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Abstract: The colour feature is often used in the object tracking. The tracking methods 

extract the colour features of the object and the background, and distinguish them by a 

classifier. However, these existing methods simply use the colour information of the 

target pixels and do not consider the shape feature of the target, so that the description 

capability of the feature is weak. Moreover, incorporating shape information often leads 

to large feature dimension, which is not conducive to real-time object tracking. Recently, 

the emergence of visual tracking methods based on deep learning has also greatly 

increased the demand for computing resources of the algorithm. In this paper, we propose 

a real-time visual tracking method with compact shape and colour feature, which forms 

low dimensional compact shape and colour feature by fusing the shape and colour 

characteristics of the candidate object region, and reduces the dimensionality of the 

combined feature through the Hash function. The structural classification function is 

trained and updated online with dynamic data flow for adapting to the new frames. 

Further, the classification and prediction of the object are carried out with structured 

classification function. The experimental results demonstrate that the proposed tracker 

performs superiorly against several state-of-the-art algorithms on the challenging 

benchmark dataset OTB-100 and OTB-13. 
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1 Introduction 

As one of the basic topics in the field of computer vision, visual tracking aims to find and 

mark the position of the tracked object in each frame of video sequences. Visual tracking 

has important applications and very promising prospects in military guidance, video 

surveillance, medical diagnosis, product testing, virtual reality and many other fields 

[Ross, Lim, Lin et al. (2008); Mei and Ling (2010); Kwon and Lee (2010)]. Recently, 

great progress has been made in the research of visual tracking, and some achievements 

have been put into practical application. However, under the influence of factors such as 

deformation, light, fast motion, occlusion and complicated background, it is still a 
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challenge to track the target efficiently in real-time. 

A lot of work has been done on the task of visual tracking. Existing methods of tracking 

can be divided into three categories, namely, generating, discriminative and deep learning 

based methods. The generation method treats the tracking task as a template matching 

problem. The generate tracker searches for potential target locations that most closely 

resemble the appearance of the generated model. An object is usually represented as a set 

of base vectors in a series of templates or subspaces. In recent years, there are many 

generation-based visual tracking algorithms, frameworks and solutions proposed [Ross, 

Lim, Lin et al. (2008); Mei and Ling (2010); Kwon and Lee (2010); Li, Hu, Zhang et al. 

(2008); Liu, Huang, Yang et al. (2011); Xing, Gao, Li et al. (2013); Zhang, Zhang, Yang 

et al. (2012)]. A tracking algorithm using a local sparse appearance model and K-

selection was proposed in Liu et al. [Liu, Huang, Yang et al. (2011)], which was robust to 

changes in appearance and drift. Ross et al. [Ross, Lim, Lin et al. (2008)] presented an 

appearance-based tracker that incrementally learn a low dimensional eigenbasis 

representation for robust object tracking. Xing et al. [Xing, Gao, Li et al. (2013)] 

developed the template update problem as online dictionary learning and proposed a 

robust object tracking method with online multi-lifespan dictionary learning. While the 

discriminative method model visual tracking task as a classification problem, this method 

is also commonly known as tracking-by-detection methods. What differs from the 

generative model is that tracking the maximum classification score between object and 

background is the goal of the discriminative model. Hare et al. [Hare, Golodetz, Saffari et 

al. (2016); Zhang, Zhang, Liu et al. (2014); Kala, Matas and Mikolajczyk (2010); 

Babenko, Yang and Belongie (2011); Grabner, Leistner and Bischof (2008); Avidan 

(2004); Avidan (2007); Yao, Shi, Shen et al. (2012, 2013); Yao (2015); Yao, Xia, Zhang 

et al. (2017); Collins, Liu and Leordeanu (2005)] are some attempts and achievements in 

recent years to solve the visual tracking task with the discriminative method. 

Convolutional neural networks (CNNs) perform well in many areas of computer vision 

by means of their powerful feature representation capabilities, such as medical image 

processing, biometric identification and visual tracking. Hong et al. [Hong, You, Kwak et 

al. (2015); Ma, Yang, Zhang et al. (2015); Qi, Zhang, Qin et al. (2016); Wang, Ouyang, 

Wang et al. (2015, 2016)] show the state-of-the-art results of deep-learning-based visual 

tracking methods. A novel visual tracking algorithm based on pre-trained CNN was 

proposed in Hong et al. [Hong, You, Kwak et al. (2015)]. With the CNN features and the 

learning recognition model, Hong et al. calculated the target-specific saliency map by 

back-projection, highlighting the differentiating target regions in the spatial domain. 

Wang et al. [Wang, Ouyang, Wang et al. (2016)] proposed a tracking algorithm using a 

full convolutional network that is pre-trained on image classification tasks after studying 

some important properties of CNN features in the perspective of visual tracking. And 

then, they regarded the online training process for CNNs as sequentially learning an 

optimal ensemble of base learners and proposed a sequential training method for CNNs to 

effectively transfer pre-trained deep features for online applications in Wang et al. [Wang, 

Ouyang, Wang et al. (2016)]. Although these methods have achieved considerable 

performance, they usually come at the cost of time and computational resources. 

Tracking-by-detection is currently the most popular and effective framework for visual 

tracking tasks, and it obtains information about the target from each detection online. 



 

 

 

Real-Time Visual Tracking with Compact Shape and Color Feature                       511 

Collins (DLSSVM) algorithm which approximates non-linear kernels with explicit 

feature maps. Avidan [Avidan (2004)] proposes a tracker based on offline Support Vector 

Machine (SVM). Then, Avidan [Avidan (2007)] uses an online boosting method to 

classify object and background. Babenko et al. [Babenko, Yang and Belongie (2011)] 

propose a tracker based on Multiple Instance Learning (MIL). The MIL is used to handle 

ambiguously labeled positive and negative data obtained online to alleviate visual drift. 

Hare et al. [Hare, Golodetz, Saffari et al. (2016)] propose a structural learning based 

tracking algorithm. Motivated by the successful of Struck and learned some tricks form 

[Atluri (2004)], Yao et al. [Yao, Shi, Shen et al. (2012)] propose weighted online 

structural learning for visual tracking to deal with the unbalanced weight problem of 

samples during tracking. 

Recently, a group of correlation-filter (CF) based tracker [Bolme, Beveridge, Draper et al. 

(2010); Bertinetto, Valmadre, Golodetz et al. (2015); Danelljan, Khan, Felsberg et al.  

(2014); Zhang, Ma and Sclaroff (2014) (2014); Henriques, Rui, Martins et al. (2014) 

(2014)] has drawn much attention due to its significant computational efficiency. CF 

achieves real-time training and detection of densely sampled instances and high-

dimensional features by using Fast Fourier Transform (FFT). Bolme et al. [Bolme, 

Beveridge, Draper et al. (2010)] describe their pioneering work and, adopt CF to visual 

tracking for the first time. Later, in order to improve the tracking performance, 

researchers also propose some extensions. Henriques et al. [Henriques, Rui, Martins et al. 

(2014)] propose a CSK method based on illumination characteristics. In addition, Ma et 

al. [Ma, Yang, Zhang et al. (2015)] propose a long-term tracker to learn the discriminant-

dependent filters used to estimate the object’s translation and scale variations. Danelljan 

et al. [Danelljan, Häger, Khan et al. (2014)] calculate the fast scale estimation problem by 

learning the discriminant CF based on the scale pyramid representation. Subsequently, in 

order to solve the unwanted boundary effect introduced by the periodic hypothesis of all 

cyclic shifts, Danelljan et al. [Danelljan, Häger, Khan et al. (2015)] introduce spatial 

regularization components into learning, and punish the CF coefficients according to 

spatial locations to achieve excellent tracking accuracy. 

The colour feature is often used in the visual tracking [Rez, Hue, Vermaak et al. (2002); 

Possegger, Mauthner and Bischof (2015)]. The method [Danelljan, Khan, Felsberg et al. 

(2014)] extracts the colour features of the object and the background area, and 

distinguishes them by correlation filter based on the kernel function; then the object 

tracking of the video sequence is achieved. However, this method simply uses the colour 

information of the object pixel and does not consider the shape feature of the object, so 

that the description capability is limited. Moreover, incorporating shape information often 

leads to large feature dimension, which is not conducive to real-time object tracking. In 

addition, the construction of least squares classifier based on correlation filter can only be 

used for binary classification tasks and cannot accurately describe occlusion information of 

the object. The above problems will cause drift of visual tracking in complicated actual 

scenarios. 

To handle the aforementioned problem, this paper presents a real-time visual tracking 

method with the compact shape and colour feature. In this paper, compact shape and 

colour features are formed by fusing shape and colour features of candidate object 
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regions, which reduced the dimension through the Hash function. Then, a structural 

classification function is presented for object classification and prediction. The proposed 

method is able to enhance the description ability of object appearance model, while the 

structural classification can improve the accuracy of the object classification, which can 

effectively avoid the visual tracking drift and improve the tracking performance. 

2 The proposed method 

In this section, we first introduce the structural classifier for visual tracking. Next, we 

present the shape and colour feature. Thirdly, we describe how to learn the compact 

representation of features. Finally, we use the proposed online learning method to build our 

tracking approach. The overall framework of the proposed tracker is presented in Fig. 1. 

 

Figure 1: Overview of real-time visual tracking with compact shape and colour feature 

2.1 Structural classifier for visual tracking 

At the first frame of the sequence, the bounding box ( )1 1 1 1 1, , ,B c r w h=  of the object is 

given manually, where 
1B  is the position of the object, 

1c , 
1r ,

1w  and 
1h  are the column 

coordinates, row coordinates, width and height of the upper left corner. The bounding 

box tB  represents the position of the object at frame t , and then we describe the 

displacement of the target using offset ( ), , ,t t t t ty c r w h Y=      . The tracking 

procedure starts from the second frame, the accurate bounding box is estimated for the 
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object location. The boundary box 
tB  of the object in frame t can be obtained by: 

1t t tB B y

−= + , ( )arg max ,t t
y Y

y f x y



= ,                          (1) 

where ( ) ( ), , ,t tf x y w x y= denotes a structured classification function, and 
tx  

represents the frame t  in the video sequence. ( ),tx y  is a vector of k  dimension, 

which represents the compact shape and colour feature of the candidate object region and 

will be constructed by Step 3 in the Fig. 1. The parameter w  is a k -dimensional vector 

which initialized with k  random real numbers between 0 and 1, and it will be updated 

online at Step 4 by learning samples of each frame. 

2.2 Shape and color feature 

An intensive sampling method is used to get samples close to the real object bounding 

box, and the corresponding image regions are cropped as training sample to extract the 

shape and colour features of these samples. 

The dense sampling method is designed as follows: The real object bounding box of the 

current frame t  is 
tB , therefore, the true object offset is ( )0,0, ,t t ty w h=   , in this 

paper, the fixed object size is set as 0, 0t tw h =  = . Taking the current object offset in 

a circle which ( )0,0  as the centre and S  as the radius ( 30S =  in this paper), we sample 

M  offsets in this circle, which is ( ) 2 2 2, ,0,0 :Y y c r c r s= =    +  . According 

to the definition of Eq. 1, the object bounding box can be obtained by adding M  offsets 

y  of the samples to the 
tB , and we take M  image regions obtained by cropping these 

object bounding boxes in frame t of image 
tx  as training samples.  

Next, we will extract the shape features for each training samples. In this paper, we use 

Haar-like features to describe the shape information of the object. The Haar-like feature 

is a commonly used feature description operator in the field of visual tracking. This paper 

uses three basic types of features, which are divided into two rectangular features, three 

rectangular features and diagonal features. The result of the sum of all the pixel values of 

a class of rectangular part in the three types of matrix image regions is subtracted from 

the sum of all the pixel values of the other type of rectangular part is a single eigenvalue. 

In this paper, the integral graph is used to speed up the calculation of this eigenvalue. 

Finally, we combine the eigenvalues of all three types of features into a vector, and build 

the Haar-like feature of the image region. 

The colour information of each training sample is extracted and merged with the shape 

feature into a new feature vector. The colour information is extracted as follows: The 

colours are divided into 11 categories (black, blue, brown, grey, green, orange, pink, 

violet, red, white and yellow). For the three types of rectangular of Haar-like feature 

obtained from the previous step, we count the probability of the RGB values of all pixels 

in each rectangle, and then we put the 11 probability values into a colour vector. Finally, 

we put this colour vector after the Haar-like feature, thus we can get the new features 

containing the shape and colour information. The colour vector CN and all the 
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probabilities of mapping to the 11 colours from the RGB values of all the pixels in a 

rectangle ( )|ip cn I  is defined by: 

( )  ( ) ( )( )
11

1

1
| , | |i i c I ii

CN p cn I p cn I p cn g c
N

=
= =  ,             (2)  

where 
icn  is the i -th colour of the 11 categories, c  is the coordinates of the pixels in the 

rectangle I , N  is the total number of pixels in the rectangle I , and ( )g c  is the Lab 

colour space value of the pixel c , and we can get ( )( )|ip cn g c  from the common 

colour name mapping. 

2.3 Compact representation of feature 

The feature vector extracted from the second step, which contains the shape and colour 

information of the sample, has a high dimension. Using this feature directly will increase 

the computational complexity of the object tracking, which is not conducive to real-time 

tracking. In this paper, the local sensitive hash is used to map the high-dimensional 

features obtained in step two to generate compact colour-coded feature vectors ( ),tx y . 

The is described as follows: Suppose the dimension of the eigenvector obtained in Step 2 

of Fig. 1 is d , that is, the characteristic of each sample is a d-dimension vector. In order 

to map high-dimensional d-dimension vectors into m-dimension ( m d in this paper 

100m = ) compact binary coding features. We define a hash function family H  

composed of m Hash functions ( )ha  . More specifically, a random vector 
d  is 

generated as a hyperplane from the d-dimension Gaussian distribution ( )0,1N , then the 

hash function ( )ha   is defined as: 

 ( )
1 0

0 0
v

v q
ha q

v q

 
= 

 
,                                                                                               (3)  

where 
dq  is the eigenvector of the single sample obtained in Step 2 of Fig. 1. 

Constructing m hash functions by the above method and substituting q into these Hash 

functions, a binary coded string of m dimensions can be obtained. That is, a compact 

coded feature vector is constructed. Note that the above m  Hash functions are generated 

only in the first frame of the video sequence, and will continue to be used in the 

following frames. 

2.4 Online learning 

In this step, we will learn and update structural classification functions. Object tracking is 

an online update process for dynamic data flow. The object tracking method needs to 

learn and update the parameters from the training samples to adapt to the new frame. This 

step updates the parameters w of the structured classification function ( ),tf x y  in Eq. 1 

using the compact colour-coded features of the samples generated in Step 3, and then we 

use the updated w to estimate the optimal object position in the new video frame. 

The method of updating the parameter w is described in detail below. Substituting M 
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samples represented by a compact coding feature into Eq. (4), new parameter w is 

obtained by optimizing Eq. (4): 

2

1min
2

T

t t
w

w


=+
,                 (4) 

( ) ( ) ( ). . : 0; , : , , , , , ,t t t t t t ts t t t y y w x y w x y y y         −     −
 

where   is the regularization coefficient, in this case, the 
t  is the relaxation of variables, 

marking cost   is used to measure the coverage of the bounding box, defined as: 

( )
( ) ( )

( ) ( )
1 1

1 1

, 1
t t t

t

t t t

B y B y
y y

B y B y

− −

− −

+  +
 = −

+  +
                                                                           (5) 

The sub-gradient descent method is used to iteratively optimize the Eq. (4) to determine 

the final value of the new parameter w. Assuming that the current frame is the frame t, 

the sub-gradient of the Eq. (4) with respect to the parameter 
tw  is: 

( ) ( ) ( ), , , , 0t t t t t t t tw y y w x y x y     = −   + −   ,                                (6) 

where ( ) ( ), ,t t t tx y x y  = − , ( )   is an indicator function that returns 1 if the 

condition is met and returns 0 otherwise. In this way, the structural classification function 

parameters of the t+1 frame 
1t t t tw w +  −  , ( )1/t t =  is updated step distance, the 

above equation can be written as: 

( ) ( ) ( ) ( )1

1
1 , , , , , 0t t t t t t t t t tw w y y w x y w x y

M
    +

  − +   + −  
.    (7) 

The eigenvector of M samples calculated in Step 3 are respectively substituted into the 

formula (7), and the recalculated one 
1tw +

 is the updated structural classification 

parameter. The stochastic sub-gradient method [Shwartz, Singer and Pegasos (2011)] is 

guaranteed to converge to the optimal SVM solution. 

2.5 Real-time visual tracking 

In this section, we will generate the candidate object region, and use structural 

classification function to estimate the optimal object region, and finally determine the 

object location. When the frame t+1 image arrives, the tracking method requires 

sampling close to the object location of the last frame, and estimates the highest 

classification scores in the samples by using the structured classification function which 

has been updated parameters 
1tw +

, and then the region that corresponding to this sample 

is the optimal target location. After getting the new object position, we turn to Step 2 

until the video sequence ends. The detailed processing is described as follows: 

First of all, we assume that tB  is the object boundary box of the last frame in the 

sequence, offset ( ) 2 2 2

1 , ,0,0 :ty y c r c r S+ = =    +   is sampled in a circle with 
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( )0,0  as the centre and S  as the radius ( 60S = in this paper). P  bounding boxes of 

candidate object ( )tB y+  are obtained by adding 
tB  to the sampled P  offsets y . Then 

we take the corresponding P  image region cropped from the current frame t+1 image 

1tx +
 as the candidate object region. 

Second, the compact shape and the colour feature vector of P  candidate target regions 

( ),tx y  is calculated by using the feature generation method described in Steps 2 and 3. 

Eq. 8 is used to calculate the optimal offset: 

( ) ( )( )
1 1

1 1 1 1arg max , arg max , ,
t t

t t t t
y Y y Y

y f x y f w x y
+ +



+ + + +
 

= = .                                            (8) 

The position of the current frame target 1 1t t tB B y

+ += +  is obtained according to the 

target boundary box 
tB  and the calculated optimal migration of Eq. (8). 

3 Experiments 

We conducted our experiments with the most extensive and authoritative datasets OTB-

13 [Wu, Lim and Yang (2013)] and OTB-100 [Wu, Lim and Yang (2015)]. All these 

sequences are annotated with 11 attributes which cover various challenging factors: Such 

as scale variation (SV), occlusion (OCC), illumination variation (IV), motion blur (MB), 

deformation (DEF), fast motion (FM), out-of-plane rotation (OPR), background clutters 

(BC), out-of-view (OV), in-plane rotation (IPR) and low resolution (LR). We follow the 

evaluation protocol provided by the benchmark [Wu, Lim and Yang (2015)]. 

Four metrics with one-pass evaluation (OPE) are used to evaluate all the compared 

trackers: 1) bounding box overlap, which is measured by VOC overlap ratio (VOR); 2) 

centre location error (CLE), which is computed as the average Euclidean distance 

between the ground truth and the estimated centre location of the target; 3) distance 

precision (DP), which indicates the relative number of frames in the sequences where the 

centre location error is within a given threshold; and 4) overlap precision (OP), which is 

defined as the percentage of frames where VOR is larger than a certain threshold. 

In order to evaluate the proposed method, we use the two evaluation indicators mentioned 

in Wu et al. [Wu, Lim and Yang (2013)]. We use the precision plot to measure the overall 

tracking performance, which shows the percentage of frames whose position is within a 

given true threshold distance. As a representative precision score for each tracker, we use 

a score of threshold=20 pixels. The success plot is defined as the area under the curve 

(AUC) for each success graph, which is the average of the success rates corresponding to 

the overlap threshold of the samples. Our visual tracking method is implemented in 

MATLAB (R2017a) on a PC with a 3.60 GHz CPU and 12 GB of RAM. The average 

running speed of our tracker is 0.15 second per frame. 
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Figure 2: Overall distance precision plot (left) and overlap success plot (right) with one-

pass evaluation (OPE) over 100 sequences (OTB-100). The legends show the precision 

scores and AUC scores for each tracker. The top performer in each measure is shown in 

red, and the second and third best are shown in blue and green, respectively 

We evaluate our tracker with 11 state-of-the-art trackers designed with conventional 

handcrafted features including DLSSVM [Ning, Yang, Jiang et al. (2016)], DSST 

[Danelljan, Häger, Khan et al. (2014)], STAPLE [Bertinetto, Valmadre, Golodetz et al. 

(2015)], SAMF SAMF [Li and Zhu (2014)], KCF [Henriques, Rui, Martins et al. (2014)], 

MEEM [Zhang, Ma and Sclaroff (2014)], STRUCK [Hare, Golodetz, Saffari et al. 

(2016)], TLD [Kalal, Matas and Krystian (2010)], VTD [Kwon and Lee (2010)], CXT 

[Dinh, Vo and Medioni (2011)], CSK [Rui, Martins and Batista (2012)]. Among them, 

Struck and DLSSVM are structured SVM based methods, Staple, KCF, DSST, CSK and 

SAMF are CF based tracers, MEEM is developed based on regression and multiple 

trackers. Fig. 2 shows the overall precision and success plots on OTB-100. 

Table 1: Comparison with 11 state-of-the-art trackers on 100 sequences in terms of DP, 

OP, CLE, and VOR 

 Ours DLSSVM DSST VTD STAPLE SAMF TLD KCF MEEM STRUCK CXT CSK 

DP 0.80 0.76 0.68 0.51 0.78 0.75 0.60 0.70 0.78 0.64 0.55 0.52 

OP 0.74 0.62 0.60 0.40 0.71 0.67 0.50 0.55 0.62 0.52 0.46 0.42 

CLE 34.48 32.85 50.34 67.41 31.42 36.39 60.70 44.75 27.71 47.03 67.41 304.02 

VOR 0.61 0.54 0.52 0.37 0.59 0.56 0.43 0.48 0.53 0.47 0.42 0.39 
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Figure 3: Overall distance precision plot (left) and overlap success plot (right) with one-

pass evaluation (OPE) over 51 sequences (OTB-13). The top performer in each measure 

is shown in red, and the second and third best are shown in blue and green, respectively 

Due to the lack of benchmark datasets and evaluation methods, the results of algorithms 

such as TLD, VTD, CXT, and CSK are not satisfactory with the highest DP indicator is 

0.60. With the solution to the key issues of the benchmark and the presentation of some 

advanced methods (correlation filtering and deep learning), the performance of the 

algorithm has been greatly improved and the lowest index of DP has reached 0.64. 

Without comparing to our method, DLSSVM, STAPLE, MEEM, and SAMF have 

relatively competitive performance among the 11 methods. What is worth noting is the 

performance of MEEM in CLE, which is mainly owing to the multi-expert restoration 

program to solve the problem of model drift in online tracking. Through comparison, we can 

find that the tracker we proposed performs better than all the methods. As shown in Tab. 1, 

our algorithm consistently performs better than 11 recently proposed methods in DP, OP, 

CLE, and VOR on OTB-100. In addition, we also report our results on the OTB-13 dataset, 

as shown in Fig. 3. The proposed method performs better than the competing methods. 

4 Conclusion 

This paper proposed a structured object tracking method with compact shape and colour 

feature. In order to enhance the descriptive ability of the features, we added the shape 

features of the tracking object and fused them with the colour features to form new 

features. However, the direct use of such high-dimensional features will increase the 

computational complexity of object tracking. To alleviate computational cost, we used 

hashing method to reduce the dimensions of the new features and generate a compact 

representation for shape and colour feature of the object. Then we used the structured 

classification function to learn and update online to estimate the optimal object region. 

Through experimental verification, we can find that the proposed method achieves 

promising performance compared with the state-of-the-art visual tracking methods. 
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