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Abstract: In the light of great importance of curves and their frames in many different 

branches of science, especially differential geometry as well as geometric properties and 

the uses in various fields, we are interested here to study a special kind of curves called 

Smarandache curves in Lorentz 3-space. Then, we present some characterizations for these 

curves and calculate their Darboux invariants. Moreover, we classify TP, TU, PU and 

TPU-Smarandache curves of a spacelike curve according to the causal character of the 

vector, curve and surface used in the study. Besides, we give some of differential geometric 

properties and important relations between that curves. Finally, to demonstrate our 

theoretical results a computational example is given with graph.  
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1 Introduction 

The curves and their frames play an important role in differential geometry and in many 

branches of science such as mechanics and physics, so we are interested here in studying 

one of these curves which have many applications in Computer Aided Design (CAD), 

Computer Aided Geometric Design (CAGD) and mathematical modeling. Also, these 

curves can be used in the discrete model and equivalent model which are usually adopted 

for the design and mechanical analysis of grid structures [Dincel and Akbarov (2017)]. 

Smarandache Geometry is a geometry which has at least one Smarandachely denied axiom. 

It was developed by Smarandache [Smarandache (1969)]. We say that an axiom is 

Smarandachely denied if the axiom behaves in at least two different ways within the same 

space (i.e. validated and invalided, or only invalidated but in multiple distinct ways). 

As a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries 

may be united altogether, in the same space, by some Smarandache geometries. 

Florentin Smarandache proposed a number of ways in which we could explore “new math 

concepts and theories, especially if they run counter to the classical ones”.  

In a manner consistent with his unique point of view, he defined several types of geometry 

that are purpose fully not Euclidean and that focus on structures that the rest of us can use 

to enhance our understanding of geometry in general.  

To most of us, Euclidean geometry seems self-evident and natural. This feeling is so strong 
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that it took thousands of years for anyone to even consider an alternative to Euclid’s 

teachings. These non-Euclidean ideas started, for the most part, with Gauss, Bolyai, and 

Lobachevski, and continued with Riemann, when they found counter examples to the 

notion that geometry is precisely Euclidean geometry. This opened a whole universe of 

possibilities for what geometry could be, and many years later, Smarandache’s imagination 

has wandered off into this universe [Howard (2002)]. Curves are usually studied as subsets 

of an ambient space with a notion of equivalence. For example, one may study curves in 

the plane, the usual three dimensional space, the Minkowski space, curves on a sphere, etc. 

In three-dimensional curve theory, for a differentiable curve, at each point a triad of 

mutually orthogonal unit vectors (Frenet frame vectors) called tangent, normal and 

binormal can be constructed. In the light of the existing studies about the curves and their 

properties, authors introduced new curves. One of the important of among curves called 

Smarandache curve which using the Frenet frame vectors of a given curve. Among all 

space curves, Smarandache curves have special emplacement regarding their properties, 

this is the reason that they deserve special attention in Euclidean geometry as well as in 

other geometries. It is known that Smarandache geometry is a geometry which has at least 

one Smarandache denied axiom [Ashbacher (1997)]. An axiom is said to be Smarandache 

denied, if it behaves in at least two different ways within the same space. 

Smarandache geometries are connected with the theory of relativity and the parallel 

universes and they are the objects of Smarandache geometry. 

By definition, if the position vector of a curve is composed by Frenet frame’s vectors of 

another curve  , then the curve   is called a Smarandache curve [Turgut and Yilmaz 

(2008)]. The study of such curves is very important and many interesting results on these 

curves have been obtained by some geometers [Abdel-Aziz and Khalifa Saad (2015, 2017); 

Ali (2010); Bektas and Yunce (2013); Çetin and Kocayiğit (2013); Çetin, Tunçer and 

Karacan (2014)); Khalifa Saad (2016)]. Turgut et al. [Turgut and Yilmaz (2008)] 

introduced a particular circumstance of such curves. They entitled it Smarandache 
2TB  

curves in the space
1

4E  . Special Smarandache curves in such a manner that Smarandache 

curves
1TN ,

2TN ,
21NN  and 

21NTN  with respect to Bishop frame in Euclidean 3 -space 

have been seeked for by Çetin et al. [Çetin, Tunçer and Karacan (2014)]. Furthermore, they 

worked differential geometric properties of these special curves and they checked out first 

and second curvatures of these curves. Also, they get the centers of the curvature spheres 

and osculating spheres of Smarandache curves. 

Recently, Abdel-Aziz et al. [Abdel-Aziz and Khalifa Saad (2015, 2016)] have studied 

special Smarandache curves of an arbitrary curve such as TN , TB  and TNB  with respect 

to Frenet frame in the three-dimensional Galilean and pseudo-Galilean spaces. Also in 

Abdel-Aziz et al. [Abdel-Aziz and Khalifa Saad (2017)], authors have studied 

Smarandache curves of a timelike curve lying fully on a timelike surface according to 

Darboux frame in Minkowski 3-space.  

In this work, for a given timelike surface and a spacelike curve lying fully on it, we study 

some special Smarandache curves with reference to Darboux frame in the three-

dimensional Minkowski space
3

1E . We are looking forward to see that our results will be 
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helpful to researchers who are specialized on mathematical modeling.  

2 Basic concepts 

Let Minkowski 3-space 
3

1E  be the vector space 
3E  provide with the Lorentzian inner 

product  ,  given by 

2

3

2

2

2

1, xxxXX   

where 
3

1321 ),,( ExxxX   . An arbitrary vector u  in 
3

1E  can have one of three 

Lorentzian causal characters; it can be spacelike, timelike and lightlike (null) if  

0,  uu  or 0u , 0,  uu and 0,  uu and 0u , respectively. Similarly, a 

curve r , locally parameterized by 
3

1:)( ERIsrr  , where s  is pseudo arc length 

parameter, is called a spacelike curve if 0)(),(  srsr , timelike if 0)(),(  srsr  

and lightlike if 0)(),(  srsr and 0)(  sr  for all Is  . The vectors 

),,( 321 xxxX  ,
3

1321 ),,( EyyyY  are orthogonal if and only if 0,  YX  [O’Neil 

(1983)]. Also, the Lorentzian cross product of X  and Y  is given by 

.

321

321

321

yyy

xxx

eee
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The norm of a vector 
3

1Ev  is given by  vvv , . We denote by  BNT ,,  the 

moving Frenet frame along the curve )(sr in the Minkowski space 
3

1E , where the vectors 

T, N and B are called the tangent, principal normal and the binormal vectors of r , 

respectively. The following definition needs throughout this study. 

Definition 2.1 A surface   in the Minkowski 3-space
3

1E is said to be spacelike, timelike 

surface if, respectively the induced metric on the surface is a positive definite Riemannian 

metric, Lorentz metric. In other words, the normal vector on the spacelike (timelike) 

surface is a timelike (spacelike) vector [O’'Neil (1983)]. 

3 Smarandache curves of a spacelike curve 

Let   be an oriented timelike surface in Minkowski 3-space 
3

1E  and )(srr   be a 

spacelike curve with timelike normal vector lying fully on it. Then, the Frenet equations of 

)(sr  are given by 
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where a prime denotes differentiation with respect to s . For this frame the following are 
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satisfying  

.0,,,

,1,,1,,
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Let  UPT ,,  be the Darboux frame of )(sr , then the relation between Frenet and 

Darboux frames takes the form [Do Carmo (1976); O’Neil (1983)]:  
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where T  is the tangent vector of r  and U  is the unit normal to the surface   and 

TUP  . Therefore, the derivative formula of the Darboux frame of )(sr  is in the 

following form: 
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The vectors PT,  and U  satisfy the following conditions: 

.,,

,0,,,

,1,,1,,

PTUTUPUPT

UPPTUT
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In the differential geometry of surfaces, for a curve )(srr   lying on a surface M , the 

following are well-known [Do Carmo (1976)] 

1) )(sr  is a geodesic curve if and only if 0g , 

2) )(sr  is an asymptotic line if and only if 0n , 

3) )(sr  is a principal line if and only if 0g . 

Definition 3.1 A regular curve in Minkowski space-time, whose position vector is 

composed by Frenet frame vectors on another regular curve, is called a Smarandache curve 

[Turgut and Yilmaz (2008)]. 

In the following, we investigate Smarandache curves PUTUTP ,,  and TPU , and 

study some of their properties for a curve lies on a surface as follows:   

3.1 TP-Smarandache curves 

Definition 3.2 Let   be an oriented timelike surface in 
3

1E  and the unit speed spacelike 

curve )(srr   lying fully on   with Darboux frame  UPT ,, . Then the TP- 

Smarandache curves of r  are defined by 
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  PT 
2

1
)(s .                                                                                                         (4) 

Theorem 3.1 Let )(srr   be a spacelike curve lying fully on a timelike surface    in  

3

1E  with Darboux frame UPT ,, , and non-zero curvatures; ggn and , . Then the 

curvature functions of the TP-Smarandache curves of r satisfy the following equations:  
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(6) 

Proof. Let )(s   be a -TP Smarandache curve reference to a spacelike curve r . 

From Eq. )4(  , we get 
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1
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   . 

So, we have 
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,                                                                                                         (7) 

this leads to 
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Differentiating Eq. )8(  with respect to s  and using Eq. )7( , we obtain 
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  .
2

3 gng    

Then, the curvature is given by 
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 as denoted by Eq. (5). 

And the principal normal vector field of the curve   is  
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So, the binormal vector of    is given by 
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Now, in order to calculate the torsion of , we consider the derivatives   ,  with 

respect to s  as follows 
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In the light of the above calculations, the torsion of   is calculated as Eq. (6).  
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Lemma 3.1 Let )(s  be a spacelike curve lies on a timelike surface   in Minkowski 3-

space
3

1E , then 

1) If   is a geodesic curve, the following hold 
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2) If   is an asymptotic line, the following hold 
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3) If   is a principal line, the following hold 
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3.2 TU-Smarandache curves 

Definition 3.3 Let   be an oriented timelike surface in 
3

1E  and the unit speed spacelike 

curve )(srr   lying fully on   with Darboux frame  UPT ,, . Then the TU- 

Smarandache curves of r  are defined by 

 UT 
2

1
)(s .                                                                                                        (9) 

Theorem 3.2 Let )(srr   be a spacelike curve lying fully on a timelike surface   in  

3

1E  with Darboux frame  UPT ,, , and non-zero curvatures; ggn and , . Then the 

curvature functions of the TU- Smarandache curves of r satisfy the following equations:  
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Proof. Let )(s   be a TU- Smarandache curve reference to a spacelike curve  r . 

From Eq. 9（ ） , we get 
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Differentiating Eq. )12(  with respect to s , we get  
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Therefore, the curvature   is given by  
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And principal normal vector field N  of   is  
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Besides, the binormal vector of   is 
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Differentiating   with respect to s , we get 
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It follows that, the torsion of   is expressed as in Eq. (11). 

Lemma 3.2 Let )(s  be a spacelike curve lies on   in Minkowski 3-space 
3

1E , then 

1) If   is a geodesic curve, the following are satisfied 
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2) If   is an asymptotic line, then  
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3) If   is a principal line, the following are satisfied  
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3.3 PU-Smarandache curves 

Definition 3.4 Let   be an oriented timelike surface in 
3

1E  and the unit speed spacelike 

curve )(srr   lying fully on   with Darboux frame  UPT ,, . Then the PU- 

Smarandache curves of r are defined by 

 UP 
2

1
)(s .                                                                                                       (13) 

Theorem 3.3 Let )(srr   be a spacelike curve lying fully on a timelike surface   in  

3

1E  with Darboux frame UPT ,, , and non-zero curvatures; ggn and ,  . Then the 

curvature functions of the PU-Smarandache curves of r satisfy the following equations: 
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Proof. Let )(s   be a PU-Smarandache curve reference to a spacelike curve r . From 

Eq. (13) , we obtain 
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Differentiating Eq. )16(  with respect to s , we have 
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and then, the curvature of   is given by 
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which is denoted by Eq. (14). 

Based on the above calculations, we can express the principal normal vector of   as 

follows  
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The derivatives    and    as follows  

 ,)()()(
2

1 2222
UPT gngngggnggngggng     



 

 

 

240    Copyright © 2018 Tech Science Press               CMC, vol.54, no.3, pp.229-249, 2018 

 ,
2

1
321 UPT     

where 

    ,2)( 222

1

  nggnggnggng   

    ,332 222

2

  ggngggngggn   

    ,332 222

3

  ggngggngnng   

According to the above calculations, we obtain the torsion of   as in Eq. (15). 

Lemma 3.3 Let )(s  be a spacelike curve lies on   in Minkowski 3-space 
3

1E , then 

1) If   is a geodesic curve, the curvature and torsion of   are, respectively 
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2) If   is an asymptotic line, we get 
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3) If   is a principal line, the following hold 
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3.4 TPU-Smarandache curves 

Definition 3.5 Let   be an oriented timelike surface in 
3

1E  and the unit speed spacelike 

curve )(srr   lying fully on   with Darboux frame  UPT ,, . Then the TPU-

Smarandache curves of r are defined by 
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Theorem 3.4 Let )(srr   be a spacelike curve lying fully on a timelike surface   in  
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curvature functions of the TPU-Smarandache curves of r satisfy the following equations: 
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Proof. Let )(s   be a TPU-Smarandache curve reference to a spacelike curve  r . 
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Differentiating )21(  with respect to s  , we get 
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Then, the curvature is given by 
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as denoted in Eq. (19). 
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So, the binormal vector of   is 
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In the light of the above derivatives, the torsion of   is computed as in Eq. (20), where 
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 Thus the proof is completed. 

Lemma 3.4 Let )(s  be a spacelike curve lies on   in Minkowski 3-space 
3

1E , then 

1) If   is a geodesic curve, the curvature and torsion can be expressed as follows  
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2) If   is an asymptotic line, we have 
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3) If   is a principal line, we obtain 
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4 Computational example 

In this section, we consider an example for a spacelike curve lying fully on an oriented 
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timelike ruled surface in 
3

1E  (see Fig. 1(b)), and compute its Smarandache curves. 

Suppose we are given a timelike ruled surface represented as  

   ,sin2,cos2,1,cos2,sin2),( ssvsssvs   

where the spacelike base curve is given by (see Fig. 1(a))  

 ,,cos2,sin2)( ssssr   

and  ,sin2,cos2,1 ssQ   is the ruling vector of   . 

 
                               (a)                                                          (b) 

Figure 1: The spacelike curve r(s) on the timelike ruled surface   

So, we can compute the Darboux frame of   as follows 
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 and 
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According to Eq. (3), the geodesic curvature g  , the normal curvature n  and the geodesic 

torsion g  of the curve r  are computed as follows  
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In the case of ( 0s  and 0v  ), we have  

).21(2,2,2  gng   

TP Smarandache curve 

For this curve )(s   , (see Fig. 2(a)), we have  

 ,,, 321    
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where 
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If we choose )0( s  and )0( v  , the curvature and torsion of   are  

.0122605.0,89204.7     

As the above, we can calculate the other Smarandache curves as follows: 

TU Smarandache curve 

For this curve (see Fig. 2(b)), we have  
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PU Smarandache curve 

For this curve (see Fig. 3(a)), we have  
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TPU Smarandache curve 

For this curve (see Fig. 3(b)), we have  
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it follows that ( 0s  and 0v  )  
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                                       (a)                                                  (b) 

Figure 2: The TP and TU-Smarandache curves α and 𝛽 of the spacelike curve r 

 
                        (a)                                                                      (b) 

Figure 3: The PU and TPU-Smarandache curves γ and δ of the spacelike curve r 

5 Conclusion 

In this study, Smarandache curves of a given spacelike curve with timelike normal lying 

on a timelike surface in the three-dimensional Minkowski space are investigated. 

According to the Lorentzian Darboux frame the curvatures and some characterizations for 

these curves are obtained. Finally, for confirming our main results, an example is given 

and plotted. 
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