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Abstract: In recent years, binary image steganography has developed so rapidly that the 

research of binary image steganalysis becomes more important for information security. In 

most state-of-the-art binary image steganographic schemes, they always find out the 

flippable pixels to minimize the embedding distortions. For this reason, the stego images 

generated by the previous schemes maintain visual quality and it is hard for steganalyzer 

to capture the embedding trace in spacial domain. However, the distortion maps can be 

calculated for cover and stego images and the difference between them is significant. In 

this paper, a novel binary image steganalytic scheme is proposed, which is based on 

distortion level co-occurrence matrix. The proposed scheme first generates the 

corresponding distortion maps for cover and stego images. Then the co-occurrence matrix 

is constructed on the distortion level maps to represent the features of cover and stego 

images. Finally, support vector machine, based on the gaussian kernel, is used to classify 

the features. Compared with the prior steganalytic methods, experimental results 

demonstrate that the proposed scheme can effectively detect stego images. 

 

Keywords: Binary image steganalysis, informational security, embedding distortion, 

distortion level map, co-occurrence matrix, support vector machine. 

1 Introduction 

Steganography is the art of hiding secret messages into a host media, analogous to data 

hiding and invisible watermarking [Feng, Lu, Sun et al. (2016); Feng, Lu and Sun (2015)]. 

To avoid the abuse of steganography, steganalysis [Fridrich and Kodovsky (2012); Yuan, 

Lu, Feng et al. (2017); Feng, Lu and Sun (2015)] is designed to analyze the embedding 

trace and detect the existence of secret messages. Since binary image has only 1 bit per 

pixel and its storage requirement is small, it is widely used in digitizing, processing, 

transmitting and archiving for a great amount of daily application including document 
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images, handwritings and so on. The demand of distinguishing between original images 

(cover images) and stego images is raising with the rapidly development of binary 

steganography [Wu and Liu (2004); Yang and Kot (2007); Yang, Kot and Rahardja (2008); 

Cao and Kot (2013); Guo and Zhang (2010); Feng, Lu and Sun (2015)]. For this purpose, 

it is crucial to design a binary steganalytic scheme with high detectability. 

Binary images require only 1 bit per pixel and the basic embedding operation in binary 

images is flipping pixels from black to white and vice versa. Arbitrarily flipping pixels in 

binary images will create significant distortions, which can be easily detected by human 

eyes. For this reason, the binary steganographic schemes usually focus on selecting the 

optimal pixels that introduce less embedding distortions. SHUFFLE [Wu and Liu (2004)] 

observes the smoothness and connectivity in blocks and find the flippable pixels that 

preserve the connectivity well. ConnPre [Yang and Kot (2007)] focuses more on the 

connectivity of blocks and flips the pixels in those connectivity-preserving blocks 

generated by various block divisions. DPDC [Yang, Kot and Rahardja (2008)] tracks the 

flippable pixels on the shifted edges using the interlaced morphological wavelet transform. 

EAG [Cao and Kot (2013)] searches the changeable contour segments along the boundary 

to find the flippable pixels. Guo et al. [Guo and Zhang (2010)] propose a matrix embedding 

scheme (denoted as GIM) based on the complete set theory and selects the flippable pixels 

in the block units. Feng et al. [Feng, Lu and Sun (2015)] designed the scheme focusing on 

local texture patterns (LTP) and propose a flipping distortion measurement (FDM) to 

evaluate the distortions introduced by flipping pixels. Syndrome trellis code (STC) [Filler, 

Judas and Fridrich (2011)] is used to embed the secret messages by flipping the pixels with 

low distortion values. It can be concluded that flipping pixels with low distortions is an 

important topic for binary steganography to improving its imperceptibility. 

As a countermeasure of steganography, steganalysis focus on finding out the embedding 

trace and distinguishing the cover and stego images. The previous steganalytic schemes 

usually constructs a pixel structure model and analyses the difference between the cover 

and stego images. Chiew et al. [Chiew and Pieprzyk (2010)] utilize pattern histograms 

(denoted as PHD) of boundary pixels to model images. They calculate the difference 

between the tested image and the re-embed image, which is used to construct feature 

vectors for cover and stego images. In the last step of classification, machine learning 

[Gurusamy and Subramaniam (2017)] and neural network [Yuan, Li, Wu et al. (2017); 

Yıldızel and Öztürk (2016)] are always adopted to conduct it. For example, Support Vector 

Machine (SVM) [Chang and Lin (2011)] is prevalent and effective to classify the feature 

vectors. Both RLGL and RLCM extract features from the high-order difference of images. 

RLGL [Chiew and Pieprzyk (2010)] utilizes run length and gap length matrices to model 

images, and the statistics including mean, variance, kurtosis, and skewness are calculated 

to form the feature vectors. RLCM [Chiew and Pieprzyk (2010)] utilizes run length and 

co-occurrence matrices to model images and added some new statistics such as contrast 

and energy to construct the feature vectors. PMMTM [Feng, Lu and Sun (2015)] constructs 

different types of pixel meshes and uses pixel mesh Markov transition matrix as features. 

LP [Feng, Weng, Lu et al. (2017)] traces the “L-shape” patterns to model images and the 

distributions of the selected patterns are used as steganalytic features. The previous 

steganalytic schemes use different models but their tasks are same to find out the 

embedding trace and extract features from it. A more accurate model catching the 
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difference between the cover and stego images can result in a better steganalytic 

performance. 

In this paper, we introduce an image model based on quantified distortion values, namely 

distortion levels. The distortion measurement we used is FDM, which is the state-of-the-

art technique to estimate the pixel flippability. For example, it is usually suggested that the 

best flippable pixels are located at the center of “L-shape” patterns, which is shown in Fig. 

1, and FDM usually assigns zero value to “L-shape” patterns. Briefly, the pixels with low 

FDM distortion values are more likely flipped in the steganographic schemes. FDM has an 

important property that the distortion value of one pixel do not change after flipping if there 

not exists other flipped pixels in the adjacent area. In this situation, the distortion values of 

neighbor pixels in 5×5 block would change. For this property, we can find out the 

embedding trace by analyzing the pixels with low distortion values. In the proposed scheme, 

we construct the co-occurrence matrix from the low distortion value pixels and their 

neighbor pixels and re-construct it as steganalytic features. The experimental results show 

that the proposed scheme achieve good detectability on the state-of-the-art steganographic 

schemes. 

The reminder of this paper is organized as follows. In Section 2, we first analyze the 

previous steganographic schemes and then introduce the distortion level co-occurrence 

matrix. The comparison experiments are given in Section 3. Finally, Section 4 concludes 

the whole papers. 

2 The proposed scheme 

As is well known, steganalysis and steganography are the opposite research fields. It is 

important for a good steganalytic method to evaluate the security of steganographic 

schemes. Therefore, for better constructing our steganalyzer, we analyze some state-of-the-

art binary image steganography in Section 2.1. Then, in Section 2.2 we introduce the 

proposed scheme in detail. 

2.1 Binary image steganography 

There exist many approaches in binary image steganography [Wu and Liu (2004); Yang 

and Kot (2007); Yang, Kot and Rahardja (2008); Cao and Kot (2013); Guo and Zhang 

(2010); Feng, Lu and Sun (2015)]. ConnPre is designed to preserve the connectivity the 

same before and after flipping the embeddable pixels, so that it allows to precisely locate 

the flipping pixels after the data embedding. It also sets the flippability criteria of the pixels, 

divides image into interlaced blocks or non-interlaced blocks, and encrypts the cover 

images to prevent the hostile attack. These conditions guarantee that the hard watermark 

can be accurately extracted in the stego image according to the precisely locations while 

maintaining visual quality of the image. 

However, ConnPre would not achieve high embedding capacity, because its manipulation 

in data embedding cannot influence the grid re-establishment in data extraction. Hence, it 

has to ignore some flippable pixels. Cao et al. [Cao and Kot (2013)] proposed to establish 

the edge-adaptive grid (EAG) to increase data embedding capacity. Its algorithm, built on 

three main functional components, contour tracer, content adaptive process and protector, 

aims at tracing the object boundary and locating flippable pixels. These flippable pixels are 
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always center on the “L-shape” patterns. In Fig. 1, “L-shape” patterns can be easily found 

on the object boundary, and flipping the center pixel of “L-shape” patterns can remain the 

boundary smoothness. Therefore, EAG traces the object boundary to locate flippable pixels. 

With the same purpose of achieving high data embedding capacity, DPDC adopts 

overlapped wavelet transform to track the shifted edges. Its double processing method 

allows to embed data in the same 2×2 block, which provides a high capacity approach. The 

other way to increase the capacity of data embedding, matrix embedding is suggested in 

GIM, which is designed to reduce the embedding impact. 

 

    

Figure 1: Examples of the “L-shape” pattern 

In recent years, it is prevalent to use STC for minimizing additive distortion in 

steganography [Pevny, Filler and Bas (2010); Feng, Lu and Sun (2015)]. Feng et al. [Feng, 

Lu and Sun (2015)] initially designed a novel FDM to evaluate the pixel flippability. In 

their scheme, useless cover image blocks is discarded. Super pixels constructed from those 

remaining blocks. Combining with corresponding distortion blocks, super pixels are send 

to be encoded by STC which minimizes additive distortion to embed the data. Their 

steganographic scheme outperforms other state-of-the-art methods. 

Every pixels in image can be evaluated by distortion values which estimate the pixels 

flippability. The lower the distortion value is, the more possible it is to be embedded. In 

FDM, calculation of pixel distortion values are based on the neighbor patterns. For example, 

most of the center pixels of “L-shape” patterns are evaluated as zero value pixels. That 

implies that these pixels are suitable for embedding. Although flipping the center pixel of 

“L-shape” patterns in the cover image can maintain visual quality, it would also change the 

surrounding pixel distortion values in the stego image. Therefore, the difference of 

distortion maps between cover and stego images are significant. Apparently, our 

steganalytic features can be constructed from distortion maps of cover and stego images. 

2.2 Distortion level co-occurrence matrix 

        

        

Figure 2: All the patterns in the one class 
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FDM is designed to calculate the pixel distortion values based on the neighbor patterns and 

it can generate distortion maps for every binary images. In the 3×3 blocks, there exists 

29=512 kinds of patterns in all. FDM firstly classify these 512 patterns based on 

complement, rotation and mirroring-invariant local texture pattern (crmiLTP). In Fig. 2, 

we introduce all the patterns in the one class. These patterns can be treated as the same 

class according to crmiLTP. Hence, after the step of crmiLTP classification, 512 patterns 

would be classified into 51 classes. The flipping distortion of pixels located (i, j) in cover 

images 𝑿 can be calculated as 

𝐷𝑖,𝑗 = ∑ 𝑊𝑡 |𝐻𝑡
𝑿 − 𝐻𝑡

𝒀𝒊,𝒋|50
𝑡=0                                                                                                 (1) 

where 𝒀𝑖,𝑗 denotes the stego image obtained by only changing the pixel located at (i, j),  

𝑊𝑡  set with the maximal value of Fisher’s criterion after detects all the employed 

simulators, denotes the weight corresponding to the crmiLTP, 𝐻𝑡
𝑿  and 𝐻𝑡

𝒀𝒊,𝒋
 denote the 

histogram coefficients corresponding to crmiLTPs with value equal to 𝑡  which are 

calculated from images 𝑿 and 𝒀𝑖,𝑗, respectively. 

  

 

 

 

 

(a) (b) (c) (d) 

Figure 3: (a) An example of binary cartoon image. (b) Image segment in the red box of (a) 

and the flippable pixel is in the green box. (c) Image segment after flipping the pixel in the 

green box. (d) The difference between the distortion maps of (b) and (c) 

Actually, flipping a pixel located (i, j)  in a cover image would change the classes of 

neighbor patterns. The flipping pixel distortion values are apparently determined by the 

change of the classes of neighbor patterns. Therefore, in the stego image, the neighbor pixel 

distortion values are different with the corresponding position of the cover image. In Fig. 

3, we introduce image segment of a binary cartoon image and it analyze why we construct 

our steganalytic features from distortion maps. In Fig. 3(d), we find out that the pixels 

distortion value in 5×5 block change apparently, except the flipping pixel. The flipping 

pixel distortion value would preserve the same between cover and stego images if there not 

exists other flipped pixels in the adjacent area. It provides us a method to construct our co-

occurrence matrix and to process dimension selection. 

Many steganalytic methods [Chiew and Pieprzyk (2010); Feng, Lu and Sun (2015); Feng, 

Weng, Lu et al. (2017); Fridrich and Kodovsky (2012); Denemark, Sedighi, Holub et al. 

(2014)] always construct high dimensional co-occurrences matrices to represent the 

features of images. Then they also utilize classifier, such as SVM and Ensemble Classifier 

(EC) [Kodovsky, Fridrich and Holub (2012)] to classify the features extracted from cover 

and stego images. In this paper, we construct two-order co-occurrence matrices on the 
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distortion level maps for cover and stego images. After features construction, for fair 

comparison, we also use SVM to classify features extracted from distortion maps of cover 

and stego images. 

Before we construct the two dimensional matrix, we quantize distortion maps into several 

levels. With constraint of the size of samples, five thousand of binary cover images, we 

uniformly quantize distortion map into 32 levels based on the maximum value and the 

minimum value of distortion map. The step of the quantitative process is: 

𝑑 = round (
𝐷𝑖,𝑗−𝐷𝑚𝑖𝑛

𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛
× 31) + 1                                                                                                      (2) 

where 𝐷𝑚𝑖𝑛 and 𝐷𝑚𝑎𝑥 denote the minimum value and the maximum value of distortion 

map, respectively. 

The next step, co-occurrence matrix from two neighboring values of the quantized 

distortion level map are: 

𝐶𝑝,𝑞 = ∑ ∑ [𝑑𝑖,𝑗 = 𝑝,  𝑑𝑖,𝑗+1 = 𝑞]32,32
𝑝,𝑞=1

𝑚−𝑛,𝑛−2
𝑖,𝑗=3                                                                                     (3) 

where [∎] is the Iverson bracket, which is equal to 1 if logical proposition inside the 

bracket is true, and 0 otherwise, m and n denote the size of images, 𝑑𝑖,𝑗 denotes distortion 

levels located (i, j) in maps. However, flipping one pixel would change neighbor pixel 

distortion values in stego images. If we only use the distortion level of one pixel and its 

right adjacent pixel distortion level to construct the co-occurrence matrix, it would lose 

much key features on distortion level maps. Therefore, we re-construct the co-occurrence 

matrix: 

𝐶𝑝,𝑞 = ∑ ∑
([𝑑𝑖,𝑗 = 𝑝,  𝑑𝑖,𝑗+1 = 𝑞] + [𝑑𝑖,𝑗 = 𝑝,  𝑑𝑖,𝑗−1 = 𝑞]

+[𝑑𝑖,𝑗 = 𝑝,  𝑑𝑖+1,𝑗 = 𝑞] + [𝑑𝑖,𝑗 = 𝑝,  𝑑𝑖−1,𝑗 = 𝑞])
32,32
𝑝,𝑞=1

𝑚−𝑛,𝑛−2
𝑖,𝑗=3                       (4) 

We have also adopted eight directions neighboring pixel distortion values to re-construct 

the co-occurrence matrix. However, in our empirical study, the construction of co-

occurrence matrices for vertical and horizontal directions achieve better performance. 

In the step of distortion level co-occurrence matrix (DLCM) dimensions selection, we first 

select the dimension of the first order. In this order, we select the half dimensions, from 32 

to 16. We simply remove the second half of this order (i.e. we ignore those 𝑑𝑖,𝑗 ∈ [17,32]), 

because many steganographic schemes always flip the pixels with low distortion values. 

Then, we calculate the occurrence numbers of the neighbor pixel distortion values in cover 

and stego distortion maps. In the second order, we remain the top 18 levels of the 

occurrence number of distortion values. Therefore, the proposed feature dimensions are 

reduced to 16×18=288. 

3 Experimental result 

3.1 Experiment setup 

In this section, we evaluate the proposed 288D DLCM on several steganographic schemes 

which introduced in Section 2.1. ConnPre, EAG, DPDC, GIM and LTP would be selected 

as steganographic test schemes. ConPre and EAG search flippable pixels, whose location 

cannot influence extraction step, along object boundary to embed data. DPDC adopts 

overlapped wavelet transform to track the shifted edges to embed data. GIM uses the matrix 
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embedding method to achieve high capacity. STC encoder for minimizing additive 

distortion is adopted in LTP scheme to gain better information security. 

 

      

Figure 4: Demonstrations of different types of binary images. The types of binary images 

are (from left to right) “cartoon”, “CAD”, “texture”, “mask”, “handwriting” and “document” 

Table 1: Comparison of different features when attacking ConnPre 

Parameter setting 
𝜽𝒖 = 𝟑 

𝜃𝑜 = 1 

𝜽𝒖 = 𝟒 

𝜃𝑜 = 1 

𝜽𝒖 = 𝟓 

𝜃𝑜 = 1 

𝜽𝒖 = 𝟓 

𝜃𝑜 = 0 

𝜽𝒖 = 𝟒 

𝜃𝑜 = 0 

𝜽𝒖 = 𝟑 

𝜃𝑜 = 0 

Avg. payload 192.4 308.5 327.2 447.5 5166.6 549.2 

𝑷𝑬 

Proposed 16.73 10.14 9.10 5.80 4.74 4.40 

PHD 23.78 22.66 23.02 18.60 18.03 16.89 

RLGL 17.59 17.16 17.88 15.37 14.60 13.08 

PMMTM 21.29 15.82 14.35 9.60 7.52 6.36 

LP 20.06 12.37 11.65 7.56 6.166 4.88 

 

All the experiments are conducted on the Binary Images comprised of Various Contents 

(BIVC) database [Feng, Lu and Sun (2015)]. BIVC database contains 5000 images with 

size of 256×256. The database is consist of many kinds of images, such as cartoon, CAD 

graph, texture, mask, handwriting and document (see Fig. 4). All the experimental results 

are reported in Section 3.2 and all steganographic features are classified by SVM. It classify 

all the features based on the gaussian kernel and use grid optimization to search the best 

parameters. Every experiments adopt 5 folder cross-validation on searching best 

parameters. Then, half of the images randomly selected from database are used for training 

while the rest for testing. All the experimental performance can be evaluated using the error 

rate 𝑃𝐸, defined as 

𝑃𝐸 =
1

2
(𝑃𝐹𝐴 + 𝑃𝑀𝐷)                                                                                                                (5) 

where 𝑃𝐹𝐴  and 𝑃𝑀𝐷  denote the probabilities of false alarm and missed detection, 

respectively. 

3.2 Comparison with other approaches 

In order to better evaluate the proposed 288D DLCM performance, we compare our 

scheme with several prior arts. Some state-of-the-art steganalytic features [Chiew and 

Pieprzyk (2010); Feng (2015, 2017)] are employed for comparison. PHD utilizes pattern 

histograms from boundary pixels to model images. RLGL uses run length and gap length 
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matrices to model images and extract features from the high-order difference of images. 

PMMTM and LP can achieve better performance than two former schemes. PMMTM uses 

different types of pixel meshes and constructs Markov transition matrix as features. LP 

focuses on “L-shape” patterns, because “L-shape” patterns are always suitable to flip. For 

fair comparison, all these steganalytic features are classified by SVM through grid 

optimization to search best parameters. 

Table 2: Comparison of different features when attacking EAG 

Scheme Proposed PHD RLGL PMMTM LP 

𝑃𝐸 5.12 19.83 20.84 11.04 8.88 

 

Table 3: Comparison of different features when attacking DPDC 

Scheme Proposed PHD RLGL PMMTM LP 

𝑃𝐸 2.42 9.94 7.02 4.21 3.87 

 

Table 4: Comparison of different features when attacking LTP 

Parameter setting 

𝜽𝒄 = 𝟖𝟐 

𝜃𝑠 = 52 

𝜽𝒎 = 𝟖 

𝜽𝒄 = 𝟖𝟐 

𝜃𝑠 = 42 

𝜽𝒎 = 𝟖 

𝜽𝒄 = 𝟖𝟐 

𝜃𝑠 = 52 

𝜃𝑚 = 16 

𝜽𝒄 = 𝟖𝟐 

𝜃𝑠 = 32 

𝜃𝑚 = 8 

𝜽𝒄 = 𝟖𝟐 

𝜃𝑠 = 42 

𝜃𝑚 = 16 

𝜽𝒄 = 𝟖𝟐 

𝜃𝑠 = 32 

𝜃𝑚 = 16 

Avg. payload 218.6 354.3 437.3 499.1 708.7 998.3 

𝑷𝑬 

Proposed 28.9 19.36 15.34 12.58 8.04 5.34 

PHD 38.89 34.80 35.48 33.41 28.84 18.58 

RLGL 32.17 29.95 28.30 25.10 25.16 15.71 

PMMTM 18.15 12.20 11.62 8.94 7.24 4.24 

LP 36.76 28.21 22.28 18.94 14.04 8.06 

 

Parameters 𝜃𝑢 and 𝜃𝑜 in Tab. 1 are the block size and overlap mode (0 for non-overlapped 

and 1 for over lapped), respectively. These parameters can be used to adjust ConnPre 

payload adaptively. In Tab. 4, 𝜃𝑐, 𝜃𝑠, 𝜃𝑚 are the numbers of elements in the cover vector, 

superpixel, and message segment in LTP, respectively. 𝜃𝑟 in Tab. 5 denotes the cardinality 

of the complete set. In all tables, the best experimental results are in bold type and the 

second-best are with underline.  

The proposed 288D DLCM outperform the others on ConnPre, EAG, DPDC 

steganographic method, shown in Tabs. 1-3. Compared with other steganalytic features 

when attacking 𝜃𝑢 = 3, 𝜃𝑜 = 1 ConnPre in Tab. 1, the error rate of the proposed features 

decrease by 3.33%. Similarly, the error rate decrease by 3.76% on EAG and 1.45% on 

DPDC. These methods similarly flipped the pixels of some specific patterns which meet 

the designed flipping criterion. Therefore, the proposed feature extraction scheme can 

exactly capture flipped traces of these methods. 
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However, the proposed features do not perform well on LTP and GIM, particularly on LTP. 

Table 5: Comparison of different features when attacking GIM 

Parameter setting 𝜽𝒓 = 𝟐 𝜽𝒓 = 𝟑 𝜽𝒓 = 𝟒 𝜽𝒓 = 𝟓 𝜽𝒓 = 𝟔 𝜽𝒓 = 𝟕 

Avg. payload 259.4 389.8 520.0 650.3 780.6 910.7 

𝑷𝑬 

Proposed 15.66 11.36 7.76 5.70 4.96 4.20 

PHD 25.89 17.82 14.56 12.92 9.97 6.11 

RLGL 21.88 15.20 13.52 10.96 6.83 6.02 

PMMTM 12.96 7.94 5.57 4.40 3.95 3.71 

LP 21.96 16.09 12.04 8.94 7.60 6.33 

 

The error rate is higher than PMMTM by 10.15% when 𝜃𝑐 = 82, 𝜃𝑠 = 52, 𝜃𝑚 = 8 in Tab. 

4. It is hard for the proposed features to capture flipped traces of LTP method. Therefore, 

in the future we would improve our method to model images and aim at accurately 

detecting LTP and GIM. 

4 Conclusion 

In this paper, we propose a novel steganalytic scheme based on distortion level co-

occurrence matrix. In order to better model image features, flipping distortion measurement 

(FDM) is adopted in this paper. The FDM is the state-of-the-art technique to estimate the 

pixel flippability. The property of FDM enable us to capture embedding traces through 

constructing the co-occurrence matrix of the pixels of low distortion values and their 

neighbor pixels. The proposed steganalytic scheme outperform the others state-of-the-art 

steganalytic scheme on ConnPre, EAG and DPDC steganographic methods. However, it is 

hard for the proposed steganalytic method to accurately detect LTP and GIM. In the future, 

we would try to improve the performance on these kinds of steganalytic schemes. 
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