloys to build a phenomenological 

constitutive model, which can describe accurately complex magneto-mechanical coupling 

effect of Galfenol rods under the action of axial stress and magnetic field with only 

engineering material constants, which are measured directly by experiment. Also, the 

calculation is not difficult. 

In this paper, the one-dimensional nonlinear coupling phenomenological constitutive 

model for Galfenol alloys is proposed. Compared with the existing experimental results, 

the predicted results have shown that the model can predict effectively the strain-stress, 

magnetostriction and magnetization curves under magneto-mechanical coupling for 

Galfenol alloys of magnetostrictive materials, which demonstrates its validity. Moreover, 

the proposed model can also describe the E effect of Galfenol rods. Due to higher order 

items in the Taylor series expansion of the elastic Gibbs free energy being reserved for the 

proposed model, both the square and fourth power terms of magnetization contribute to the 

strain. Moreover, the elastic strain induced by the pre-stress includes a nonlinear part 

related to the magnetic domain rotation, which produces E effect as the magnetic field 

being 0. Because the Langevin function is from Boltzmann statistics and has better physical 

basis, it is used to describe the magnetization items independent of stress and simulate the 

magnetization curves well.  

2 Constitutive model 

Here considering the one-dimensional Galfenol rod, due to the pre-stress and the external 

magnetic field exerted along axial direction of Galfenol, the induced magnetization and 

strain are all along axial direction. Thus, the constitutive model can be simplified to the 

one-dimensional model to describe the relationship among the pre-stress  , strain  , 
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magnetic field H  and magnetization M . Considering 18 at. % Ga content in Galfenol, 

the material anisotropy in magnetization is very low, which almost does not exist [Rafique, 

Cullen, Wuttig et al. (2004)]. Meanwhile, when the exerted compressive stress on Galfenol 

along axial direction is beyond jumping stress [Atulasimha (2006)], the stress anisotropy 

is dominant along the axial direction. Therefore, the considered Galfenol rods are isotropic 

material along axial direction in this paper. 

Not considering the variation of temperature, the total differential of the internal energy 

density function  ,U M of magnetostrictive material is written as 0d d dU H M   

[Parton and Kudryavtsev (1988)], where the vacuum permeability is 
7

0 4 10 H / m   . 

The elastic Gibbs free energy density function is defined as  ,G σ M U   , so its

total differential is 0d d dG H M      . Based on the thermodynamic theory, the 

relations can be obtained as follows: 
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
0 . (1) 

This is the basis for deriving constitutive relations for the magnetostrictive material. 

In order to obtain the polynomial constitutive relations, Taylor expansion is made at the 

reference point    , 0,0σ M   for  ,G σ M . It is worth noting that the magnetic field

H  is always an odd function of the magnetization M , so all the odd-order terms of M  

are set to zero. Thus, the Taylor expansion of the elastic Gibbs free energy  ,G σ M  can

be simplified as: 
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(2) 

Where, the various order partial derivatives of  ,G σ M   related to    and M   are

obtained at the reference point    , 0,0σ M  . In the above Taylor series expansion of

function  ,G σ M , the constant term  0 0,0G G , / 0G M    and 0/  G

are neglected since they do not make any contribution to the strain  , and the magnetic 

field H   at the reference point    , 0,0σ M   , (that is 0  , 0H   as 0  ,

0M .) 
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It can be seen from Eq. (2) that the all terms on the right can be classified into three 

categories: the first type is only dependent on the pre-stress σ , which describes the elastic 
property when 0M ; the second type is related to both pre-stress σ  and magnetization 

M , which describes the characteristic of magneto-elastic coupling (magnetostrictive effect 

and converse magnetostrictive effect); the third type is just relative to the magnetization 

M , which reflects the magnetic property when 0σ . For simplicity, according to the 

experimental result of Clark [Clark (1980)], Jiles [Jiles (1995)], Kuruzar et al. [Kuruzar 

and Cullity (1971)], only the terms containing 
2M and 

4M are kept for coupling terms in 

Eq. (2) (i.e. 
2M , 

22M , 
4M  and 

2 4M ). Then substituting Gibbs free energy 

function Eq. (2) into the thermodynamic Eq. (1), the expressions of strain   and magnetic 
field H  can be obtained based on thermodynamic relations as follows: 
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(3b) 

Firstly, the terms independent on magnetization M  in Eq. (3a) represent the elastic strain 

only induced by stress  , while the terms dependent on magnetization M   represent 

magnetostrictive strain  ,M  , that is to say, it is the strain induced by magnetization

M under the magnetic field and stress, or induced by applied stress after magnetization. 

For Galfenol before annealing, the relationship between magnetostrictive strain  ,M   

and magnetization M is not only nonlinear, but also is affected by the pre-stress  . From 

the microscopic physical mechanism (as shown in Fig. 1), when Galfenol rod is magnetized 

completely by the applied magnetic field after applying a certain pre-stress along axial 

direction, it can reach larger saturation magnetostrictive strain [Atulasimha (2006); Hale 

(2006)] than one in a free state ( 0H  , 0  ). The applied pre-stress makes the magnetic 

domain turn to an in-plane perpendicular to the axial direction, and then the 

magnetostrictive rod produces ‘pre-compression’ caused by the magnetic domain rotation 

before the magnetic field is applied. In this case, when the applied magnetic field is high 

enough to make magnetization get saturation, (that is to say, all of the magnetic domains 

turn to the axial direction), a greater relative elongation is obtained in the magnetostrictive 
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rod. This is why the maximum magnetostrictive strain under a given pre-stress is larger 

than that in a free state ( 0H  , 0  ). According to the analysis above, we might as well 

decompose the elastic strain of Galfenol rod produced by applied pre-stress into the part 

independent on magnetic domain rotation and the part dependent on magnetic domain 

rotation. The former is linear which is the inherent elastic property of magnetostrictive 

material and can be described with sE , that is inherent Young’s modulus under saturation 

magnetization; the latter is nonlinear which can be described with non-linear function 

 0  . So, the term of elastic strain in Eq. (3a) can be simplified as 

 
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02 3 4
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1 1
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For  0  , it is usually difficult to give a precise expression, but it is easy to know the

main characteristics from the stress-strain curve       under demagnetization state 
( 0M ). For example, the strain induced by the magnetic domain rotation is 0 without 

applying pre-stress, that is  0 0| 0    . Meanwhile,
 
when the stress tends to negative

infinity,  0  certainly tends to saturate, that is  0

1
|

2
s   as the magnetic 

domain rotation (here, s  is saturation magnetostrictive coefficient). The schematic of

magnetic moments in Gafenol rods is shown in Fig. 1. Based on the physical property 

above, the hyperbolic tangent function is just fitful to describe the tendency of  0  , so

the hyperbolic tangent function is chosen to describe  0   as follow

   s
0

λ
tanh 2 σ .

2
sλ σ = σ / (5) 

where, σs  is the saturation pre-stress.

The terms dependent on magnetization M  in Eq. (3a) represent magnetostrictive strain

 ,M  . Usually, the magnetization of magnetostrictive materials mainly includes two

stages, one is the domain wall moving, and the other is the domain rotation. For Galfenol, 

the magnetostrictive strain  ,M    is induced mainly by domain wall moving at

smaller magnetic field under the combined action of magnetic field and pre-stress, which 

is usually determined by the square of magnetization. So the changing of magnetostriction 

strain can be described by nonlinear incremental function  M     That is to say,

 ,M    is mainly determined by
  2

2M

s M

s

M
  

 ( sM  is the saturation 

magnetization). However, when the material is further magnetized to a certain extent, the 

magnetic domain rotation occurs with the external magnetic field increasing continually. 

At this time, the fourth power term of magnetization starts to work, and then the changing 
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of magnetostriction is induced by the magnetic domain rotation, which is described by 

nonlinear function  0   as mentioned in the previous article. That is to say, which is 

determined by 
 0 4

4M

s

s

M
  

. Therefore, the final magnetostrictive strain  ,M   
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Figure 1: The schematic of the magnetic moments in Galfenol rod affected by the pre-

stress and magnetic field ( sH is saturation magnetic field) 

Based on the analysis, the applied magnetic field or pre-stress makes the magnetic domain 

wall of material move and then rotate because of the magnetic field or stress increasing 

continually. For Galfenol material, the continued wall movement of magnetic domain will 

be blocked under the strong magnetic field, and then the magnetic domain rotates, which 

will induce the magnetostriction reduction in certain extent. Here, the wall movement and 

rotation of magnetic domain occur at the same time. So, a domain rotation coefficient 

 0 1     is introduced. When the term of pre-stress or magnetic field is zero, the

coefficient is 1, which represents that the domain rotation is easy to occur. When the term 

of pre-stress or magnetic is larger and both of them are nonzero, the coefficient is less than 

1, which represents that the domain rotation is hard to occur due to the wall movement and 

rotation of magnetic domain being blocked. 

Also, Jiles mentioned an empirical model to describe the relation between bulk 

magnetostriction and bulk magnetization, which is     2

0

, i

i

i

M M   




 [Kuruzar 

and Cullity (1971)]. Here, a reasonable first approximation to the magnetrostriction of iron 

can be obtained by including the terms up to 2i  . Therefore, based on the empirical 

model and above analysis, the stress dependent of the magnetostrictive strain  ,M   

in Eq. (3a) can be denoted finally in terms of the pre-stress dependence of  1 0   and 

 2 0    as follow: 
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Here,  1   and  2   are
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For  Mλ σ   in a free state ( 0  ),  Mλ σ   can be increased near to sλ   when the 

material is magnetized. That is to say, 0   ,   sλMλ σ   . For  Mλ σ  under

demagnetization state ( 0M   ),  Mλ σ   monotonically decreases from maximum to

near zero with the exerted stress    is near to   . That is to say,    , 

  0Mλ σ   . Considering these properties and the tendency of  Mλ σ  , the nonlinear

even function  Mλ σ can be determined as 

   s s=λ sech / σ .Mλ σ σ (7) 

The terms independent on    in Eq. (3b) represent magnetization relationship 

 M M H  in a free state ( 0 ), which is usually characterized by nonlinear function

 f x   (i.e.,  sMM f kH  , where k   is the relaxation factor) due to its nonlinearity

and saturation property. There are a variety of options for the function  f x  to describe

the magnetization curve. Because Langevin function is based on the Boltzmann statistics 

and has a clear physical background to simulate the magnetization curves better, the 

nonlinear function  f x  is chosen as follows:

   coth 1/ .f x x x  (8) 

In this case, the magnetization can be expressed as  sM coth( ) 1/ ( )M kH kH  . Here,

the relaxation factor is set as s3 / Mmk   ( m  is the linear magnetic susceptibility). 

Hence, the terms independent on the stress   in Eq. (3b) can be expressed as: 
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M M f

M M k

   
    

   
  (9) 

Meanwhile, the terms dependent on    in Eq. (3b) represent the effect of stress on 

magnetization (i.e. converse magnetostrictive effect), according to the thermodynamic 

relations Eq. (1), which are same as the terms dependent on M   in Eq. (3a) from the 
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coupling terms in Taylor expansion of  ,G σ M . Therefore, with the help of Eq. (6), the

terms dependent on   in Eq. (3b) can be expressed as 

   
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  
  

 

 
  

 
(10) 

Where,    
0

M M d


       is the primitive function of  Mλ σ  , and

   0 0
0

d


       is the primitive function of  0  . Substituting Eqs. (5) and

(7), the expression of  M   and  0   can be obtained as follows:

  s

s

σ arctan sinh .
σ

M




  
    

  

 (11) 

 0 s

s

1 2
σ ln cosh .

4 σ




  
    

  

 (12) 

Here, based on Eqs. (4), (5), (6), (7), (9), (10), (11) and (12), Eqs. (3a) and (3b) could be 

re-written finally as: 

2 4s s s
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＋ (13a) 
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               
                 

    (13b) 

This is the final form of the proposed one-dimensional constitutive model for Galfenol 

material. The new model just requires the parameters of k  , sE  , sM  , s and s  , 

which can be measured by experiment directly. What’s more, the proposed model is 

simpler in form and in calculation compared with the existing model of Galfenol 

[Atulasimha and Flatau (2011, 2008)], which will be convenient for practical engineering 

applications. 

In order to facilitate the engineering application, the three important material constants 

expressions, piezoelectric coefficient, the Young’s modulus and permeability can be 

derived easily by the constitutive relations of Eqs. (13a) and (13b). Based on the definition 

of piezoelectric coefficient 
( , )

m

H
d

H

 



, the expression of 

( , )
m

H
d

H

 



can be 

obtained: 
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Based on the definition 
mE









, the expression of the Young’s modulus can be obtained 

as follow: 
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, the expression of permeability can 

be obtained as follow: 
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(16) 

3 Results and discussions 

Datta et al. [Datta, Atulasimha, Mudivarthi, et al. (2010), Atulasimha [Atulasimha (2006)], 

Atulasimha et al. [Atulasimha, Flatau and Cullen (2008)], Atulasimha et al. [Atulasimha, 

Flatau and Summers (2007)] have given the curves of magnetostrictive strain and magnetic 

induction of Galfenol rods varying with the bias magnetic field under the different 

compressive stresses. Because these classical experimental results have been widely used 

to testify all kinds of applicability range and prediction precision of magnetostrictive 
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constitutive model, these representative experimental datums are chosen to testify the 

validity of the proposed constitutive model. Since Atulasima et al. [Atulasimha, Flatau and 

Cullen (2008)] chose Fe81Ga19 alloys as the experimental sample, the basic parameters of 

materials in proposed model are same as ones in reference [Atulasimha, Flatau and Cullen 

(2008)]. The detailed values are 212ppms   , 0 1.66TsM   , 200MPas   ,

59GPasE  , =0.6 . The strain-stress curves of prediction and experiment are shown 

as Figs. 2(a) and 2(b) while the bias magnetic field being 0, 22.3, 44.6, 66.9, 89.1, 111, 223, 

446 Oe respectively. By comparison, the proposed model can describe the experimental 

results well both in qualitatively and quantitatively. It can be seen from Fig. 2 (b) that the 

strain-stress curve is close to a straight line as the bias magnetic field being 0 Oe, and the 

curves only move up slightly in the range of compressive stress less than 20 MPa. It also 

can be seen from Eq. (13a) that the magnetization is 0 when the bias magnetic field is 0 

Oe. Thus only the first two items are left on the right of Eq. (13a), i.e. 

 s s sE λ tanh 2 σ 2     . Here, the nonlinear strain is mainly induced by

 s sλ tanh 2 σ 2 . Even though the influence of  s sλ tanh 2 σ 2  is not very obvious due

to smaller saturation magnetostrictive coefficient, the predicted values of strain agree well 

with the experimental results as the compressive stress being 115 MPa, which was usually 

neglected in previous model [Atulasimha, Flatau (2011); Atulasimha, Flatau and Cullen 

(2008)]  When smaller bias magnetic fields are exerted (i.e. the middle curves as the 

magnetic field being from 0 Oe-446 Oe in Fig. 2 (b)), the items related to magnetization 

on the right of Eq.(13a) start to work, and then a positive magnetostrictive strain is 

produced in advance by bias magnetic field, which results in nonzero strain while the stress 

being 0 MPa. The magnetostrictive strain tends to decrease gradually from positive to 

negative strain with the compressive stress increasing. When the wall moving and rotation 

of magnetic domain induced by bias magnetic field are counteracted by the compressive 

stress, the strain curves tend to an agreement with the ones as the magnetic field being 0 

Oe. If the magnetic field is very large enough to reach saturation, the magnetic domain 

cannot be rotated to the status before magnetization under the smaller compressive stress. 

Consequently, the strain-stress curve approaches to a straight line (i.e. the curve as 

magnetic field being 446 Oe). 
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Figure 2: The experimental (a) [Atulasimha, Flatau and Cullen (2008)] and prediction (b) 

strain vs. compressive stress at bias magnetic field of 0, 22.3, 44.6, 66.9, 89.1, 111, 223, 

446 Oe 

Next the magnetization curves determined by Eq. (13b) would be discussed. The 

experimental and prediction results are shown as Figs. 3(a) and (b) when the compressive 

stresses are 0 MPa, 15 MPa, 30 MPa, 45 MPa, 60 MPa, 80 MPa respectively. By 

comparison with Figs. 3(a) and (b), it can be seen that the model can describe effectively 

the magnetization curves changing from steep to flat and describe effectively the tendency 

of saturation magnetic induction tending to a stable value with compressive stresses 

changing. In fact, the first item of Eq. (13b) on the right has nothing to do with stress, 

which describes mainly the magnetization curve as pre-stress being 0 MPa, so the curve as 

pre-stress being 0 MPa in Fig. 3 is just determined by the first item of Eq. (13b) on the 

right. If compressive stress is applied, it would do work to rotate magnetization direction 

of magnetic domain of Galfenol to a hard axis in advance and thus make magnetizing 

difficult. With the applied static magnetic field increasing, the influence of pre-stress must 

be overcome firstly, so a larger exerting magnetic field is necessary in order to reach to a 

same magnetic induction under the applied compressive stress. Yet, in the case of nonzero 

compressive stress, the second and third items of Eq. (13b) on the right start to work, which 

makes the constitutive model be used to describe the magnetization effectively. 
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Figure 3: The experimental (a) [Atulasimha, Flatau and Cullen (2008)] and prediction (b) 

magnetic induction vs. magnetic field at compressive stress of 0 MPa, 15 MPa, 30 MPa, 

45 MPa, 60 MPa, 80 MPa 

Since the constitutive model can predict the magnetization curve effectively, as such, it can 

describe the magnetic induction curves. The magnetic induction curves of experimental 

measurement and prediction varying with pre-compressive stress at bias magnetic fields 

from 0 to 891 Oe are shown in Figs. 4 (a) and 4(b). It can be found from Fig. 4 that at bias 

magnetic field from 0 to 111 Oe, the magnetic induction reduces sharply with the 

compressive stress increasing as pre-compressive stress being smaller ( 60MPa  ), and 

then it tends to be stable gradually as pre-compressive stress being larger. However, as the 

magnetic field increasing, the magnetic induction keeps almost constant under smaller 

-800 -600 -400 -200 0 200 400 600 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Magentic Field (Oe)

M
a

g
n

et
ic

 I
n

d
u

ct
io

n
 (

T
)

0MPa

(a)

80MPa

-800 -600 -400 -200 0 200 400 600 800
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Magentic Field (Oe)

M
a

g
n

et
ic

 I
n

d
u

ct
io

n
 (

T
)

80MPa

0MPa

(b)



222  Copyright © 2018 Tech Science Press CMC, vol.54, no.3, pp.209-228, 2018 

compressive stress, and then it decreases and finally tends to be stable when the 

compressive stress increases to a certain degree, that is to say, the magnetic induction curve 

becomes smoothly. When the magnetic field reaches to 446 Oe, the magnetic induction is 

almost unchanged and linear tendency with compressive stress changing. It is because at 

smaller bias magnetic field Galfenol would be magnetized first, and then be demagnetized 

and finally tend to saturate by exerting compressive stress; yet at larger bias magnetic field, 

Galfenol would be magnetized and get to saturate directly, and then it is difficult to be 

demagnetized by exerting smaller compressive stress. 

Figure 4: The experimental (a) [Atulasimha, Flatau and Cullen (2008)] and prediction (b) 

magnetic induction vs. compressive stress at bias magnetic field of 0, 22.3, 44.6, 66.9, 89.1, 

111, 167, 223, 446, 891 Oe 

Now the magnetostrictive strain under magneto-mechanical coupling would be discussed. 

Obviously, the magnetostrictive strain is the sum of the third term and fourth term related 
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to magnetization on the right of Eq. (13a), which is the rest part without considering the 

strain induced directly by stress in formula of constitutive model. The magnetostrictive 

strain curves of experimental results and prediction under the different compressive 

stresses appear obvious nonlinear as shown in Figs. 5(a) and 5(b). By comparison, from 

Fig. 5, in quantitative, the predicted results are in agreement with the experimental results 

basically; in qualitative, the model can predict effectively the experimental phenomenon 

of magnetostrictive strain decreasing at initial segment with compressive stress increasing. 

However, the predicted results of saturated magnetostrictive strain appear reversal at very 

large magnetic field. That is to say, at very smaller compressive stress, the initial segment 

of magnetostrictive strain is very large and the final saturated magnetostrictive strain is 

very small; Whereas, at very larger compressive stress, the initial segment of 

magnetostrictive strain is very small and the saturated magnetostrictive strain is much 

greater. But the experimental results of magnetostrictive strain in Fig. 5(a) at high magnetic 

field did not show reversal at all. As we know, the experimental Galfenol sample measured 

by Atulasima [Atulasimha, Flatau and Cullen (2008)] was annealed under stress, so there 

is no reversal for the saturated magnetostrictive strain. In fact, if there is no annealing 

treatment, magnetostrictive strain will exhibit reversal. For example, the magnetostrictive 

strain curves of Galfenol material without annealing treatment measured by Evans et al. 

[Evans and Dapino (2010)] and Clark et al. [Clark, Wun-Fogle, Restorff et al. (2002)] 

appeared reversal phenomenon, which is certainly consistent with predictions by the 

proposed model. Therefore, the Galfenol alloys exhibit complex nonlinear magneto-

mechanical coupling effect under the interaction of pre-stress and magnetic field. 
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Figure 5: The experimental (a) [Atulasimha, Flatau and Cullen (2008)] and prediction (b) 

strain vs. magnetic field at compressive stress of 15 MPa, 30 MPa, 45 MPa, 60 MPa, 80 

MPa 

From the analysis above, the proposed model can describe accurately the nonlinear 

magneto-mechanical coupling effect of magnetization and magnetostrictive strain under 

the action of stress and magnetic field. Besides, the model can also describe the coupling 

characteristics in aspect of magnetism, magnetostriction properties and elasticity of 

magnetostrictive materials. Fig. 6 shows the predicted E  effect in this paper, which is 

the Young’s modulus varying with the different magnetic fields and stresses. It can be seen 

from Fig. 6 that the predicted Young’s modulus is almost not affected by pre-stress as the 

magnetic field being zero or saturation (i.e. 0H or 891OeH  ). Whereas, the predicted 

Young’s modulus is with non-monotonicity varying with compressive stress as the 

magnetic fields being other values. For given nonzero magnetic fields in Fig. 6, all the 

values of Young’s modulus descend first from the initial values and then go up and last 

tend to a common saturation value sE . It also can be seen that the Young’s modulus of 

Galfenol rod approaches to intrinsic Young’s modulus sE  only when the compressive is 

enough large or the magnetic field is enough high. For these two cases, the direction of 

magnetic domain will be confine in plane perpendicular to axial direction or axial line 

direction, then any tiny stress variation cannot make magnetic domain rotate. Thus, the 

corresponding strain variation is just provided by the intrinsic elastic property of material, 

and of course its Young’s modulus is equal to intrinsic Young’s modulus sE . And yet, at 

the moderate magnetic field and compressive stress, the Young’s modulus of Galfenol rods 

is usually much lower than the saturated value of 59GPa , and the lowest values are in the 

range of 28 ~ 38GPa  , which is consistent well with the lowest Young’s modulus of 
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29GPa  done by experiment mentioned in literature [Atulasimha, Flatau and Cullen (2008)] 

and appears highly significant E  effect. In this case, the influence of the compressive 

stress and magnetic field on magnetic domain rotation is mutual to some extent. Because 

the magnetic domain is easy to rotate for the strain variation produced by each unit stress 

change, the contribution of magnetic domain rotation is very large. Therefore, the proposed 

model in this paper can give the variation law of Young’s modulus closest to the truth, 

which shows the validity of the model again.  

Figure 6: The prediction Young’s Modulus vs. compressive stress at bias magnetic field of 

0, 22.3, 44.6, 66.9, 89.1, 111, 223, 891 Oe 

4 Conclusions 

This paper proposed a magneto-mechanical coupling constitutive model of the 

magnetostrictive smart material Galfenol alloys, which can predict accurately the nonlinear 

magneto-mechanical coupling effect under the different compressive stresses and magnetic 

fields. Furthermore, the model can fully describe the nonlinear magneto-mechanical 

coupling characteristics in aspect of magnetism, magnetostriction properties and elasticity 

of Galfenol rods, such as the influence of the interaction of pre-stress and magnetic field on 

magnetization and magnetostrictive strain curves, on strain-stress curves and the Young’s 

modulus (that is E  effect). Compared with the existing model, the proposed model is 

not only a macroscopical and phenomenological constitutive model based on the 

micromechanism, but also simple in form and in calculation. In addition, the key material 

constants can easily be measured by experiments. Therefore, this model would be used very 

conveniently in the practice engineering applications. 
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