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Abstract: Answering reachability queries is one of the fundamental graph operations. 

Existing approaches either accelerate index construction by constructing an index that 

covers only partial reachability relationship, which may result in performing cost traversing 

operation when answering a query; or accelerate query answering by constructing an index 

covering the complete reachability relationship, which may be inefficient due to comparing 

the complete node labels. We propose a novel labeling scheme, which covers the complete 

reachability relationship, to accelerate reachability queries processing. The idea is to 

decompose the given directed acyclic graph (DAG) G into two subgraphs, G1 and G2. For 

G1, we propose to use topological labels consisting of two integers to answer all 

reachability queries. For G2, we construct 2-hop labels as existing methods do to answer 

queries that cannot be answered by topological labels. The benefits of our method lie in 

two aspects. On one hand, our method does not need to perform the cost traversing 

operation when answering queries. On the other hand, our method can quickly answer most 

queries in constant time without comparing the whole node labels. We confirm the 

efficiency of our approaches by extensive experimental studies using 20 real datasets. 
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1 Introduction   

A reachability query u?→v asks, in a directed graph G, whether there exists a path from u 

to v. Answering reachability queries is one of the fundamental graph operations, which has 

been extensively studied in the past decades [Agrawal, Borgida and Jagadish (1989); Chen, 

Gupta and Kurul (2005); Chen and Chen (2008); Chen and Chen (2011); Cheng, Huang, 

Wu et al. (2013); Cheng, Yu, Lin et al. (2006); Cheng, Yu, Lin et al. (2008); Cohen, 

Halperin, Kaplan et al. (2002); Jagadish (1990); Jin, Ruan, Dey et al. (2012); Jin, Ruan, 

Xiang et al. (2011); Jin and Wang (2013); Jin, Xiang, Ruan et al. (2009); Jin, Xiang, Ruan 

et al. (2008); Seufert, Anand, Bedathur et al. (2013); Su, Zhu, Wei et al. (2017); Trißl and 

Leser (2007); van Schaik and de Moor (2011); Veloso, Cerf, Junior et al. (2014); Wang, 
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He, Yang et al. (2006); Wei, Yu, Lu et al. (2014); Yano, Akiba, Iwata et al. (2013); Yildirim, 

Chaoji and Zaki (2010); Yildirim, Chaoji and Zaki (2012); Yu and Cheng (2010); Zhang, 

Yu, Qin et al. (2012); Zhu, Lin, Wang et al. (2014); Li and Li (2010)]. Its applications 

include, but not limited to, Semantic Web (RDF), online social networks, biological 

networks, ontology, transportation networks, etc. For reachability queries processing, there 

are three interrelated issues: Index size, index construction time, and query time. Given a 

reachability query u?→v, the two extremes of answering it are: (1) traversing from u to v 

to find the final answer without building index in-advance, and (2) maintaining the whole 

transitive closure (TC) to check whether u can reach v. On one hand, the traversing 

approaches do not need to build index offline, however, it needs to visit all nodes that u 

can reach in the worst case by performing expensive depth-first-search (DFS) or breadth-

first-search (BFS) operation to answer the given query. On the other hand, computing the 

TC makes it difficult to be scaled to large graphs, due to unacceptable index size and 

indexing time. Considering this problem, all existing approaches made trade-off among 

index construction, index size and query performance, where index construction is a one-

time activity. Due to its importance and the emergence of large graphs in big data era [Wu, 

Zapevalova, Chen et al. (2018)], faster answering reachability queries online is still a 

challenging task, supposing that the index can be constructed offline with reasonable time 

and size. 

We follow [Wei, Yu, Lu et al. (2014)] and classify existing methods into two categories 

according to the coverage of index on reachability information: Label-Only [Agrawal, 

Borgida and Jagadish (1989); Chen and Chen (2008); Cheng, Huang, Wu et al. (2013); 

Cohen, Halperin, Kaplan et al. (2002); Jagadish (1990); Jin and Wang (2013); Jin, Xiang, 

Ruan et al. (2009); Jin, Xiang, Ruan et al. (2008); van Schaik and de Moor (2011); Wang, 

He, Yang et al. (2006); Yano, Akiba, Iwata et al. (2013); Zhu, Lin, Wang et al. (2014)] and 

Label+G [Chen, Gupta and Kurul (2005); Jin, Ruan, Dey et al. (2012); Jin and Wang 

(2013); Seufert, Anand, Bedathur et al. (2013); Trißl and Leser (2007); Veloso, Cerf, Junior 

et al. (2014); Wei, Yu, Lu et al. (2014; Yano, Akiba, Iwata et al. (2013); Yildirim, Chaoji 

and Zaki (2010); Yildirim, Chaoji and Zaki (2012)]. Here, we say an algorithm belongs to 

Label-Only, it means that the index conveys the complete reachability information, and any 

given query u?→v can be answered by comparing labels of u and v. When we say that an 

algorithm belongs to Label+G, it means that the index covers partial reachability 

information, thus we may need to perform DFS/BFS from u to check whether u can reach 

v, if we cannot get the result by comparing labels of u and v. Most existing Label+G 

approaches possess the benefits of bounded index size and index construction time in 

theory. However, they all suffer from the same performance bottleneck, i.e. traversing from 

u to v to find the answer. As a comparison, among existing Label-Only approaches, recent 

variants of 2-hop labels, such as PLL [Yano, Akiba, Iwata et al. (2013)], DL [Jin and Wang 

(2013)], TF [Cheng, Huang, Wu et al. (2013)] and TOL [Zhu, Lin, Wang et al. (2014)], 

does not suffer from the expensive DFS/BFS operation on the underlying graph. Moreover, 

the index can be constructed efficiently with reasonable size, which makes these 

approaches can scale to large graphs. However, they could be inefficient when answering 

unreachable queries due to the higher cost of set intersection operation on node labels to 

get the result. 

To overcome the shorting comings of existing approaches, we propose a novel Label-Only 
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labeling scheme, namely T2H, based on which reachability queries can be answered more 

efficiently than current ones. Given a DAG G, the basic idea is finding from G a set of 

“block nodes”, such that after removing these block nodes from G, we get a reduced graph 

G1, and the reachability relationship between any pair of nodes in G1 can be answered in 

constant time with linear index size. Then, for reachability relationship conveyed by block 

nodes, we construct block nodes based 2-hop labels to reduce the 2-hop index size. The 

benefits of our labeling scheme lie in the following aspects: (1) compared with existing 

Label+G approaches, our method does not need to perform costly DFS/BFS operation, and 

can be much more efficient than existing ones when answering reachable queries, (2) 

compared with existing Label-Only approaches, our method significantly reduces the cost 

of set intersection operation on node labels to get final results. We conduct rich experiment 

on real datasets to show that our approach can answer both positive and negative queries 

very efficiently, and can scale to large graphs. 

2 Background and related work 

We follow the tradition of existing approaches and assume that the input graph is a DAG 

G=(V, E), which can be constructed from the given directed graph G in linear time w.r.t. 

the size of G [Tarjan (1972)] by coalescing each SCC of G into a node in G, where each 

node v∈V represents an SCC Sv of G, and each edge (u, v)∈E represents the edge from SCC 

Su to Sv if there is an edge from a node in Su to a node in Sv. Similar as Zhou et [Zhou, Zhou, 

Yu et al. (2017)], we use inG(u)={v|(u, v)∈E} to denote the al. set of in-neighbors nodes of 

u in G, and outG(u)={v|(u, v)∈E} the set of out-neighbors nodes of u. We use 𝑖𝑛𝐺
∗ (u) to 

denote the set of nodes in G that can reach u where u ∉ 𝑖𝑛𝐺
∗ (u), and 𝑜𝑢𝑡𝐺

∗ (u) the set of nodes 

in G that u can reach where u ∉ 𝑜𝑢𝑡𝐺
∗ (u). We use X={1, 2, …, |𝑉|} to denote a topological 

order (topo-order) of G, which can be got by performing a topological sorting on G in linear 

time O(|V |+|E|) [Simon (1988)]. A topological sorting of G is a mapping tX: V→X, such 

that ∀(𝑢, 𝑣) ∈E, we have 𝑡𝑢
𝑋<𝑡𝑣

𝑋, where 𝑡𝑢
𝑋(𝑡𝑣

𝑋) is the topo-order of u(v) w.r.t. X. 

We discuss existing algorithms from two categories: (1) Label-Only and (2) Label+G. By 

Label-Only, a given query u?→v can be answered by comparing labels of u and v. By 

Label+G, this query can be answered by DFS/BFS at run-time, when it cannot be answered 

by labels of u and v. We use u→v (u ↛ v) to denote that u can (cannot) reach v. 

The Label-Only methods [Agrawal, Borgida and Jagadish (1989); Cheng, Huang, Wu et al. 

(2013); Jin, Ruan, Xiang et al. (2011); Jin and Wang (2013); Jin, Xiang, Ruan et al. (2009); 

Jin, Xiang, Ruan et al. (2008); van Schaik and de Moor (2011); Yano, Akiba, Iwata et al. 

(2013); Zhu, Lin, Wang et al. (2014)] focus on compressing TC to get a smaller index size 

for fast query processing. The recent work includes variants of 2-hop labeling scheme, such 

as TF [Cheng, Huang, Wu et al. (2013)], DL [Jin and Wang (2013)], PLL [Yano, Akiba, 

Iwata et al. (2013)] and TOL [Zhu, Lin, Wang et al. (2014)]. The idea is to assign each 

node u a label Lu={Lout(u), Lin(u)}, where Lout(u)(Lin(u)) is called the out (in) label of u 

consisting of a set of nodes that u can reach (be reached). Based on this labeling scheme, 

u?→v can be answered by testing whether the result of Lout(u)∩Lin(v) is empty or not. If 

Lout(u)∩Lin(v)≠ ∅, then u→v, otherwise u↛v. To compute node labels, TF [Cheng, Huang, 

Wu et al. (2013)] folds the given DAG recursively based on topological level to reduce the 

cost of 2-hop computation. DL [Jin and Wang (2013)], PLL [Yano, Akiba, Iwata et al. 
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(2013)] and TOL [Zhu, Lin, Wang et al. (2014)] share the similar idea of computing 2-hop 

labels. Given all nodes in a certain order, the construction of DL and PLL labels is 

enumerating each node with a forward BFS and a backward BFS to add u to labels of nodes 

that u can reach and nodes that can reach u. During each BFS, an early stop condition is 

adopted to accelerate the computation and reduce the index size. 

The Label+G methods [Seufert, Anand, Bedathur et al. (2013); Trißl and Leser (2007); 

Veloso, Cerf, Junior et al. (2014); Wei, Yu, Lu et al. (2014); Yildirim, Chaoji and Zaki 

(2010); Yildirim, Chaoji and Zaki (2012)] answer u?→v by performing DFS from u at run-

time if needed. The recent work includes GRAIL [Yildirim, Chaoji and Zaki (2010); 

Yildirim, Chaoji and Zaki (2012)], FERRARI [Seufert, Anand, Bedathur et al. (2013)], 

FELINE [Veloso, Cerf, Junior et al. (2014)] and IP+ [Wei, Yu, Lu et al. (2014)]. All these 

methods focus on efficient pruning techniques to answer most unreachable queries. They 

also use additional pruning strategies to make optimization on both positive and negative 

queries, such as comparing topological levels [Seufert, Anand, Bedathur et al. (2013); 

Veloso, Cerf, Junior et al. (2014); Wei, Yu, Lu et al. (2014); Yildirim, Chaoji and Zaki 

(2010); Yildirim, Chaoji and Zaki (2012)], comparing topological orders [Seufert, Anand, 

Bedathur et al. (2013)], and comparing intervals of u and v over a spanning tree [Veloso, 

Cerf, Junior et al. (2014)]. 

Apart from the above methods that work on a large DAG G, there are studies focusing on 

reducing G to a smaller DAG to accelerate reachability query processing, including 

SCARAB Framework [Jin, Ruan, Dey et al. (2012)] and equivalence reduction [Fan, Li, 

Wang et al. (2012); Zhou, Zhou, Yu et al. (2017)], which are orthogonal to the above 

approaches and can be combined with the above approaches to accelerate answering 

reachability queries. 

3 Query processing 

3.1 The T2H labeling scheme 

Given a topo-order X of a DAG G, it is obvious that if u→v, then we must have 𝑡𝑢
𝑋<𝑡𝑣

𝑋, but 

the other side does not always hold, i.e. when 𝑡𝑢
𝑋 <𝑡𝑣

𝑋 , we cannot conclude that u→v. 

However, if for every unreachable query u↛v, we have that 𝑡𝑢
𝑋>𝑡𝑣

𝑋, then when 𝑡𝑢
𝑋<𝑡𝑣

𝑋, we 

can safely say that u→v. Therefore, the key problem is how to know that we can correctly 

identify all unreachable queries using topo-orders. 

Given two nodes u and v, there are at most two queries, i.e. u?→v and v?→u. Therefore, it 

is not possible to correctly check the unreachable relationship using one topo-orders, e.g. 

consider v2 and v3 in G of Fig. 1(a), since 𝑡𝑣3
𝑋 =3>2=𝑡𝑣2

𝑋 , we know that v3↛v2. But, for query 

v2?→v3, we cannot get the results by comparing their topo-orders. The natural idea is using 

one more topo-order to check the unreachable relationship on the other direction. Here, we 

use reversed topo-order to check unreachable queries. 

Definition 1. (Free Node) During a topological sorting, a node u is called a free node, if 

u has not been visited, but all of u’s in-neighbors have been visited. 

For example, for G in Fig. 1(a), the free node is v1 before processing, and after processing 

v1, the free nodes are v2, v3 and v5. 

Definition 2. (Reversed Topo-Order) Given two topo-orders X and Y, we say X(Y) is the 
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reversed topo-order of Y (X), if Y (X) is computed in the way that the topological sorting 

will always first visit and assign the topo-order in Y (X) to the free node with the maximal 

topo-order in X(Y). 

Given the uniqueness of a topo-order, its reversed topo-order is also unique. For example, 

given the circled topo-order X of all nodes in G of Fig. 1(a), we can get the reversed topo-

order Y according to Definition 2, as shown by the italic integer beside each node. 

Obviously, we know that v3↛v2 because 𝑡𝑣3
𝑋 =3>2=𝑡𝑣2

𝑋  , and v2↛v3 because 𝑡𝑣2
𝑋 =7>4=𝑡𝑣3

𝑋  . 
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Figure 1: Illustration of the new labeling scheme, where (a) is a DAG with nodes denoted 

by their topo-orders, the italic integer beside each node is its reversed topo-order, (b) is the 

trivial subgraph G1 of G, the italic integer beside each node is its reversed topo-order, and 

(c) is the link graph G2 of G consisting of all nodes that can reach (be reached by) these 

block nodes 

Even though we can identify more unreachable queries using multiple topo-orders, there 

exists some problematic DAGs for which a limited number of topo-orders will always 

produce false positive answers [Kornaropoulos and Tollis (2011); Veloso, Cerf, Junior et 

al. (2014)], i.e. even if 𝑡𝑢
𝑋<𝑡𝑣

𝑋, we cannot tell that u can reach v. For example, for G in Fig. 

1(a), even though 𝑡𝑣3
𝑋 =3<6=𝑡𝑣6

𝑋  and 𝑡𝑣3
𝑋 =4<8=𝑡𝑣6

𝑋 , we know that v3↛v6 according to G. In 

fact, minimizing the number of false-positives is known to be NP-hard [Kornaropoulos and 

Tollis (2011); Veloso, Cerf, Junior et al. (2014)]. Moreover, using more topo-orders may 

result in unacceptable space and time cost to index construction and query processing. 

Definition 3. (Trivial Graph) Given a DAG G and one of its topo-order X. We say G is a 

trivial graph w.r.t. X, if every unreachable query on G can be identified by X and its 

reversed topo-order Y. 

For example, G1 in Fig. 1(b) is a trivial graph. Interested readers can easily verify that for 

every unreachable query, we can always return FALSE based on the two reversed topo-

orders shown in G1. 

Definition 4. (Block Node Set) Given a DAG G, let S be a set of nodes in G. If G is a trivial 

graph after removing all nodes of S, then we call S a block node set of G and each node of 

S a block node. 

For example, for G in Fig. 1(a), v6 is a block node, and S={v6} is a block node set of G. 

After removing v6 from G, we get the trivial graph G1 in Fig. 1(b). 
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Based on two above definitions, we propose to find from the given DAG G a trivial graph 

G1 by removing from G a set of “block nodes”. The basic idea is that given a trivial graph 

G1, we can identify all unreachable queries based on two reversed topo-orders. Then, for 

the reachability relationship between nodes in G that cannot be covered by the two topo-

orders, we construct 2-hop labels from these block nodes. For example, for G in Fig. 1(a), 

we generate the trivial graph G1 in Fig. 1(b) by removing the unique block node v6. To 

answer reachability queries, we assign each node in G1 two topo-orders shown in Fig. 1(b). 

Then, we performing forward and backward DFS/BFS from v6 to construct 2-hop labels. 

Combining the two aspects together, we have the T2H (short for topo-order and 2-hop) 

label for each node, which we call as the T2H labeling scheme. Hereafter, we use tv to 

denote both 𝑡𝑣
𝑋 and 𝑡𝑣

𝑌.We call it as v’s topo-label, and tu<tv means that 𝑡𝑢
𝑋<𝑡𝑣

𝑋 ∧ 𝑡𝑢
𝑌<𝑡𝑣

𝑌.We 

further use Lv={Lout(v), Lin(v)} to denote v’s block nodes based 2-hop labels. 

3.2 Query algorithm 

Before discussing the query algorithm, lets first introduce the following results. 

Theorem 1. Given a trivial graph G1, we can answer all queries between nodes in G1 using 

two reversed topo-orders. 

Proof. First, we can answer all unreachable queries using two reversed topo-orders 

according to Definition 3. Assume that there exists a reachable query u→v that we cannot 

correctly answer, it means that we have tu≮tv. Then, we know that u↛v, which contradicts 

the assumption. Therefore, we can answer all queries using two reversed topo-orders. 

Definition 5. Given a DAG G and the set of block nodes S, we call the graph consists of 

all nodes that can reach and be reached by every block node the link graph w.r.t. S.  

For example, for G in Fig. 1(a), v6 is its unique block node, and the link graph is shown as 

G2 in Fig. 1(c). We have the following result. 

Corollary 1. Given a DAG G=(V, E), its trivial graph G1=(V1, E1) and link graph G2=(V2, 

E2), we have that V=V1∪V2 and E=E1∪E2. 

Theorem 2. All queries can be correctly answered based on T2H labels. 

Proof. First, according to Theorem 1, we can answer all reachable queries between nodes in 

G1. Second, the remaining queries over G can be either reachable through block nodes, or 

unreachable. Thus, by comparing block nodes based 2-hop labels, we can correctly answer 

the remaining reachable queries, and all other queries are definitely unreachable ones. 

Based on Theorems 1 and 2, we have Algorithm 1, which first check whether u can reach v 

using topo-labels in lines 1-2, then check whether u can reach v using block nodes based 2-

hop labels in lines 2-3. And return FALSE in line 5 to denote that u cannot reach v. 
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Example 1. Consider G in Fig. 1(a). The T2H labels are shown in Figs. 1(b) and 1(c). For 

query v3?→v8, Algorithm 1 can return TRUE in line 2 denoting v3→v8 due to that 𝑡𝑣3
<𝑡𝑣8

 . 

For query v2?→v8, Algorithm 1 will return TRUE in line 4 denoting v2→v8. For query 

v3?→v6, Algorithm 1 will return FALSE in line 5 denoting v3↛v6, due to that v6 is a block 

node and Lout(v3)∩Lin(v6)=∅. 

Obviously, if the given query can be answered in line 2, then the time complexity is O(1), 

otherwise, the time complexity is O (L), where L is maximal length of block nodes based 

2-hop labels. 

Further, as block nodes based 2-hop labels capture all reachable relationships between 

nodes linked by them, we have the second algorithm to answer a given query, as shown by 

Algorithm 2. The correctness is based on Theorems 1 and 2. The difference between the 

two algorithms lies in whether we first compare topo-labels. And the time complexity of 

Algorithm 2 is O (L). 

 

In essence, either algorithm can work better than the other in different scenario. If most 

reachable queries cannot be answered by comparing topo-labels, then Algorithm 2 could 

be more efficient, otherwise Algorithm 1 could be better. 

3.3 Optimization 

Both Algorithms 1 and 2 involve two operations when answering reachability queries, i.e. 

comparing topo-labels and comparing block nodes based 2-hop labels. As the cost of 

comparing topo-labels is O (1), which is better than that of comparing 2-hop labels with 

cost O (L), if most reachable queries can be answered by comparing topo-labels, then 

Algorithm 1 is the better choice. Unfortunately, this is not true in practice, especially for 

randomly generated workload, where most queries are unreachable ones. The optimization 

in this section is to extend the topo-labels, such that it can be used in Algorithm 1 to test 

not only reachable queries, but also unreachable queries. The idea is to assign G one more 

topo-order Z, which is the reversed topo-order of X. 
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In summary, in the optimized algorithm, there are three topo-orders X, Y, Z, where X and 

Y are mutually reversed to each other w.r.t. the trivial graph G1, while X and Z are mutually 

reversed to each other w.r.t. the input graph G. Since the given reachability queries are 

answered according to G, and an unreachable query on G1 could be reachable on G, thus X 

and Y cannot be used to find unreachable queries before comparing block nodes based 2-

hop labels. Fortunately, we can use X and Z to find unreachable queries, which are defined 

on G. In this way, we can answer more queries in constant time. Based on the above 

discussion, we have the optimized algorithm with the same time complexity as Algorithm 

1, as shown below. 

4 Index construction 

We first discuss how to generate the block nodes based 2-hop labels. Given a set of block 

nodes, we perform forward (backward) BFS from each block node to add it to the in (out) 

label of the set of nodes that it can reach (be reached by). This is similar to existing 2-hop 

approaches [Jin and Wang (2013); Yano, Akiba, Iwata et al. (2013); Zhu, Lin, Wang et al. 

(2014)]. The difference is that the number of nodes from which we perform BFS is reduced. 

We then discuss how to generate topo-labels and block nodes. Given G, we perform the 

first topological sorting on G to generate topo-order X. This can be done by performing the 

following steps: (1) push all free nodes into a stack S, (2) pop a node u from S, assign u its 

topo-order 𝑡𝑢
𝑋, and push all of u’s out-neighbors which are new free nodes into S, and (3) 

repeat the above two steps until S is empty. For example, every node u in Fig. 1(a) is 

denoted by its topo-order 𝑡𝑢
𝑋. 

Given X, we discuss how to generate Z. Similar as generating X, we generate Z by the 

following steps: (1) push all free nodes into a stack S in ascending order w.r.t. X, such that 

they are popped out from S in descending order, (2) pop a node u from S, assign u its topo-

order 𝑡𝑢
𝑍, and push all of u’s out-neighbors which are new free nodes into S in ascending 

order w.r.t. X, and (3) repeat the above two steps until S is empty, e.g. the reversed topo-order 

𝑡𝑢
𝑍 for each node u in Fig. 1(a) is denoted by the italic integers beside u. 

Finally, we discuss how to find block nodes and generate the reversed topo-order Y w.r.t. 

the trivial graph G1. Here, we do not need to first find block nodes to actually generate the 

trivial graph G1. Instead, we do both when computing the reversed topo-order Y. 

Definition 6. (Candidate Free Node (CFN)) When performing topological sorting to 

compute Y according to X, we say a node v is a candidate free node (CFN), if v it is not a 

free node and at least one of its in-neighbors u has been assigned a topo-order 𝑡𝑢
𝑌. 
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For example, when computing Y based on X for G in Fig. 1(a), after visiting v1, we know 

that v2, v3 and v5 are new free nodes. They are pushed into stack S in their X topo-order. 

Thus the next processed node is v5. After processing v5, v6 is a CFN according to Definition 

6. Now, we can formally give out the definition of block node, as show below. 

Definition 7. (Block Node (BN)) When computing Y according to X, let w be the largest 

unprocessed in-neighbor of v w.r.t. X, and u the currently being processed free node, we 

say node v is a block node (BN), if v it is a CFN and 𝑡𝑤
𝑋<𝑡𝑢

𝑋. 

Intuitively, for currently being processed node u, when we say that v is a block node, it 

means that u cannot reach v, and if we assign u its 𝑡𝑢
𝑌, then we have that 𝑡𝑢

𝑋<𝑡𝑣
𝑋 ∧<𝑡𝑣

𝑌, 

and based on which we cannot say that u→v holds. That is, v prevents us from checking all 

reachability relationship by two topo-orders. Therefore, to avoid the costly traversing 

operation when answering reachability queries, while at the same time reduce the cost of 

set intersection operation of existing 2-hop approaches, we computes 2-hop labels on BN 

only, and for other nodes, we use topo-labels to check the reachability relationship. 

Now, we are ready to give out the index construction algorithm, the idea is to compute Y 

according X, during which we perform forward and backward BFS to compute 2-hop labels 

from each block node, as shown by Algorithm 4. 

 

The time cost of getting topo-label can be done in O(|V|+|E|). The cost of computing 2-hop 

labels is O( nb ×|V|+|E|)., where nb is the number of block nodes. Therefore, the time 

complexity of the index construction algorithm is O( nb ×|V|+|E|). 

5 Experiment 

In our experiment, we make comparison with both existing Label-Only and Label+G 

algorithms, the Label-Only algorithms include TF [Cheng, Huang, Wu et al. (2013)], PLL 

[Yano, Akiba, Iwata et al. (2013)] and our algorithms. The Label+G algorithms include 

GRAIL [Yildirim, Chaoji and Zaki (2010); Yildirim, Chaoji and Zaki (2012)] (abbreviated 

as GRL), FELINE [Veloso, Cerf, Junior et al. (2014)] (abbreviated as FL) and IP+ [Wei, Yu, 

Lu et al. (2014)]. The source codes of these existing algorithm are kindly provided by the 

authors. We set k=5 for GRL and IP+ on all datasets. For IP+, we set h=5 and 𝜇=100. We 

implemented our algorithms using C++ and all source codes are compiled by G++6.2.0. 
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All experiments were run on a PC with Intel(R) Xeon(R) CPU E7-4809 v3 2.00 GHz CPU, 

32 GB memory, and Ubuntu 16.10 Linux OS. For algorithms that run more than 24 h or 

exceed the memory limit (32 GB), we will show their results as “-” in the tables. 

Table 1: Statistics of real datasets, where d is the average degree, 𝑜𝑢𝑡𝐺
∗ (∙) is the average 

number of reachable nodes for nodes of G, t is the number of topological levels, nb is the 

ratio of the number of block nodes over |V | 

Dataset |V | |E| d 𝑜𝑢𝑡𝐺 
∗ (∙) t nb (%) 

amaze 3,710 3,600 0.97 639 16 2.91 

vchocyc 9,491 10,143 1.07 14 21 2.62 

kegg 3,617 3,908 1.08 729 26 3.73 

xmark 6,080 7,025 1.16 57 38 2.66 

nasa 5,605 6,537 1.17 19 35 9.26 

go 6,793 13,361 1.97 11 16 60.19 

citeseer 10,720 44,258 4.13 27 36 39.00 

pubmed 9,000 40,028 4.45 31 19 41.78 

yago 6,642 42,392 6.38 10 13 9.47 

arxiv 6,000 66,707 11.12 821 167 66.38 

unip150m 25,037,600 25,037,598 1.00 1 10 0.00 

10citeseerx 770,539 1,501,126 1.95 24 36 23.46 

05citeseerx 1,457,057 3,002,252 2.06 33 36 24.52 

citeseerx 6,540,401 15,011,260 2.30 15,456 59 24.93 

dbpedia 3,365,623 7,989,191 2.37 83,660 146 7.69 

govwild 8,022,880 23,652,610 2.95 536 12 5.63 

go-unip 6,967,956 34,769,339 4.99 17 21 0.25 

10go-unip 469,526 3,476,397 7.40 24 21 3.50 

twitter 18,121,168 18,359,487 1.01 1,346,819 22 5.76 

webuk 22,753,644 38,184,039 1.68 3,417,929 2,793 4.07 

Datasets: Tab. 1 shows the statistics of 20 real datasets, where the first ten are small 

datasets (|V|≤100,000), and the following 10 datasets are large ones (|V|>100,000). These 

datasets are usually used in the recent works [Cheng, Huang, Wu et al. (2013); Jin, Ruan, 

Dey et al. (2012); Jin and Wang (2013); Seufert, Anand, Bedathur et al. (2013); Su, Zhu, 

Wei et al. (2017); Veloso, Cerf, Junior et al. (2014); Wei, Yu, Lu et al. (2014); Yano, Akiba, 

Iwata et al. (2013); Yildirim, Chaoji and Zaki (2010); Yildirim, Chaoji and Zaki (2012); 

Zhu, Lin, Wang et al. (2014)], where we can find the detailed description of these datasets. 

Among these datasets, there are both sparse graphs (with average degree d≤2) and dense 

graphs (d>2). For topological levels (the 6th column), Tab. 1 contains both graphs with 

smaller topological levels, such as unip150m, for which the topological level is 10, and 

graphs with very large topological levels, such as webuk with topological level as large as 



 

 

 

An Optimized Labeling Scheme for Reachability Queries                                        277 

2,793. For the average number of reachable nodes (the 5th column), Tab. 1 also contains 

both graphs with nodes having few reachable nodes, such as unip150m, for which each 

node can reach only one node on average, and graphs with nodes having very large number 

of reachable nodes, such as twitter and webuk, where each node can reach 1,346,819 and 

3,417,929 nodes on average, respectively. 

Workloads: We test these reachability algorithms using both random and equal workloads. 

Here, each workload contains 1,000,000 queries. The random workload is generated by 

sampling node pairs with the same probability on the node set of each graph. For equal 

workload, the “equal” means that it contains the same number of reachable and unreachable 

queries, i.e. it has 50% reachable queries and 50% unreachable queries. The query time is 

the running time of testing all queries in a workload. 

Note that for Tabs. 2- 5, each italic number denotes the best result in the row. 

5.1 Query time 

From Tab. 2 we have the following observations for random workload: (1) our T2H-O 

algorithm works best on 19 out of 20 datasets, and on the remaining one dataset, T2H-O is 

also approaching the best result. The reason lies in that for reachable queries, it does not 

suffer from the costly traversing operation on the given DAG as Label+G algorithms do, 

for unreachable queries, it can quickly answer most unreachable ones using topo-labels, 

and does not suffer from performing costly set intersection operation on 2-hop labels for 

most queries compared with Label-Only algorithms; (2) even though T2H-O works better 

than T2H-1 and T2H-2, both the latter are very efficient compared with existing algorithms, 

and each one can beat the other on some datasets. This difference on query performance 

lies in that our method consists of comparing topo-labels and 2-hop labels, and T2H-1 and 

T2H-2 use different order on performing the two operations; (3) no one can beat all others 

on all datasets, and for existing algorithms, TF works better than others on most datasets, 

but it cannot work successfully on webuk dataset. 

From Tab. 3 we know that for equal workload: (1) our T2H-O algorithm works best on 16 

datasets, and T2H-1 works best on three datasets, together our approaches work best on 19 

datasets, and are usually much better than existing Label-Only and Label+G algorithms; 

(2) for existing algorithms, Label-Only algorithms usually work better than Label+G 

algorithms, due to that for equal workload, the number of reachable queries is 50%, which 

can be answered more efficient using Label-Only algorithms by avoiding costly traversing 

operations on the given DAG. 

From both the two tables we know that simply combining existing Label-Only and 

Label+G approaches together cannot improve the overall performance. For example, 

FL+PLL is the combination of FL and PLL, which is a Label-Only algorithm. We can see 

that in most cases, the performance of FL+PLL is in between the other two. Even though 

our approach is also a Label-Only algorithm, our labeling scheme is not a simple 

combination of Label+G label and Label-Only label, our topo-label significantly reduces 

the 2-hop label size to accelerate the query performance. 
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Table 2: Comparison of query time on random workload (ms) 

Dataset GRL FR IP+ FL  TF PLL FL+PLL T2H-1 T2H-2 T2H-O 

amaze 95  37  28  48  16  37  70  20  22  13  

vchocyc 42  10  12  19  20  32  63  12  19  11  

kegg 104  39  33  49  20  38  66  21  23  17  

xmark 109  34  56  291  39  53  83  24  25  20  

nasa 74  36  47  79  35  50  79  22  26  17  

go 152  57  61  249  42  64  98  61  65  35  

citeseer 297  104  82  191  61  74  101  61  60  35  

pubmed 279  89  69  139  54  71  100  65  62  39  

yago 87  60  20  44  24  63  90  22  24  14  

arxiv 3,264  361  1,387  1,607  396  103  131  108  111  57  

unip150m 97  20  57  35  21  38  74  16  22  15  

10citeseerx 361  62  58  146  57  95  133  82  102  54  

05citeseerx 415  68  59  195  59  103  158  94  97  53  

citeseerx 663  45  104  310  91  96  130  95  110  44  

dbpedia 451  318  168  118  147  129  226  85  97  70  

govwild 757  1,488  143  244  402  163  248  126  106  82  

go-unip 213  147  57  75  53  94  147  58  57  40  

10go-unip 224  132  45  80  49  95  130  83  59  43  

twitter 275  651  111  120  151  119  217  142  101  93  

webuk 721  871  451  380  - 184  233  117  114  105  

Table 3: Comparison of query time on equal workload (ms) 

Dataset GRL FR IP+ FL  TF PLL FL+PLL T2H-1 T2H-2 T2H-O 

amaze 167  29  53  49  15  24  48  14  16  12  

vchocyc 148  21  67  49  30  26  45  14  16  13  

kegg 179  34  84  52  18  41  49  16  16  12  

xmark 160  45  181  73  71  44  58  24  23  19  

nasa 231  50  206  149  50  56  60  27  27  21  

go 290  89  244  308  57  75  83  68  65  51  

citeseer 598  222  239  280  80  67  94  67  67  53  

pubmed 620  218  188  252  105  98  119  84  88  73  

yago 339  117  133  121  53  45  68  26  29  21  

arxiv 2,328  393  1,145  1,306  434  78  102  89  96  58  



 

 

 

An Optimized Labeling Scheme for Reachability Queries                                        279 

unip150m 1,222  271  1,248  409  326  159  181  70  64  57  

10citeseerx 1,002  554  320  252  296  184  233  156  157  164  

05citeseerx 1,181  735  365  314  385  200  284  198  204  188  

citeseerx 5,301  891  852  1,952  1,257  174  242  164  167  173  

dbpedia 1,224  298  355  364  2,938  101  170  88  94  80  

govwild 898  1,600  393  171  1,217  195  290  152  151  147  

go-unip 2,523  1,490  478  568  8,738  195  209  92  97  95  

10go-unip 1,112  606  392  471  375  171  191  75  78  79  

twitter 600  824  394  267  197  90  179  136  95  134  

webuk 2,585  974  4,956  2,328  - 179  218  95  136  91  

Table 4: Comparison of index construction time (ms) 

Dataset FR IP+ FL  TF PLL FL+PLL T2H-1 T2H-2 T2H-O 

amaze 3.88  2.54  1.31  4.23  2.00  2.54  1.33  1.33  1.33  

vchocyc 9.05  7.03  2.91  36.85  4.80  5.82  2.21  2.21  2.21  

kegg 2.64  1.55  1.50  3.37  2.20  2.83  1.30  1.30  1.44  

xmark 4.38  3.21  2.20  18.92  5.35  5.72  1.75  1.75  2.85  

nasa 4.59  2.97  2.15  17.76  5.64  5.82  3.47  3.47  3.86  

go 10.45  5.43  3.55  30.54  11.13  11.53  10.61  10.61  11.34  

citeseer 32.16  18.72  7.84  120.29  24.12  25.08  15.75  15.75  16.91  

pubmed 40.59  13.21  5.82  93.27  24.52  22.60  23.07  23.07  21.96  

yago 22.99  8.82  4.50  52.58  7.00  11.86  10.92  10.92  8.95  

arxiv 28.30  33.70  6.26  9,225.31  41.84  39.04  44.60  44.60  44.72  

unip150m 40,089  35,932  23,452  58,441  14,138  36,604  6,146  6,146  6,665  

10citeseerx 1,641  805  595  4,144  1,313  2,070  1,215  1,215  1,199  

05citeseerx 3,360  1,708  1,194  9,551  3,369  4,945  3,333  3,333  3,253  

citeseerx 18,467  9,759  6,161  100,805  10,677  18,022  11,018  11,018  11,135  

dbpedia 8,229  4,778  3,471  12,629  3,681  7,674  3,312  3,312  3,437  

govwild 33,710  10,762  7,584  145,695  11,759  22,304  11,137  11,137  11,162  

go-unip 39,820  12,851  6,849  64,475  15,477  24,320  17,179  17,179  17,345  

10go-unip 2,360  874  517  5,813  1,268  1,998  1,133  1,133  1,093  

twitter 26,714  22,460  11,050  12,875  7,707  18,170  5,492  5,492  5,793  

webuk 34,304  33,114  14,802  - 17,493  32,972  14,788  14,788  15,619  
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Table 5: Comparison of index sizes (MB) 

Dataset GRL FR IP+ FL  TF PLL FL+PLL T2H-1 T2H-2 T2H-O 

amaze 0.21  0.10  0.10  0.07  0.02  0.04  0.09  0.04  0.04  0.06  

vchocyc 0.54  0.20  0.29  0.18  0.31  0.12  0.23  0.08  0.08  0.12  

kegg 0.21  0.10  0.11  0.07  0.02  0.05  0.09  0.04  0.04  0.06  

xmark 0.35  0.16  0.21  0.12  0.12  0.12  0.19  0.09  0.09  0.11  

nasa 0.32  0.15  0.17  0.11  0.12  0.11  0.17  0.08  0.08  0.10  

go 0.39  0.23  0.22  0.13  0.18  0.19  0.27  0.18  0.18  0.22  

citeseer 0.61  0.39  0.32  0.20  0.83  0.28  0.41  0.29  0.29  0.35  

pubmed 0.51  0.33  0.23  0.17  0.80  0.27  0.37  0.28  0.28  0.33  

yago 0.38  0.24  0.18  0.13  0.23  0.19  0.27  0.20  0.20  0.23  

arxiv 0.34  0.22  0.28  0.11  14.66  0.35  0.42  0.36  0.36  0.40  

unip150m 1,433  716  440  478  132  318  604  191  191  287  

10citeseerx 44  21  21  15  45  18  26  16  16  20  

05citeseerx 83  40  38  28  115  36  52  33  33  40  

citeseerx 374  182  151  125  1,523  116  191  108  108  139  

dbpedia 193  122  94  64  52  53  91  48  48  62  

govwild 459  291  194  153  3,123  188  280  166  166  198  

go-unip 399  253  185  133  431  251  331  251  251  278  

10go-unip 27  17  13  9  44  21  27  21  21  23  

twitter 1,037  375  745  346  70  202  410  206  206  279  

webuk 1,302  632  816  434  - 357  618  329  329  419  

5.2 Index construction time and index size 

For index construction time, we have the following observations according to Tab. 4: FL, 

T2H-1 and T2H-2 usually work better than others, the reasons lie in that on one hand, FL 

is a Label+G algorithm, it has the lowest time complexity, on the other hand, both T2H-1 

and T2H-2 has linear time complexity to get the topo-labels, which is used to help find 

block nodes. We can see from the last column of Tab. 1 that the ratio of block nodes is 

usually much less than the number of nodes in the given graph. Based on these block nodes, 

we can quickly get the 2-hop labels. Even though other existing Label+G algorithms have 

smaller time complexity on index construction, they may need more time due to traversing 

several times on the given DAG. For existing algorithm, TF usually needs more time to get 

smallest index size and query time on several datasets, and it cannot work successfully on 

the webuk dataset. We can see from Tab. 5 that even though Label+G algorithms have 

linear index size, our approaches can achieve the best result due to reduced number of 

block nodes to generate 2-hop labels. And both T2H-1 and T2H-2 achieves best results on 

6 datasets. 



 

 

 

An Optimized Labeling Scheme for Reachability Queries                                        281 

By combining the two tables together, we can see that for index construction time and 

index size, no one can beat all others for all datasets. And all our approaches can complete 

the index construction in reasonable time with acceptable index size. Based on this result, 

from Tab. 2 and Tab. 3 we can see that our approaches make significant improvement on 

query performance. 

6 Conclusions 

In this paper, we propose a novel Label-Only labeling scheme to accelerate reachability 

query processing. The idea comes from the fact that index construction is a one-time 

activity, while query testing is a fundamental online graph operation. Considering that 

existing Label+G algorithms are inefficient for reachable queries and existing Label-Only 

algorithms are inefficient for unreachable queries, we propose to use topo-labels to reduce 

the size of 2-hop labels to construct a new Label-Only labels for fast query answering. Our 

experimental results show that our approaches can answer both reachable and unreachable 

queries more efficiently on 19 out of 20 real datasets. 
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