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Abstract: Deep Learning (DL) is such a powerful tool that we have seen tremendous 

success in areas such as Computer Vision, Speech Recognition, and Natural Language 

Processing. Since Automated Modulation Classification (AMC) is an important part in 

Cognitive Radio Networks, we try to explore its potential in solving signal modulation 

recognition problem. It cannot be overlooked that DL model is a complex model, thus 

making them prone to over-fitting. DL model requires many training data to combat with 

over-fitting, but adding high quality labels to training data manually is not always cheap 

and accessible, especially in real-time system, which may counter unprecedented data in 

dataset. Semi-supervised Learning is a way to exploit unlabeled data effectively to reduce 

over-fitting in DL. In this paper, we extend Generative Adversarial Networks (GANs) to 

the semi-supervised learning will show it is a method can be used to create a more data-

efficient classifier. 

 

Keywords: Deep Learning, automated modulation classification, semi-supervised learn-

ing, generative adversarial networks. 

1 Introduction 

Nowadays, Modulation classification is a major issue in many communications systems 

[Wu, Zapevalova, Chen et al. (2018)]. In Cognitive Radio (CR), Akyildiz [Akyildiz 

(2016)] state without an effective settled spectrum assignment policy, wireless network is 

more likely to be trapped in serious signal jamming [Jia, Liu, Gu et al. (2017); Zhao, Yu 

and Leung (2015); Zhao, Yu, Li et al. (2016); Zheng, Sangaiah and Wang (2018)]. Hence, 

people attach importance to signal detection and classification. AMC has been used for 

decades and it guarantees friendly signal can be securely transmitted and received [Ding, 

Wu, Yao et al. (2013); Ding, Wang, Wu et al. (2014); Yang, Ping and Sun (2016); Zhao, 

Yu, Sun et al. (2016)], while locating, identifying and blocking hostile signals [Zheng, 

Sangaiah and Wang (2016)]. Therefore, a smart way to classify the digital signal modula-
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tion is a problem demanding prompt solution.  

DL is an emerging field of Machine Learning (ML) method due to the contribution of 

new algorithm [Liu, Fu, He et al. (2017); Wu, Zapevalova, Chen et al. (2018); Yuan, Li, 

Wu et al. (2017)], mass data and well-performed hardware [Shi, Zheng, Zhou et al. 

(2017)]. Compared to traditional ML, Sutskever [Sutskever (2012)] proves DL can ex-

tract feature itself to adjust its parameter get a better end to end performance. Nowadays, 

DL has been applied into various areas, such as IoT [Zhang, Kou and Zhang (2017)], 

fractal generation [Liu, Pan and Fu (2017)]. The automatic feature extraction mechanism 

will greatly free people from the complex feature engineering. When it comes to DL clas-

sification, mass high-quality labeled training data is expected to push the decision bound-

aries toward the right direction [Li (2015); Yang, Ping and Sun (2016)]. Unfortunately, 

mass high-quality labeled training data is so expensive that we could not obtain it every 

time. Like in radar system, it is common to counter an unprecedented unlabeled data. The 

unlabeled data will be abandoned in supervised learning, but will not be wasted in semi-

supervised learning. 

Semi-supervised Learning is a technique in which both labeled and unlabeled data are 

used to train a classifier. The goal of this classifier is to combine a few labeled data and a 

much larger amount of unlabeled data to learn a decision function, which is able to get 

desirable outcome. In this paper, we will make full use of semi-supervised learning in 

digital signal modulation classification based on GANs. 

The rest of this paper will be presented as follow: Section II offers a brief introduction to 

how to obtain the dataset in this paper. Section III provides an overview of semi-

supervised ACGANs architecture. Section IV gives an intuitive understanding of how 

Generative Images Quality influence the usage of unlabeled data and Section V will give 

illustration to the trick we used in semi-supervised GANs and the result about perfor-

mance comparison between semi-supervised GANs and baseline result. Section VI states 

the future work. 

2 Contour stella image dataset 

2.1 Constellation diagram 

Nowadays, DL model mainly accepts three data format: Images, Sequence, and Text. We 

choose Images to be our data format and Constellation Diagram to present the statistic 

information of digital signal modulation. That means our dataset consists of images.  

Constellation Diagram is a complex plane. By using the amplitude information from In-

phase channel and Quadrature channel, Constellation Diagram will reveal modulated sig-

nal’s amplitude and phase information. For example, QPSK can be depicted in Eq. 1 
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Where it is time node, ( )in t  is noise, cf is carrier wave’s frequency and ic  is the signal 

phase. 

Since QPSK signal has one amplitude and four different phases, so constellation diagram 

of QPSK at 4 dB will be shown as Fig. 1: 
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Figure 1: QPSK constellation diagram at SNR=4 dB 

2.2 Contour stella image 

In our last work [Tang, Tu, Zhang et al. (2018)], we utilize a trick in data preprocessing, 

which will significantly boost the performance of classifier. In Constellation Diagram, 

classifier will almost depend on the shape feature of Constellation Diagram to decide the 

type of modulated signal. We believe additional auxiliary information will help the clas-

sifier work well.  

In Constellation Diagram, one dot means a sample point in modulated signal. Different 

area in Constellation Diagram has different point density. Depending on the dot density, 

we add auxiliary information, color, into Constellation Diagram. 

 

Figure 2:  Convert QPSK constellation diagram at SNR=4 dB to contour stella image 

As is depicted in Fig. 2, firstly, we choose a window function (the red square in Fig. 2), 
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called Density Window Function, to slide on Constellation Diagram. Density Window 

Function will count how many dots in its field. After sliding on Constellation Diagram, 

we mark Relatively Dot Destiny value to different area in Constellation Diagram by us-

ing Eq. 2: 
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Where 𝑥1, 𝑦1 stands for top-left corner of Destiny Windows Function currently coordi-

nate, 𝑥2, 𝑦2 stands for bottom-right corner of Destiny Windows Function currently coor-

dinate, 𝑊0, 𝐻0 stands for Constellation Diagram top-left corner coordinate, 𝑊1, 𝐻1stands 

for bottom-right corner coordinate of Constellation Diagram, 𝜌(𝑖, 𝑗) is Relatively Point 

Destiny, and ( , )dots i j  means one sample point, whose coordinate is ( , )i j in Constella-

tion Diagram. 

Then, we will map the area’s Relatively Dot Destiny into a color bar based on its normal-

ized value, where Yellow means higher density area, Green means middle density area 

and Blue means lower density area. 

 

Figure 3: Relatively dot destiny colorbar 

We consider 8 modulation categories in this paper, including BPSK, 4ASK, QPSK, 

OQPSK, 8PSK, 16QAM, 32QAM, and 64QAM. We give the 8 modulated signals at 

SNR=4 dB mentioned above Contour Stella Image in Fig. 4: 

 

Figure 4: Contour stellar images of 8 signals at SNR=4 dB. The category of modulated 

signal in Fig. 4 from left to right is: BPSK, 4ASK, QPSK, OQPSK, 16QAM, 32QAM, 

64QAM 

In our work [Tang, Tu, Zhang et al. (2018)], we have proved this data preprocessing trick 

indeed helps classifier works well. 

In this paper, we create Contour Stella Image dataset for semi-supervised learning. The 
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dataset includes 8 categories modulated signal at 14 dB: BPSK, 4ASK, QPSK, OQPSK, 

16QAM, 32QAM, 64QAM. Each modulated signal will be distributed 10000 labeled data 

for training data and 1000 labeled data for testing data, which means there will be 80000 

labeled training dataset and 8000 labeled test dataset in total. 

3 Semi-supervised learning based on ACGANs 

Work on generating images with Generative Adversarial Networks (GANs) has shown 

promising results. GANs has two basic components: a generative net G and a discrimina-

tor D. D is trained to find out the images taken in whether it comes from G, while G is 

trained to let D make a mistake. When learning a generative model, we also consider 

solving a semi-supervised signal modulation classification task. 

When it comes to traditional GANs, the discriminator D outputs a probability that the 

image comes from the real dataset. In semi-supervised learning task, we extend D output 

to N + 1. N units correspond to image class and 1 unit corresponds to the source where 

the image comes from. 

In this paper, we choose ACGAN [Odena, Christopher and Jonathon (2016)] to finish our 

semi-supervised learning task and call it SSACGAN (Semi-Supervised ACGAN). AC-

GAN is proposed by Odena et al. [Odena, Christopher and Jonathon (2016)] and not very 

different from CGAN [Isola, Zhu and Zhou (2016)]. The generator G in ACGAN will use 

the concatenated information, corresponding class label c and noise z, as the input to gen-

erator. The discriminator D will give a prediction on the source of image and the class it 

should belongs to. In other word, a classifier is embedding in discriminator D. The objec-

tive for ACGAN is: Generator G generates specified labeled image to fool discriminator 

D, while discriminator D tries to give the correct label about the class and the source. 

ACGAN can be depicted in Fig. 5: 

Generator 
Network

Discriminator
Network

(0,1)z N Real/Fake?

Deconvolution
Layers

Convolution
Layers

Class Label
Class Label

 

Figure 5:  ACGAN model 

In semi-supervised learning, ACGANs will learn how to handle three different sources of 

training data: 

1. Real images with labels. Discriminator D will tune its parameter to tell this im-

age correct label and the source of this data is from real data. 
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2. Real images without labels. Discriminator D will only try to predict this data is

from real data, but we do not care about the class it should belong to.

3. Images from the generator. Discriminator D will learn how to classify them as

fake data, but we do not care about the class it should belong to.

The combination of these different sources of data will help the classifier in discriminator 

D to figure out which feature is useful and which feature is useless. 

From Sailmans et al. [Sailmans, Goodfellow, Zaremba et al. (2016)], the object of train-

ing phase is to minimize Eq. 3: 

sup sup

f f f

unL L L= +
    (3) 

Where: 

( , )sup ( , )~ log( (  | , ))
d x y

f

x y pL E softmax y i x y k= − =  (4) 

sup ~ ( ) ~ ( )log( ( 1 )) log(1 ( 1 ))
g d

f

un z p x c x p x cL E p y k x E p y k x= − = + − − = +  (5) 

Where  𝑝𝑐(𝑦 = 𝑘 + 1|𝑥)  is the probability of x being a fake example and 1 − 𝑝𝑓(𝑦 =

𝑘 + 1|𝑥) is the probability of x being a real example which is assigned by discriminator. 

From Eq. 3, Eq. 4 and Eq. 5, discriminator D plays a decisive role. A good discriminator 

D should handle both problem mentioned below: 

1. Push the generator to produce realistic images. Discriminator D should be smart

to tell real and fake samples.

2. Using the generator’s images, labeled and unlabeled data, discriminator D is ex-

pected to classify the dataset.

4 The effect of generative images quality on the usage of unlabeled data 

In this section, we attempt to give an intuitive understanding of how Generative Images 

Quality influence the usage of unlabeled data. From Sailmans et al. [Sailmans, Goodfel-

low, Zaremba et al. (2016)], the result of softmax(x) function can be rewritten as Eq. 6: 

exp[ ( )] ( ) ( | ),jl x c x softmax y j x j k= =    (6) 

Where 𝑐(𝑥) are some undetermined scaling function. 

For 𝑝𝑐(𝑦 = 𝑘 + 1|𝑥), we can also rewrite it as Eq. 7 :

1 cexp[ ( )] ( ) ( 1| )kl x c x p y k x+ = = +          (7) 

As has been stated in Sailmans et al. [Sailmans, Goodfellow, Zaremba et al. (2016)], 

𝑙𝑖(𝑥) does not change the output of the softmax if it subtracts a general function 𝑑(𝑥)
from each output logit: 

( ) ( ) ( ),j jl x l x d x j −           (8) 

Where 𝑑(𝑥) is a value function. 

Suppose we set the (k +1)’th logit to 0 by subtracting 𝑑(𝑥). The output of discriminator 

D is Eq. 9: 
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 From Sailmans et al. [Sailmans, Goodfellow, Zaremba et al. (2016)], the unsupervised-

learning loss for semi-supervised learning GANs, is:  

~ ( ) ~{ log ( ) log(1 ( ( )))}
d g gunsupervised x p x x pL E D x E D G z= − + −      (10) 

Where 𝐺(𝑧) is the output of generator G, 𝐷(𝐺(𝑧)) is the output of the prediction from 

discrimination  D. 

Combined with Eq. 9, Eq. 5 can be rewritten as followed: 
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Taking Eq. 11 derivative with respect to discriminator D parameter 𝜃, we will get the 

gradient for updating discriminator D: 

~

1

~

1

( | ) ( )

( | ) ( 1| ) ( )

g g

d

k

x p c g i g

i

k

x p c i

i

E p y i x l x

E softmax y i x p y k x l x

=

=

=  −

= = + 




 (12) 

Where 𝑝𝑐(𝑦 = 𝑖|𝑥𝑔) is equal to Eq. (9) and 𝑝𝑐(𝑦 = 𝑘 + 1|𝑥) is equal to 1 − D(x).

Minimizing 𝐿𝑢𝑛𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑒𝑑 will tune the parameters 𝜃 to decrease 𝑙𝑖(𝑥𝑔) and increase 𝑙𝑖(𝑥).

4.1 Bad image quality 

In this case, generator G produces such rubbish images that discriminator D can easily 

find out the source where the images comes from. In that way, 𝑝𝑐(𝑦 = 𝑘 + 1|𝑥) ≈ 0 .

𝑝𝑐(𝑦 = 𝑘 + 1|𝑥𝑔) is close to 1, which will lead 𝑝𝑐(𝑦 = 𝑖|𝑥𝑔) is almost equal to 0. Eq. 12

is almost equal to 0, which will prevent model from exploiting unlabeled data. 

4.2 Good image quality 

In this case, 𝑝(𝑥𝑔) is very close to 𝑝(𝑥), this will make 𝑝𝑐(𝑦 = 𝑘 + 1|𝑥𝑔) be close to 0.5,

since discriminator D will randomly predict 𝑥𝑔 source. Therefore, three data source will

become almost two source at this time, Real images without labels has no difference to 

Images from the generator. The model will be more likely to over-fitting around the un-

labeled examples, which will hurt the test performance. 
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4.3 Moderated image quality 

In this case, the distance between x and 𝑥𝑔 is sufficiently far apart. The model can exploit

three data source to make a smooth decision function. What is more, 𝑝𝑐(𝑦 = 𝑘 + 1|𝑥)
will be less when it compares to Good Image Quality case. This will increase 𝑝𝑐(𝑦 = 𝑘 +
1|𝑥𝑔) while decrease 𝑝𝑐(𝑦 = 𝑖|𝑥𝑔, 𝑦 ≠ 𝑘 + 1) to model learn more lesson from super-

vised-learning part, which will boost test performance somehow. 

5 Experimental results 

To achieve a better classification result, we also apply some tricks in this model to im-

prove discriminator D performance: 

1. Feature Matching. Feature Matching is a GANs training technique propose by Ian

Goodfollow et al. [Sailmans, Goodfellow, Zaremba et al. (2016)]. The concept of

Feature Matching can be depicted as Eq. 13:

train generatef f−
          (13) 

Where 𝑓𝑡𝑟𝑎𝑖𝑛 is the average value of features on the training data, 𝑓𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 is the average

value of features on the generated samples. 

We extract the intermediate feature in discriminator D and tell generator to minimize the 

distance. As has been mentioned in Sailmans et al. [Sailmans, Goodfellow, Zaremba 

et al. (2016)], feature matching will make model generate blurry and distorted sam-

ples, which is close to “Moderated Image Quality” mentioned above. 

2. Adjusting Dropout Hyper Parameter. In semi-supervised learning, due to the limited

label in training dataset, the classifier is prone to over-fitting. So we adjust dropout

hyper parameter to combat with over-fitting.

3. Using LogSumExp (LSE) Function to avoid numerical problems. LSE can be related

to Eq. 14:

1 2

1

( , ,..., ) log( )
n

n i

i

LSE x x x x
=

=         (14) 

This trick will alleviate numerical problems when facing very extreme numerical. 

4. Minibatch Discrimination. This method is proposed by Sailmans et al. [Sailmans,

Goodfellow, Zaremba et al. (2016)] will greatly avoid model collapse in GANs so

that we could get better generated images. We introduce this trick to obtain Good

Image Quality mentioned above to conduct comparison experiment.

In semi-supervised leaning experiment, one key metric of interest is the number of la-

beled data, we will use tiny portion of labeled data. For those we want to treat as unla-

beled data, we will ignore its supervised loss. 

We select ACGAN’s ImageNet hyper parameter announced in Odena et al. [Odena, Olah 

and Shlens (2016)], modify the dropout portability to 0.3, and change generator G loss 

function according to trick 1. Baseline result play the role as an isolated classifier on re-

stricted training sets. To train the baseline, we train ACGAN without updating generator 

G [Odena (2016)]. The classification accuracy comparison between baseline and semi-
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supervised learning ACGAN is related to how much we shrink the training set, 

In this experiment, we shrink dataset to 500, 1000, 2000, and 5000 labeled data for per 

modulation category signal. That means we have 4000 labeled data, 8000 labeled data, 

16000 labeled, 40000 labeled data for the overall dataset. For baseline result, we just train 

ACGAN discriminator D without updating generator G. After conducting semi-

supervised learning based on ACGAN which has been applied Minibatch Discrimination 

(SSACGAN-MD) or Feature Matching (SSACGAN-FM) in model, we got the compari-

son result: 

Table 1: Classification average accuracy between different method 

Labeled Data Baseline (%) SSACGAN-MD (%) SSACGAN-FM (%) 

4000 64.89 66.12 70.12 

8000 72.86 72.99 75.36 

16000 88.45 87.31 88.42 

40000 97.32 93.44 95.64 

From Tab. 1, some conclusions can be drawn. (1) The amount of dataset plays an im-

portant in DL classification task. (2) More labeled data will improve classifier accuracy. 

(3) SSACGAN outperforms CNN which shares the same classifier architecture in tiny 

labeled dataset. In tiny labeled dataset, there exists three data source for SSGAN classifi-

er’s training. In larger labeled dataset, the unavoidable noise in generated images will 

prevent SSGAN classifier to learn the correct feature. (4) Semi-Supervised Learning 

GANs will perform better when it produce “Moderated Image Quality”. 

In this experiment, we also give the generated image of 40000 labeled situation after gen-

erator G loss converge. Generated image is depicted in Figs. 6 (a), 6(b):  

Figure 6: (a) Generated contour stella image dataset from SSACGAN-FM at 4 dB; (b) 

Generated contour stella image dataset from SSACGAN-MD at 4 dB 

Seen from Figs. 6 (a), 6(b), due to the control of label, every row has the same modula-

tion category signal. Compare to Generated Contour Stella Image dataset from 
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SSACGAN-FM the quality of generated images is not very good, feature-matching loss 

is responsible for this [Sailmans, Goodfellow, Zaremba et al. (2016)].  

5 Conclusion and future work 

In this paper, we discuss about how to implement semi-supervised learning with GANs. 

GANs obtains good classification accuracy for it exploits three data source. A good semi-

supervised learning GANs result actually requires a “bad” generator G. The classify re-

sult deserves our utter attention, though we do not get “Good Image Quality”. What’s 

more, in tiny labeled dataset, we prefer to use semi-supervised learning, while we choose 

to use supervised learning in larger labeled dataset. 

There are many factors still need improvement. We will explore the possible situation 

that the quality of the generated images and classification accuracy can be both improved. 

Secondly, the SNR of dataset is not low SNR, we will explore its performance in low 

SNR situation. Thirdly, this dataset is made up of simple feature images, we believe this 

model can work better with deeper networks. Last, we will explore more GANs’ training 

tricks mentioned in in future model. 
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