

Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

CMC. doi:10.3970/cmc.2018.01839 www.techscience.com/cmc

An Optimized Labeling Scheme for Reachability Queries

Xian Tang1, *, Ziyang Chen2, Haiyan Zhang3, Xiang Liu1, Yunyu Shi1 and Asad

Shahzadi4

Abstract: Answering reachability queries is one of the fundamental graph operations.

Existing approaches either accelerate index construction by constructing an index that

covers only partial reachability relationship, which may result in performing cost traversing

operation when answering a query; or accelerate query answering by constructing an index

covering the complete reachability relationship, which may be inefficient due to comparing

the complete node labels. We propose a novel labeling scheme, which covers the complete

reachability relationship, to accelerate reachability queries processing. The idea is to

decompose the given directed acyclic graph (DAG) G into two subgraphs, G1 and G2. For

G1, we propose to use topological labels consisting of two integers to answer all

reachability queries. For G2, we construct 2-hop labels as existing methods do to answer

queries that cannot be answered by topological labels. The benefits of our method lie in

two aspects. On one hand, our method does not need to perform the cost traversing

operation when answering queries. On the other hand, our method can quickly answer most

queries in constant time without comparing the whole node labels. We confirm the

efficiency of our approaches by extensive experimental studies using 20 real datasets.

Keywords: DAG, computing, detection, reachability queries processing.

1 Introduction

A reachability query u?→v asks, in a directed graph G, whether there exists a path from u

to v. Answering reachability queries is one of the fundamental graph operations, which has

been extensively studied in the past decades [Agrawal, Borgida and Jagadish (1989); Chen,

Gupta and Kurul (2005); Chen and Chen (2008); Chen and Chen (2011); Cheng, Huang,

Wu et al. (2013); Cheng, Yu, Lin et al. (2006); Cheng, Yu, Lin et al. (2008); Cohen,

Halperin, Kaplan et al. (2002); Jagadish (1990); Jin, Ruan, Dey et al. (2012); Jin, Ruan,

Xiang et al. (2011); Jin and Wang (2013); Jin, Xiang, Ruan et al. (2009); Jin, Xiang, Ruan

et al. (2008); Seufert, Anand, Bedathur et al. (2013); Su, Zhu, Wei et al. (2017); Trißl and

Leser (2007); van Schaik and de Moor (2011); Veloso, Cerf, Junior et al. (2014); Wang,

1 School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai

201600, China.

2 Lixin University of Accounting and Finance, Shanghai 201620, China.

3 Yanshan University, Qinhuangdao 066004, China.

4 NCBAE, Lahore 54660, Pakistani.

* Corresponding author: Xian Tang. Email: txianz@163.com.

mailto:txianz@163.com

268 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

He, Yang et al. (2006); Wei, Yu, Lu et al. (2014); Yano, Akiba, Iwata et al. (2013); Yildirim,

Chaoji and Zaki (2010); Yildirim, Chaoji and Zaki (2012); Yu and Cheng (2010); Zhang,

Yu, Qin et al. (2012); Zhu, Lin, Wang et al. (2014); Li and Li (2010)]. Its applications

include, but not limited to, Semantic Web (RDF), online social networks, biological

networks, ontology, transportation networks, etc. For reachability queries processing, there

are three interrelated issues: Index size, index construction time, and query time. Given a

reachability query u?→v, the two extremes of answering it are: (1) traversing from u to v

to find the final answer without building index in-advance, and (2) maintaining the whole

transitive closure (TC) to check whether u can reach v. On one hand, the traversing

approaches do not need to build index offline, however, it needs to visit all nodes that u

can reach in the worst case by performing expensive depth-first-search (DFS) or breadth-

first-search (BFS) operation to answer the given query. On the other hand, computing the

TC makes it difficult to be scaled to large graphs, due to unacceptable index size and

indexing time. Considering this problem, all existing approaches made trade-off among

index construction, index size and query performance, where index construction is a one-

time activity. Due to its importance and the emergence of large graphs in big data era [Wu,

Zapevalova, Chen et al. (2018)], faster answering reachability queries online is still a

challenging task, supposing that the index can be constructed offline with reasonable time

and size.

We follow [Wei, Yu, Lu et al. (2014)] and classify existing methods into two categories

according to the coverage of index on reachability information: Label-Only [Agrawal,

Borgida and Jagadish (1989); Chen and Chen (2008); Cheng, Huang, Wu et al. (2013);

Cohen, Halperin, Kaplan et al. (2002); Jagadish (1990); Jin and Wang (2013); Jin, Xiang,

Ruan et al. (2009); Jin, Xiang, Ruan et al. (2008); van Schaik and de Moor (2011); Wang,

He, Yang et al. (2006); Yano, Akiba, Iwata et al. (2013); Zhu, Lin, Wang et al. (2014)] and

Label+G [Chen, Gupta and Kurul (2005); Jin, Ruan, Dey et al. (2012); Jin and Wang

(2013); Seufert, Anand, Bedathur et al. (2013); Trißl and Leser (2007); Veloso, Cerf, Junior

et al. (2014); Wei, Yu, Lu et al. (2014; Yano, Akiba, Iwata et al. (2013); Yildirim, Chaoji

and Zaki (2010); Yildirim, Chaoji and Zaki (2012)]. Here, we say an algorithm belongs to

Label-Only, it means that the index conveys the complete reachability information, and any

given query u?→v can be answered by comparing labels of u and v. When we say that an

algorithm belongs to Label+G, it means that the index covers partial reachability

information, thus we may need to perform DFS/BFS from u to check whether u can reach

v, if we cannot get the result by comparing labels of u and v. Most existing Label+G

approaches possess the benefits of bounded index size and index construction time in

theory. However, they all suffer from the same performance bottleneck, i.e. traversing from

u to v to find the answer. As a comparison, among existing Label-Only approaches, recent

variants of 2-hop labels, such as PLL [Yano, Akiba, Iwata et al. (2013)], DL [Jin and Wang

(2013)], TF [Cheng, Huang, Wu et al. (2013)] and TOL [Zhu, Lin, Wang et al. (2014)],

does not suffer from the expensive DFS/BFS operation on the underlying graph. Moreover,

the index can be constructed efficiently with reasonable size, which makes these

approaches can scale to large graphs. However, they could be inefficient when answering

unreachable queries due to the higher cost of set intersection operation on node labels to

get the result.

To overcome the shorting comings of existing approaches, we propose a novel Label-Only

An Optimized Labeling Scheme for Reachability Queries 269

labeling scheme, namely T2H, based on which reachability queries can be answered more

efficiently than current ones. Given a DAG G, the basic idea is finding from G a set of

“block nodes”, such that after removing these block nodes from G, we get a reduced graph

G1, and the reachability relationship between any pair of nodes in G1 can be answered in

constant time with linear index size. Then, for reachability relationship conveyed by block

nodes, we construct block nodes based 2-hop labels to reduce the 2-hop index size. The

benefits of our labeling scheme lie in the following aspects: (1) compared with existing

Label+G approaches, our method does not need to perform costly DFS/BFS operation, and

can be much more efficient than existing ones when answering reachable queries, (2)

compared with existing Label-Only approaches, our method significantly reduces the cost

of set intersection operation on node labels to get final results. We conduct rich experiment

on real datasets to show that our approach can answer both positive and negative queries

very efficiently, and can scale to large graphs.

2 Background and related work

We follow the tradition of existing approaches and assume that the input graph is a DAG

G=(V, E), which can be constructed from the given directed graph G in linear time w.r.t.

the size of G [Tarjan (1972)] by coalescing each SCC of G into a node in G, where each

node v∈V represents an SCC Sv of G, and each edge (u, v)∈E represents the edge from SCC

Su to Sv if there is an edge from a node in Su to a node in Sv. Similar as Zhou et [Zhou, Zhou,

Yu et al. (2017)], we use inG(u)={v|(u, v)∈E} to denote the al. set of in-neighbors nodes of

u in G, and outG(u)={v|(u, v)∈E} the set of out-neighbors nodes of u. We use 𝑖𝑛𝐺
∗ (u) to

denote the set of nodes in G that can reach u where u ∉ 𝑖𝑛𝐺
∗ (u), and 𝑜𝑢𝑡𝐺

∗ (u) the set of nodes

in G that u can reach where u ∉ 𝑜𝑢𝑡𝐺
∗ (u). We use X={1, 2, …, |𝑉|} to denote a topological

order (topo-order) of G, which can be got by performing a topological sorting on G in linear

time O(|V |+|E|) [Simon (1988)]. A topological sorting of G is a mapping tX: V→X, such

that ∀(𝑢, 𝑣) ∈E, we have 𝑡𝑢
𝑋<𝑡𝑣

𝑋, where 𝑡𝑢
𝑋(𝑡𝑣

𝑋) is the topo-order of u(v) w.r.t. X.

We discuss existing algorithms from two categories: (1) Label-Only and (2) Label+G. By

Label-Only, a given query u?→v can be answered by comparing labels of u and v. By

Label+G, this query can be answered by DFS/BFS at run-time, when it cannot be answered

by labels of u and v. We use u→v (u ↛ v) to denote that u can (cannot) reach v.

The Label-Only methods [Agrawal, Borgida and Jagadish (1989); Cheng, Huang, Wu et al.

(2013); Jin, Ruan, Xiang et al. (2011); Jin and Wang (2013); Jin, Xiang, Ruan et al. (2009);

Jin, Xiang, Ruan et al. (2008); van Schaik and de Moor (2011); Yano, Akiba, Iwata et al.

(2013); Zhu, Lin, Wang et al. (2014)] focus on compressing TC to get a smaller index size

for fast query processing. The recent work includes variants of 2-hop labeling scheme, such

as TF [Cheng, Huang, Wu et al. (2013)], DL [Jin and Wang (2013)], PLL [Yano, Akiba,

Iwata et al. (2013)] and TOL [Zhu, Lin, Wang et al. (2014)]. The idea is to assign each

node u a label Lu={Lout(u), Lin(u)}, where Lout(u)(Lin(u)) is called the out (in) label of u

consisting of a set of nodes that u can reach (be reached). Based on this labeling scheme,

u?→v can be answered by testing whether the result of Lout(u)∩Lin(v) is empty or not. If

Lout(u)∩Lin(v)≠ ∅, then u→v, otherwise u↛v. To compute node labels, TF [Cheng, Huang,

Wu et al. (2013)] folds the given DAG recursively based on topological level to reduce the

cost of 2-hop computation. DL [Jin and Wang (2013)], PLL [Yano, Akiba, Iwata et al.

270 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

(2013)] and TOL [Zhu, Lin, Wang et al. (2014)] share the similar idea of computing 2-hop

labels. Given all nodes in a certain order, the construction of DL and PLL labels is

enumerating each node with a forward BFS and a backward BFS to add u to labels of nodes

that u can reach and nodes that can reach u. During each BFS, an early stop condition is

adopted to accelerate the computation and reduce the index size.

The Label+G methods [Seufert, Anand, Bedathur et al. (2013); Trißl and Leser (2007);

Veloso, Cerf, Junior et al. (2014); Wei, Yu, Lu et al. (2014); Yildirim, Chaoji and Zaki

(2010); Yildirim, Chaoji and Zaki (2012)] answer u?→v by performing DFS from u at run-

time if needed. The recent work includes GRAIL [Yildirim, Chaoji and Zaki (2010);

Yildirim, Chaoji and Zaki (2012)], FERRARI [Seufert, Anand, Bedathur et al. (2013)],

FELINE [Veloso, Cerf, Junior et al. (2014)] and IP+ [Wei, Yu, Lu et al. (2014)]. All these

methods focus on efficient pruning techniques to answer most unreachable queries. They

also use additional pruning strategies to make optimization on both positive and negative

queries, such as comparing topological levels [Seufert, Anand, Bedathur et al. (2013);

Veloso, Cerf, Junior et al. (2014); Wei, Yu, Lu et al. (2014); Yildirim, Chaoji and Zaki

(2010); Yildirim, Chaoji and Zaki (2012)], comparing topological orders [Seufert, Anand,

Bedathur et al. (2013)], and comparing intervals of u and v over a spanning tree [Veloso,

Cerf, Junior et al. (2014)].

Apart from the above methods that work on a large DAG G, there are studies focusing on

reducing G to a smaller DAG to accelerate reachability query processing, including

SCARAB Framework [Jin, Ruan, Dey et al. (2012)] and equivalence reduction [Fan, Li,

Wang et al. (2012); Zhou, Zhou, Yu et al. (2017)], which are orthogonal to the above

approaches and can be combined with the above approaches to accelerate answering

reachability queries.

3 Query processing

3.1 The T2H labeling scheme

Given a topo-order X of a DAG G, it is obvious that if u→v, then we must have 𝑡𝑢
𝑋<𝑡𝑣

𝑋, but

the other side does not always hold, i.e. when 𝑡𝑢
𝑋 <𝑡𝑣

𝑋 , we cannot conclude that u→v.

However, if for every unreachable query u↛v, we have that 𝑡𝑢
𝑋>𝑡𝑣

𝑋, then when 𝑡𝑢
𝑋<𝑡𝑣

𝑋, we

can safely say that u→v. Therefore, the key problem is how to know that we can correctly

identify all unreachable queries using topo-orders.

Given two nodes u and v, there are at most two queries, i.e. u?→v and v?→u. Therefore, it

is not possible to correctly check the unreachable relationship using one topo-orders, e.g.

consider v2 and v3 in G of Fig. 1(a), since 𝑡𝑣3
𝑋 =3>2=𝑡𝑣2

𝑋 , we know that v3↛v2. But, for query

v2?→v3, we cannot get the results by comparing their topo-orders. The natural idea is using

one more topo-order to check the unreachable relationship on the other direction. Here, we

use reversed topo-order to check unreachable queries.

Definition 1. (Free Node) During a topological sorting, a node u is called a free node, if

u has not been visited, but all of u’s in-neighbors have been visited.

For example, for G in Fig. 1(a), the free node is v1 before processing, and after processing

v1, the free nodes are v2, v3 and v5.

Definition 2. (Reversed Topo-Order) Given two topo-orders X and Y, we say X(Y) is the

An Optimized Labeling Scheme for Reachability Queries 271

reversed topo-order of Y (X), if Y (X) is computed in the way that the topological sorting

will always first visit and assign the topo-order in Y (X) to the free node with the maximal

topo-order in X(Y).

Given the uniqueness of a topo-order, its reversed topo-order is also unique. For example,

given the circled topo-order X of all nodes in G of Fig. 1(a), we can get the reversed topo-

order Y according to Definition 2, as shown by the italic integer beside each node.

Obviously, we know that v3↛v2 because 𝑡𝑣3
𝑋 =3>2=𝑡𝑣2

𝑋 , and v2↛v3 because 𝑡𝑣2
𝑋 =7>4=𝑡𝑣3

𝑋 .

1

32

7

11

9

10

5

4
6

8

1

32

7

11

9

10

5

4

8

1

2

7

11

5

6

8

1

2

3

4

5

67

89

10

6

6

6

6

6

6

6

1

2

3

4

5

6

7

8

9

1011

Figure 1: Illustration of the new labeling scheme, where (a) is a DAG with nodes denoted

by their topo-orders, the italic integer beside each node is its reversed topo-order, (b) is the

trivial subgraph G1 of G, the italic integer beside each node is its reversed topo-order, and

(c) is the link graph G2 of G consisting of all nodes that can reach (be reached by) these

block nodes

Even though we can identify more unreachable queries using multiple topo-orders, there

exists some problematic DAGs for which a limited number of topo-orders will always

produce false positive answers [Kornaropoulos and Tollis (2011); Veloso, Cerf, Junior et

al. (2014)], i.e. even if 𝑡𝑢
𝑋<𝑡𝑣

𝑋, we cannot tell that u can reach v. For example, for G in Fig.

1(a), even though 𝑡𝑣3
𝑋 =3<6=𝑡𝑣6

𝑋 and 𝑡𝑣3
𝑋 =4<8=𝑡𝑣6

𝑋 , we know that v3↛v6 according to G. In

fact, minimizing the number of false-positives is known to be NP-hard [Kornaropoulos and

Tollis (2011); Veloso, Cerf, Junior et al. (2014)]. Moreover, using more topo-orders may

result in unacceptable space and time cost to index construction and query processing.

Definition 3. (Trivial Graph) Given a DAG G and one of its topo-order X. We say G is a

trivial graph w.r.t. X, if every unreachable query on G can be identified by X and its

reversed topo-order Y.

For example, G1 in Fig. 1(b) is a trivial graph. Interested readers can easily verify that for

every unreachable query, we can always return FALSE based on the two reversed topo-

orders shown in G1.

Definition 4. (Block Node Set) Given a DAG G, let S be a set of nodes in G. If G is a trivial

graph after removing all nodes of S, then we call S a block node set of G and each node of

S a block node.

For example, for G in Fig. 1(a), v6 is a block node, and S={v6} is a block node set of G.

After removing v6 from G, we get the trivial graph G1 in Fig. 1(b).

272 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

Based on two above definitions, we propose to find from the given DAG G a trivial graph

G1 by removing from G a set of “block nodes”. The basic idea is that given a trivial graph

G1, we can identify all unreachable queries based on two reversed topo-orders. Then, for

the reachability relationship between nodes in G that cannot be covered by the two topo-

orders, we construct 2-hop labels from these block nodes. For example, for G in Fig. 1(a),

we generate the trivial graph G1 in Fig. 1(b) by removing the unique block node v6. To

answer reachability queries, we assign each node in G1 two topo-orders shown in Fig. 1(b).

Then, we performing forward and backward DFS/BFS from v6 to construct 2-hop labels.

Combining the two aspects together, we have the T2H (short for topo-order and 2-hop)

label for each node, which we call as the T2H labeling scheme. Hereafter, we use tv to

denote both 𝑡𝑣
𝑋 and 𝑡𝑣

𝑌.We call it as v’s topo-label, and tu<tv means that 𝑡𝑢
𝑋<𝑡𝑣

𝑋 ∧ 𝑡𝑢
𝑌<𝑡𝑣

𝑌.We

further use Lv={Lout(v), Lin(v)} to denote v’s block nodes based 2-hop labels.

3.2 Query algorithm

Before discussing the query algorithm, lets first introduce the following results.

Theorem 1. Given a trivial graph G1, we can answer all queries between nodes in G1 using

two reversed topo-orders.

Proof. First, we can answer all unreachable queries using two reversed topo-orders

according to Definition 3. Assume that there exists a reachable query u→v that we cannot

correctly answer, it means that we have tu≮tv. Then, we know that u↛v, which contradicts

the assumption. Therefore, we can answer all queries using two reversed topo-orders.

Definition 5. Given a DAG G and the set of block nodes S, we call the graph consists of

all nodes that can reach and be reached by every block node the link graph w.r.t. S.

For example, for G in Fig. 1(a), v6 is its unique block node, and the link graph is shown as

G2 in Fig. 1(c). We have the following result.

Corollary 1. Given a DAG G=(V, E), its trivial graph G1=(V1, E1) and link graph G2=(V2,

E2), we have that V=V1∪V2 and E=E1∪E2.

Theorem 2. All queries can be correctly answered based on T2H labels.

Proof. First, according to Theorem 1, we can answer all reachable queries between nodes in

G1. Second, the remaining queries over G can be either reachable through block nodes, or

unreachable. Thus, by comparing block nodes based 2-hop labels, we can correctly answer

the remaining reachable queries, and all other queries are definitely unreachable ones.

Based on Theorems 1 and 2, we have Algorithm 1, which first check whether u can reach v

using topo-labels in lines 1-2, then check whether u can reach v using block nodes based 2-

hop labels in lines 2-3. And return FALSE in line 5 to denote that u cannot reach v.

An Optimized Labeling Scheme for Reachability Queries 273

Example 1. Consider G in Fig. 1(a). The T2H labels are shown in Figs. 1(b) and 1(c). For

query v3?→v8, Algorithm 1 can return TRUE in line 2 denoting v3→v8 due to that 𝑡𝑣3
<𝑡𝑣8

 .

For query v2?→v8, Algorithm 1 will return TRUE in line 4 denoting v2→v8. For query

v3?→v6, Algorithm 1 will return FALSE in line 5 denoting v3↛v6, due to that v6 is a block

node and Lout(v3)∩Lin(v6)=∅.

Obviously, if the given query can be answered in line 2, then the time complexity is O(1),

otherwise, the time complexity is O (L), where L is maximal length of block nodes based

2-hop labels.

Further, as block nodes based 2-hop labels capture all reachable relationships between

nodes linked by them, we have the second algorithm to answer a given query, as shown by

Algorithm 2. The correctness is based on Theorems 1 and 2. The difference between the

two algorithms lies in whether we first compare topo-labels. And the time complexity of

Algorithm 2 is O (L).

In essence, either algorithm can work better than the other in different scenario. If most

reachable queries cannot be answered by comparing topo-labels, then Algorithm 2 could

be more efficient, otherwise Algorithm 1 could be better.

3.3 Optimization

Both Algorithms 1 and 2 involve two operations when answering reachability queries, i.e.

comparing topo-labels and comparing block nodes based 2-hop labels. As the cost of

comparing topo-labels is O (1), which is better than that of comparing 2-hop labels with

cost O (L), if most reachable queries can be answered by comparing topo-labels, then

Algorithm 1 is the better choice. Unfortunately, this is not true in practice, especially for

randomly generated workload, where most queries are unreachable ones. The optimization

in this section is to extend the topo-labels, such that it can be used in Algorithm 1 to test

not only reachable queries, but also unreachable queries. The idea is to assign G one more

topo-order Z, which is the reversed topo-order of X.

274 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

In summary, in the optimized algorithm, there are three topo-orders X, Y, Z, where X and

Y are mutually reversed to each other w.r.t. the trivial graph G1, while X and Z are mutually

reversed to each other w.r.t. the input graph G. Since the given reachability queries are

answered according to G, and an unreachable query on G1 could be reachable on G, thus X

and Y cannot be used to find unreachable queries before comparing block nodes based 2-

hop labels. Fortunately, we can use X and Z to find unreachable queries, which are defined

on G. In this way, we can answer more queries in constant time. Based on the above

discussion, we have the optimized algorithm with the same time complexity as Algorithm

1, as shown below.

4 Index construction

We first discuss how to generate the block nodes based 2-hop labels. Given a set of block

nodes, we perform forward (backward) BFS from each block node to add it to the in (out)

label of the set of nodes that it can reach (be reached by). This is similar to existing 2-hop

approaches [Jin and Wang (2013); Yano, Akiba, Iwata et al. (2013); Zhu, Lin, Wang et al.

(2014)]. The difference is that the number of nodes from which we perform BFS is reduced.

We then discuss how to generate topo-labels and block nodes. Given G, we perform the

first topological sorting on G to generate topo-order X. This can be done by performing the

following steps: (1) push all free nodes into a stack S, (2) pop a node u from S, assign u its

topo-order 𝑡𝑢
𝑋, and push all of u’s out-neighbors which are new free nodes into S, and (3)

repeat the above two steps until S is empty. For example, every node u in Fig. 1(a) is

denoted by its topo-order 𝑡𝑢
𝑋.

Given X, we discuss how to generate Z. Similar as generating X, we generate Z by the

following steps: (1) push all free nodes into a stack S in ascending order w.r.t. X, such that

they are popped out from S in descending order, (2) pop a node u from S, assign u its topo-

order 𝑡𝑢
𝑍, and push all of u’s out-neighbors which are new free nodes into S in ascending

order w.r.t. X, and (3) repeat the above two steps until S is empty, e.g. the reversed topo-order

𝑡𝑢
𝑍 for each node u in Fig. 1(a) is denoted by the italic integers beside u.

Finally, we discuss how to find block nodes and generate the reversed topo-order Y w.r.t.

the trivial graph G1. Here, we do not need to first find block nodes to actually generate the

trivial graph G1. Instead, we do both when computing the reversed topo-order Y.

Definition 6. (Candidate Free Node (CFN)) When performing topological sorting to

compute Y according to X, we say a node v is a candidate free node (CFN), if v it is not a

free node and at least one of its in-neighbors u has been assigned a topo-order 𝑡𝑢
𝑌.

An Optimized Labeling Scheme for Reachability Queries 275

For example, when computing Y based on X for G in Fig. 1(a), after visiting v1, we know

that v2, v3 and v5 are new free nodes. They are pushed into stack S in their X topo-order.

Thus the next processed node is v5. After processing v5, v6 is a CFN according to Definition

6. Now, we can formally give out the definition of block node, as show below.

Definition 7. (Block Node (BN)) When computing Y according to X, let w be the largest

unprocessed in-neighbor of v w.r.t. X, and u the currently being processed free node, we

say node v is a block node (BN), if v it is a CFN and 𝑡𝑤
𝑋<𝑡𝑢

𝑋.

Intuitively, for currently being processed node u, when we say that v is a block node, it

means that u cannot reach v, and if we assign u its 𝑡𝑢
𝑌, then we have that 𝑡𝑢

𝑋<𝑡𝑣
𝑋 ∧<𝑡𝑣

𝑌,

and based on which we cannot say that u→v holds. That is, v prevents us from checking all

reachability relationship by two topo-orders. Therefore, to avoid the costly traversing

operation when answering reachability queries, while at the same time reduce the cost of

set intersection operation of existing 2-hop approaches, we computes 2-hop labels on BN

only, and for other nodes, we use topo-labels to check the reachability relationship.

Now, we are ready to give out the index construction algorithm, the idea is to compute Y

according X, during which we perform forward and backward BFS to compute 2-hop labels

from each block node, as shown by Algorithm 4.

The time cost of getting topo-label can be done in O(|V|+|E|). The cost of computing 2-hop

labels is O(nb ×|V|+|E|)., where nb is the number of block nodes. Therefore, the time

complexity of the index construction algorithm is O(nb ×|V|+|E|).

5 Experiment

In our experiment, we make comparison with both existing Label-Only and Label+G

algorithms, the Label-Only algorithms include TF [Cheng, Huang, Wu et al. (2013)], PLL

[Yano, Akiba, Iwata et al. (2013)] and our algorithms. The Label+G algorithms include

GRAIL [Yildirim, Chaoji and Zaki (2010); Yildirim, Chaoji and Zaki (2012)] (abbreviated

as GRL), FELINE [Veloso, Cerf, Junior et al. (2014)] (abbreviated as FL) and IP+ [Wei, Yu,

Lu et al. (2014)]. The source codes of these existing algorithm are kindly provided by the

authors. We set k=5 for GRL and IP+ on all datasets. For IP+, we set h=5 and 𝜇=100. We

implemented our algorithms using C++ and all source codes are compiled by G++6.2.0.

276 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

All experiments were run on a PC with Intel(R) Xeon(R) CPU E7-4809 v3 2.00 GHz CPU,

32 GB memory, and Ubuntu 16.10 Linux OS. For algorithms that run more than 24 h or

exceed the memory limit (32 GB), we will show their results as “-” in the tables.

Table 1: Statistics of real datasets, where d is the average degree, 𝑜𝑢𝑡𝐺
∗ (∙) is the average

number of reachable nodes for nodes of G, t is the number of topological levels, nb is the

ratio of the number of block nodes over |V |

Dataset |V | |E| d 𝑜𝑢𝑡𝐺
∗ (∙) t nb (%)

amaze 3,710 3,600 0.97 639 16 2.91

vchocyc 9,491 10,143 1.07 14 21 2.62

kegg 3,617 3,908 1.08 729 26 3.73

xmark 6,080 7,025 1.16 57 38 2.66

nasa 5,605 6,537 1.17 19 35 9.26

go 6,793 13,361 1.97 11 16 60.19

citeseer 10,720 44,258 4.13 27 36 39.00

pubmed 9,000 40,028 4.45 31 19 41.78

yago 6,642 42,392 6.38 10 13 9.47

arxiv 6,000 66,707 11.12 821 167 66.38

unip150m 25,037,600 25,037,598 1.00 1 10 0.00

10citeseerx 770,539 1,501,126 1.95 24 36 23.46

05citeseerx 1,457,057 3,002,252 2.06 33 36 24.52

citeseerx 6,540,401 15,011,260 2.30 15,456 59 24.93

dbpedia 3,365,623 7,989,191 2.37 83,660 146 7.69

govwild 8,022,880 23,652,610 2.95 536 12 5.63

go-unip 6,967,956 34,769,339 4.99 17 21 0.25

10go-unip 469,526 3,476,397 7.40 24 21 3.50

twitter 18,121,168 18,359,487 1.01 1,346,819 22 5.76

webuk 22,753,644 38,184,039 1.68 3,417,929 2,793 4.07

Datasets: Tab. 1 shows the statistics of 20 real datasets, where the first ten are small

datasets (|V|≤100,000), and the following 10 datasets are large ones (|V|>100,000). These

datasets are usually used in the recent works [Cheng, Huang, Wu et al. (2013); Jin, Ruan,

Dey et al. (2012); Jin and Wang (2013); Seufert, Anand, Bedathur et al. (2013); Su, Zhu,

Wei et al. (2017); Veloso, Cerf, Junior et al. (2014); Wei, Yu, Lu et al. (2014); Yano, Akiba,

Iwata et al. (2013); Yildirim, Chaoji and Zaki (2010); Yildirim, Chaoji and Zaki (2012);

Zhu, Lin, Wang et al. (2014)], where we can find the detailed description of these datasets.

Among these datasets, there are both sparse graphs (with average degree d≤2) and dense

graphs (d>2). For topological levels (the 6th column), Tab. 1 contains both graphs with

smaller topological levels, such as unip150m, for which the topological level is 10, and

graphs with very large topological levels, such as webuk with topological level as large as

An Optimized Labeling Scheme for Reachability Queries 277

2,793. For the average number of reachable nodes (the 5th column), Tab. 1 also contains

both graphs with nodes having few reachable nodes, such as unip150m, for which each

node can reach only one node on average, and graphs with nodes having very large number

of reachable nodes, such as twitter and webuk, where each node can reach 1,346,819 and

3,417,929 nodes on average, respectively.

Workloads: We test these reachability algorithms using both random and equal workloads.

Here, each workload contains 1,000,000 queries. The random workload is generated by

sampling node pairs with the same probability on the node set of each graph. For equal

workload, the “equal” means that it contains the same number of reachable and unreachable

queries, i.e. it has 50% reachable queries and 50% unreachable queries. The query time is

the running time of testing all queries in a workload.

Note that for Tabs. 2- 5, each italic number denotes the best result in the row.

5.1 Query time

From Tab. 2 we have the following observations for random workload: (1) our T2H-O

algorithm works best on 19 out of 20 datasets, and on the remaining one dataset, T2H-O is

also approaching the best result. The reason lies in that for reachable queries, it does not

suffer from the costly traversing operation on the given DAG as Label+G algorithms do,

for unreachable queries, it can quickly answer most unreachable ones using topo-labels,

and does not suffer from performing costly set intersection operation on 2-hop labels for

most queries compared with Label-Only algorithms; (2) even though T2H-O works better

than T2H-1 and T2H-2, both the latter are very efficient compared with existing algorithms,

and each one can beat the other on some datasets. This difference on query performance

lies in that our method consists of comparing topo-labels and 2-hop labels, and T2H-1 and

T2H-2 use different order on performing the two operations; (3) no one can beat all others

on all datasets, and for existing algorithms, TF works better than others on most datasets,

but it cannot work successfully on webuk dataset.

From Tab. 3 we know that for equal workload: (1) our T2H-O algorithm works best on 16

datasets, and T2H-1 works best on three datasets, together our approaches work best on 19

datasets, and are usually much better than existing Label-Only and Label+G algorithms;

(2) for existing algorithms, Label-Only algorithms usually work better than Label+G

algorithms, due to that for equal workload, the number of reachable queries is 50%, which

can be answered more efficient using Label-Only algorithms by avoiding costly traversing

operations on the given DAG.

From both the two tables we know that simply combining existing Label-Only and

Label+G approaches together cannot improve the overall performance. For example,

FL+PLL is the combination of FL and PLL, which is a Label-Only algorithm. We can see

that in most cases, the performance of FL+PLL is in between the other two. Even though

our approach is also a Label-Only algorithm, our labeling scheme is not a simple

combination of Label+G label and Label-Only label, our topo-label significantly reduces

the 2-hop label size to accelerate the query performance.

278 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

Table 2: Comparison of query time on random workload (ms)

Dataset GRL FR IP+ FL TF PLL FL+PLL T2H-1 T2H-2 T2H-O

amaze 95 37 28 48 16 37 70 20 22 13

vchocyc 42 10 12 19 20 32 63 12 19 11

kegg 104 39 33 49 20 38 66 21 23 17

xmark 109 34 56 291 39 53 83 24 25 20

nasa 74 36 47 79 35 50 79 22 26 17

go 152 57 61 249 42 64 98 61 65 35

citeseer 297 104 82 191 61 74 101 61 60 35

pubmed 279 89 69 139 54 71 100 65 62 39

yago 87 60 20 44 24 63 90 22 24 14

arxiv 3,264 361 1,387 1,607 396 103 131 108 111 57

unip150m 97 20 57 35 21 38 74 16 22 15

10citeseerx 361 62 58 146 57 95 133 82 102 54

05citeseerx 415 68 59 195 59 103 158 94 97 53

citeseerx 663 45 104 310 91 96 130 95 110 44

dbpedia 451 318 168 118 147 129 226 85 97 70

govwild 757 1,488 143 244 402 163 248 126 106 82

go-unip 213 147 57 75 53 94 147 58 57 40

10go-unip 224 132 45 80 49 95 130 83 59 43

twitter 275 651 111 120 151 119 217 142 101 93

webuk 721 871 451 380 - 184 233 117 114 105

Table 3: Comparison of query time on equal workload (ms)

Dataset GRL FR IP+ FL TF PLL FL+PLL T2H-1 T2H-2 T2H-O

amaze 167 29 53 49 15 24 48 14 16 12

vchocyc 148 21 67 49 30 26 45 14 16 13

kegg 179 34 84 52 18 41 49 16 16 12

xmark 160 45 181 73 71 44 58 24 23 19

nasa 231 50 206 149 50 56 60 27 27 21

go 290 89 244 308 57 75 83 68 65 51

citeseer 598 222 239 280 80 67 94 67 67 53

pubmed 620 218 188 252 105 98 119 84 88 73

yago 339 117 133 121 53 45 68 26 29 21

arxiv 2,328 393 1,145 1,306 434 78 102 89 96 58

An Optimized Labeling Scheme for Reachability Queries 279

unip150m 1,222 271 1,248 409 326 159 181 70 64 57

10citeseerx 1,002 554 320 252 296 184 233 156 157 164

05citeseerx 1,181 735 365 314 385 200 284 198 204 188

citeseerx 5,301 891 852 1,952 1,257 174 242 164 167 173

dbpedia 1,224 298 355 364 2,938 101 170 88 94 80

govwild 898 1,600 393 171 1,217 195 290 152 151 147

go-unip 2,523 1,490 478 568 8,738 195 209 92 97 95

10go-unip 1,112 606 392 471 375 171 191 75 78 79

twitter 600 824 394 267 197 90 179 136 95 134

webuk 2,585 974 4,956 2,328 - 179 218 95 136 91

Table 4: Comparison of index construction time (ms)

Dataset FR IP+ FL TF PLL FL+PLL T2H-1 T2H-2 T2H-O

amaze 3.88 2.54 1.31 4.23 2.00 2.54 1.33 1.33 1.33

vchocyc 9.05 7.03 2.91 36.85 4.80 5.82 2.21 2.21 2.21

kegg 2.64 1.55 1.50 3.37 2.20 2.83 1.30 1.30 1.44

xmark 4.38 3.21 2.20 18.92 5.35 5.72 1.75 1.75 2.85

nasa 4.59 2.97 2.15 17.76 5.64 5.82 3.47 3.47 3.86

go 10.45 5.43 3.55 30.54 11.13 11.53 10.61 10.61 11.34

citeseer 32.16 18.72 7.84 120.29 24.12 25.08 15.75 15.75 16.91

pubmed 40.59 13.21 5.82 93.27 24.52 22.60 23.07 23.07 21.96

yago 22.99 8.82 4.50 52.58 7.00 11.86 10.92 10.92 8.95

arxiv 28.30 33.70 6.26 9,225.31 41.84 39.04 44.60 44.60 44.72

unip150m 40,089 35,932 23,452 58,441 14,138 36,604 6,146 6,146 6,665

10citeseerx 1,641 805 595 4,144 1,313 2,070 1,215 1,215 1,199

05citeseerx 3,360 1,708 1,194 9,551 3,369 4,945 3,333 3,333 3,253

citeseerx 18,467 9,759 6,161 100,805 10,677 18,022 11,018 11,018 11,135

dbpedia 8,229 4,778 3,471 12,629 3,681 7,674 3,312 3,312 3,437

govwild 33,710 10,762 7,584 145,695 11,759 22,304 11,137 11,137 11,162

go-unip 39,820 12,851 6,849 64,475 15,477 24,320 17,179 17,179 17,345

10go-unip 2,360 874 517 5,813 1,268 1,998 1,133 1,133 1,093

twitter 26,714 22,460 11,050 12,875 7,707 18,170 5,492 5,492 5,793

webuk 34,304 33,114 14,802 - 17,493 32,972 14,788 14,788 15,619

280 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

Table 5: Comparison of index sizes (MB)

Dataset GRL FR IP+ FL TF PLL FL+PLL T2H-1 T2H-2 T2H-O

amaze 0.21 0.10 0.10 0.07 0.02 0.04 0.09 0.04 0.04 0.06

vchocyc 0.54 0.20 0.29 0.18 0.31 0.12 0.23 0.08 0.08 0.12

kegg 0.21 0.10 0.11 0.07 0.02 0.05 0.09 0.04 0.04 0.06

xmark 0.35 0.16 0.21 0.12 0.12 0.12 0.19 0.09 0.09 0.11

nasa 0.32 0.15 0.17 0.11 0.12 0.11 0.17 0.08 0.08 0.10

go 0.39 0.23 0.22 0.13 0.18 0.19 0.27 0.18 0.18 0.22

citeseer 0.61 0.39 0.32 0.20 0.83 0.28 0.41 0.29 0.29 0.35

pubmed 0.51 0.33 0.23 0.17 0.80 0.27 0.37 0.28 0.28 0.33

yago 0.38 0.24 0.18 0.13 0.23 0.19 0.27 0.20 0.20 0.23

arxiv 0.34 0.22 0.28 0.11 14.66 0.35 0.42 0.36 0.36 0.40

unip150m 1,433 716 440 478 132 318 604 191 191 287

10citeseerx 44 21 21 15 45 18 26 16 16 20

05citeseerx 83 40 38 28 115 36 52 33 33 40

citeseerx 374 182 151 125 1,523 116 191 108 108 139

dbpedia 193 122 94 64 52 53 91 48 48 62

govwild 459 291 194 153 3,123 188 280 166 166 198

go-unip 399 253 185 133 431 251 331 251 251 278

10go-unip 27 17 13 9 44 21 27 21 21 23

twitter 1,037 375 745 346 70 202 410 206 206 279

webuk 1,302 632 816 434 - 357 618 329 329 419

5.2 Index construction time and index size

For index construction time, we have the following observations according to Tab. 4: FL,

T2H-1 and T2H-2 usually work better than others, the reasons lie in that on one hand, FL

is a Label+G algorithm, it has the lowest time complexity, on the other hand, both T2H-1

and T2H-2 has linear time complexity to get the topo-labels, which is used to help find

block nodes. We can see from the last column of Tab. 1 that the ratio of block nodes is

usually much less than the number of nodes in the given graph. Based on these block nodes,

we can quickly get the 2-hop labels. Even though other existing Label+G algorithms have

smaller time complexity on index construction, they may need more time due to traversing

several times on the given DAG. For existing algorithm, TF usually needs more time to get

smallest index size and query time on several datasets, and it cannot work successfully on

the webuk dataset. We can see from Tab. 5 that even though Label+G algorithms have

linear index size, our approaches can achieve the best result due to reduced number of

block nodes to generate 2-hop labels. And both T2H-1 and T2H-2 achieves best results on

6 datasets.

An Optimized Labeling Scheme for Reachability Queries 281

By combining the two tables together, we can see that for index construction time and

index size, no one can beat all others for all datasets. And all our approaches can complete

the index construction in reasonable time with acceptable index size. Based on this result,

from Tab. 2 and Tab. 3 we can see that our approaches make significant improvement on

query performance.

6 Conclusions

In this paper, we propose a novel Label-Only labeling scheme to accelerate reachability

query processing. The idea comes from the fact that index construction is a one-time

activity, while query testing is a fundamental online graph operation. Considering that

existing Label+G algorithms are inefficient for reachable queries and existing Label-Only

algorithms are inefficient for unreachable queries, we propose to use topo-labels to reduce

the size of 2-hop labels to construct a new Label-Only labels for fast query answering. Our

experimental results show that our approaches can answer both reachable and unreachable

queries more efficiently on 19 out of 20 real datasets.

Acknowledgement: This work was partly supported by National Key R&D Program of

China, Grant No. 2017YFB0309800, the grants from the Natural Science Foundation of

China (No. 61472339, No. 61303040, No. 61572421, No. 61272124), and Shanghai

Alliance Program(LM201552), and Shanghai University of Engineering and Technology

School-Enterprise cooperation projects(15)(DZ-025).

References

Agrawal, R.; Borgida, A.; Jagadish, H. V. (1989): Efficient management of transitive

relationships in large data and knowledge bases. ACM SIGMOD Conference, pp. 253-262.

Chen, L.; Gupta, A.; Kurul, M. E. (2005): Stack-based algorithms for pattern matching

on dags. International Conference on Very Large Data Bases, pp. 493-504.

Chen, Y.; Chen, Y. (2008): An efficient algorithm for answering graph reachability

queries. IEEE International Conference on Data Engineering, pp. 893-902.

Chen, Y.; Chen, Y. (2011): Decomposing dags into spanning trees: A new way to

compress transitive closures. IEEE International Conference on Data Engineering, pp.

1007-1018.

Cheng, J.; Huang, S.; Wu, H.; Fu, A. (2013): Tf-label: A topological-folding labeling

scheme for reachability querying in a large graph. ACM Sigmod International Conference

on Management of Data, pp. 193-204.

Cheng, J.; Yu, J.; Lin, X.; Wang, H.; Yu, P. (2006): Fast computation of reachability

labeling for large graphs. International Conference on Advances in Database Technology,

pp. 961-979.

Cheng, J.; Yu, J.; Lin, X.; Wang, H.; Yu, P. (2008): Fast computing reachability

labelings for large graphs with high compression rate. International Conference on

Extending Database Technology, pp. 193-204.

Cohen, E.; Halperin, E.; Kaplan, H.; Zwick, U. (2002): Reachability and distance

queries via 2-hop labels. Symposium on Discrete Algorithms, pp. 937-946.

282 Copyright © 2018 Tech Science Press CMC, vol.55, no.2, pp.267-283, 2018

Fan, W.; Li, J.; Wang, X.; Wu, Y. (2012): Query preserving graph compression. ACM

Sigmod International Conference on Management of Data, pp. 157-168.

Jagadish, H. V. (1990): A compression technique to materialize transitive closure. ACM

Transactions on Database Systems, vol. 15, no. 4, pp. 558-598.

Jin, R.; Ruan, N.; Dey, S.; Yu, J. (2012): SCARAB: Scaling reachability computation on

large graphs. ACM Sigmod International Conference on Management of Data, pp. 169-180.

Jin, R.; Ruan, N.; Xiang, Y.; Wang, H. (2011): Path-tree: An efficient reachability

indexing scheme for large directed graphs. ACM Transactions on Database Systems, vol.

36, no. 1, pp. 1-44.

Jin, R.; Wang, G. (2013): Simple, fast, and scalable reachability oracle. Proceedings of

the VVLDB Endowment, vol. 6, no. 14, pp. 1978-1989.

Jin, R.; Xiang, Y.; Ruan, N.; Fuhry, D. (2009): 3-hop: A high-compression indexing

scheme for reachability query. Acm Sigmod International Conference on Management of

Data, pp. 813-826.

Jin, R.; Xiang, Y.; Ruan, N.; Wang, H. (2008): Efficiently answering reachability queries

on very large directed graphs. ACM Sigmod International Conference on Management of

Data, pp. 595-608.

Kornaropoulos, E. M.; Tollis, I. G. (2011): Weak dominance drawings and linear

extension diameter. Data Structures and Algorithms.

Li, F.; Li, G. (2010): Interval-based uncertain multi-objective optimization design of vehicle

crashworthiness. Computers, Materials & Continua, vol. 15, no. 3, pp. 199-219.

Seufert, S.; Anand, A.; Bedathur, S. J.; Weikum, G. (2013): FERRARI: Flexible and

efficient reachability range assignment for graph indexing. IEEE International Conference

on Data Engineering, pp. 1009-1020.

Simon, K. (1988): An improved algorithm for transitive closure on acyclic digraphs.

Theoretical Computer Science, vol. 58, no. 1, pp. 325-346.

Su, J.; Zhu, Q.; Wei, H.; Yu, J. (2017): Reachability querying: Can it be even faster?

IEEE Transactions on Knowledge & Data Engineer, vol. 29, no. 3, pp. 683-697.

Tarjan, R. E. (1972): Depth-first search and linear graph algorithms. SIAM Journal on

Computing, vol. 1, no. 2, pp. 146-160.

Trißl, S.; Leser, U. (2007): Fast and practical indexing and querying of very large graphs.

ACM Sigmod International Conference on Management of Data, pp. 845-856.

van Schaik, S. J.; de Moor, O. (2011): A memory efficient reachability data structure

through bit vector compression. ACM Sigmod International Conference on Management

of Data, pp. 913-924.

Veloso, R. R.; Cerf, L.; Junior, W. M.; Zaki, M. J. (2014): Reachability queries in very

large graphs: A fast refined online search approach. International Conference on Extending

Database Technology, pp. 511-522.

Wang, H.; He, H.; Yang, J.; Yu, P.; Yu, J. (2006): Dual labeling: Answering graph

reachability queries in constant time. International Conference on Data Engineering, pp. 75-75.

Wei, H.; Yu, J.; Lu, C.; Jin, R. (2014): Reachability querying: An independent

An Optimized Labeling Scheme for Reachability Queries 283

permutation labeling approach. Proceedings of the VLDB Endowment, vol. 7, no. 12, pp.

1191-1202.

Wu, C.; Zapevalova, E.; Chen, Y.; Li, F. (2018): Time optimization of multiple

knowledge transfers in the big data environment. Computers, Materials & Continua, vol.

54, no. 3, pp. 269-285.

Yano, Y.; Akiba, T.; Iwata, Y.; Yoshida, Y. (2013): Fast and scalable reachability queries

on graphs by pruned labeling with landmarks and paths. ACM International Conference on

Conference on Information & knowledge Management, pp. 1601-1606.

Yildirim, H.; Chaoji, V.; Zaki, M. J. (2010): GRAIL: Scalable reachability index for

large graphs. Proceedings of the VLDB Endowment, vol. 3, no. 1, pp. 276-284.

Yildirim, H.; Chaoji, V.; Zaki, M. J. (2012): GRAIL: A scalable index for reachability

queries in very large graphs. VLDB Journal, vol. 21, no. 4, pp. 509-534.

Yu, J. X.; Cheng, J. (2010): Graph reachability queries: A survey. Managing and Mining

Graph Data, pp. 181-215.

Zhang, Z.; Yu, J.; Qin, L.; Zhu, Q.; Zhou, X. (2012): I/O cost minimization:

Reachability queries processing over massive graphs. International Conference on

Extending Database Technology, pp. 468-479.

Zhou, J.; Zhou, S.; Yu, J.; Wei, H.; Chen, Z. et al. (2017): DAG reduction: Fast

answering reachability queries. ACM Sigmod International Conference on Management of

Data, pp. 375-390.

Zhu, A.; Lin, W.; Wang, S.; Xiao, X. (2014): Reachability queries on large dynamic

graphs: A total order approach. ACM Sigmod International Conference on Management of

Data, pp. 1323-1334.

