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Abstract: In this paper, we propose a novel coverless image steganographic scheme 

based on a generative model. In our scheme, the secret image is first fed to the generative 

model database, to generate a meaning-normal and independent image different from the 

secret image. The generated image is then transmitted to the receiver and fed to the 

generative model database to generate another image visually the same as the secret 

image. Thus, we only need to transmit the meaning-normal image which is not related to 

the secret image, and we can achieve the same effect as the transmission of the secret 

image. This is the first time to propose the coverless image information steganographic 

scheme based on generative model, compared with the traditional image steganography. 

The transmitted image is not embedded with any information of the secret image in this 

method, therefore, can effectively resist steganalysis tools. Experimental results show 

that our scheme has high capacity, security and reliability. 
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1 Introduction 

Most of current information steganographic techniques [Qin, Ji, Chang et al. (2018); Ma, 

Luo, Li et al. (2018); Qin, Chang and Hsu (2015); Zhou, Sun, Harit et al. (2015); Zhou, 

Wu, Yang et al. (2017); Xia, Li and Wu (2017)] apply the cover data (such as digital 

image, audio and video) as a disguise for the secret data to be transmitted, which embed 

the secret data into cover data. The popularization of personal computers and the 

proliferation of digital images on the Internet provide convenient conditions of cover data 

for conducting information Steganography [Qin, Ji, Zhang et al. (2017); Qin, Chang and 

Chiu (2014)]. However, on the other hand, the technique for detecting hidden data, also 

called as steganalysis, has also been rapidly developed, which is mainly based on finding 

statistical anomaly of cover data caused by data embedding. Hence, steganalysis can be 

considered as a serious threat to steganography. According to different hiding strategies 

[Zhang, Qin, Zhang et al. (2018); Qin, Ji, Zhang et al. (2017); Qin, Chang and Hsu 

(2015)], the commonly used steganographic schemes are classified into two types: Spatial 

domain schemes and transform domain schemes. The spatial domain hiding method has 
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the adaptive LSB hiding method [Yang, Weng, Wang et al. (2008)], the spatial adaptive 

steganography algorithm S-UNIWARD [Holub, Fridrich and Denemark (2014)], HUGO 

[Pevny, Filler and Bas (2010)], WOW [Holub and Fridrich (2012)] and so on. The 

transform domain method is to modify the host image data to change some statistical 

features to achieve data hiding, such as the hidden method in DFT (discrete Fourier 

transform) domain [Ruanaidh, Dowling and Boland (1996)], DCT (discrete cosine 

transform) domain [Cox, Kilian, Leighton et al. (1997)], and DWT (discrete wavelet 

transform) domain [Lin, Horng, Kao et al. (2008)]. These methods inevitably leave some 

modifications to the carrier [Yuan, Xia and Sun (2017); Chen, Chen and Wu (2017)]. In 

order to fundamentally resist the detection of various detection algorithms, this paper 

presents a new coverless image information hiding method based on generative model. 

As shown in Fig. 1, we only need to deliver a meaning-normal image which is not related 

to the secret image to the receiver, so that the receiver can generate an image visually the 

same as the secret image without worrying about the analysis of the steganography, even 

less attack. 

 

Figure 1: The framework of the research content 

As mentioned above, we propose a new scheme to hide image information, which can 

generate visually the same image as secret image by sending a generated image that is not 

related to the secret image. The transmitted image is only a normal-meaningful image 

rather than the image which is embedded any secret information, and also achieve the 

same effect as transferring the secret image. This method can effectively resist 

steganalysis tools, and greatly improves the security of the image. To summarize, the 

major contributions of our work as below: 

(1) We do not need to pass the secret image. On the contrary, we transmit a meaning-

normal image which is completely unrelated to the secret image. This method has high 

security. 

(2) The image we transmit does not embed any secret information, it is a normal image, 

and the image steganographic analysis does not work. 

(3) As long as the training is enough, this effect can be achieved and the capacity is large. 

The rest of this paper is organized as follows. Section II reviews the related works about 

generative models. The proposed coverless steganographic scheme for digital images is 

described in Section III. Experimental results and analysis are given in Section IV, and 

Section V concludes the paper. 
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2 Related works 

Restricted Boltzmann Machines (RBMs) [Smolensky (1986)], deep Boltzmann machines 

(DBMs) [Srivastava and Salakhutdinov (2012)] and their numerous variants are 

undirected graphical models with latent variables. The interactions within such models 

are represented as the product of unnormalized potential functions, normalized by a 

global summation or integration over all states of the random variables. This quantity and 

its gradient are intractable for all but the most trivial instances, although they can be 

estimated by Markov chain Monte Carlo (MCMC) methods. Mixing poses a significant 

problem for learning algorithms that rely on MCMC [Bengio, Mesnil, Dauphin et al. 

(2013); Bengio, Laufer, Alain et al. (2014)]. Deep belief networks (DBNs) [Hinton, 

Osindero and Teh (2006)] are hybrid models containing a single undirected layer and 

several directed layers. While a fast approximate layer-wise training criterion exists, 

DBNs incur the computational difficulties associated with both undirected and directed 

models. Variational Auto-Encoders (VAEs) [Glorot, Bordes and Bengio (2012)] and 

Generative Adversarial Networks (GANs) [Bengio, Yao, Alain et al. (2013)] are well 

known to us. VAEs focus on the approximate likelihood of the examples, and they share 

the limitation of the standard models and need to fiddle with additional noise terms. Ian 

Goodfellow put forward GAN [Goodfellow, Pougetabadie, Mirza et al. (2014)] in 2014. 

Goodfellow theoretically proved the convergence of the algorithm, and when the model 

converges, the generated data has the same distribution as the real data. GAN provides a 

new training idea for many generative models and has hastened many subsequent works. 

GAN takes a random variable (it can be Gauss distribution, or uniform distribution 

between 0 and 1) to carry on inverse transformation sampling of the probability 

distribution through the parameterized probability generative model (it is usually 

parameterized by a neural network model). Then a generative probability distribution is 

obtained. The GAN model includes a generative model G and a discriminative model D. 

The training objective of the discriminative model D is to maximize the accuracy of its 

own discriminator, and the training objective of generative model G is to minimize the 

discriminator accuracy of the discriminative model D. The objective function of GAN is 

a zero-sum game between D and G and also a minimum -maximization problem. GAN 

adopts a very direct way of alternate optimization, and it can be divided into two stages. 

In the first stage, the discriminative model D is fixed, the generative model G is 

optimized to minimize the accuracy of the discriminative model. In the second stage, the 

generative model G is the fixed in order to improve the accuracy of the discriminative 

model D. As a generative model, GAN is directly applied to modeling of the real data 

distribution, including generating images, videos, music and natural sentences, etc. 

Because of the mechanism of internal confrontation training, GAN can solve the problem 

of insufficient data in some traditional machine learning. GANs offer much more 

flexibility in the definition of the objective function, including Jensen-Shannon, and all f-

divergences [Hinton, Srivastava, Krizhevsky et al. (2012)] as well as some exotic 

combinations. Therefore, it can be used in semi-supervised learning, unsupervised 

learning, multi-view learning and multi-tasking learning. In addition, it has been 

successfully used in reinforcement learning to improve its learning efficiency. Although 

GAN is applied widely, there are some problems with GAN, difficulty in training, lack of 

diversity. Besides, generator and discriminator cannot indicate the training process. On 
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the other hand, training GANs is well known for being delicate and unstable. The better 

discriminator is trained, the more serious gradient of the generator disappears, leading to 

gradient instability and insufficient diversity. WGAN (Wasserstein Generative 

Adversarial Networks [Arjovsky and Bottou (2017); Arjovsky, Chintala and Bottou 

(2017)]) is an improvement to GAN, and it applies Wasserstein distance instead of JS 

divergence in the GAN. Compared to KL divergence and JS divergence, the advantage of 

Wasserstein distance is that it can still reflect their distance even if there is no overlap 

between the two distributions. At the same time, the problem of training stability and 

process indicating are solved. 

Therefore, this paper chooses Wasserstein GAN so as to guarantee training stability 

instead of GAN. It is no longer necessary to carefully balance the training extent between 

generator and discriminator. It basically solves the problem of collapse mode and ensures 

the diversity of samples. 

3 Proposed scheme 

The WGAN model is applied to generate the handwritten word by feeding the random 

noise z, but when the random noise z is changed to a secret image img, the model can still 

generate the meaning-normal and independent image IMG’ which is not related to the 

secret image we want to transmit. These several images taken from the standard set of 

images were evaluated in the paper, they are Lena, Baboon, Cameraman and Peppers, 

and they have the same size as 256 by 256. The feed is the secret image, and we train the 

generative model database through the WGAN, then it can generate a meaning-normal 

and independent image which is not related to the secret image. So we transmit the 

meaning-normal image to the receiver, and this generated image is fed to the generative 

model database to generate another generated image visually the same as the secret image. 

The flow charts of the whole experiment are shown in Fig. 2 and Fig. 3. 

 

Figure 2: The flow chart of WGAN 

 

Figure 3: The flow chart of generative model 

D  and G play the following two-player minimax game with value function ( ; )V G D
 
in 

WGAN: 
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~ ( ) ~ ( )min max ( , ) [log ( )] [log(1 ( ( )))]
zx pdata x z p z

G D
V D G E D x E D G z= + −

                          (1)
  

( )D x  represents the probability that x  came from the data rather than pg . We train D  

to maximize the probability of assigning the correct label to both training examples and 

samples from G .We simultaneously train G  to minimize log(1 ( ( )))D G z− .We first 

make a gradient ascent step on D  and then a gradient descent step on G , then the update 

rules are: 

Keeping the G  fixed, update the model D  by 
D D D DL   +   with 

~ ( ) ~ ( ){ [log ( , )] [log(1 ( ( , ), ))]}D x Pdata x D z Pnoise z G D

D

L E D x E D G z  



 = + −


         (2)

  

Keeping the D  fixed, update the model G  by 
G G G GL   −   where 

~ ( )[log(1 ( ( , ), ))]G z Pdata z G D

G

L E D G z  



 = −


                                                                      (3)

  

Wasserstein distance is also called the EM (Earth-Mover) distance 

( , )~
~ ( , )

( , ) inf [ ]
r g

r g x y
P P

W P P E x y


= −
             (4)

 

Where ( , )r gP P  denotes the set of all joint distributions ( , )x y whose marginal are 

respectively 
rP  and 

gP .Intuitively, ( , )x y  indicates how much “mass” must be 

transported from x  to y  in order to transform the distributions 
rP  into the distribution 

gP . The EM distance then is the “cost” of the optimal transport plan. 

4 Experimental results and analysis 

In this paper, 5,000 images are randomly selected from the CelebA dataset to experiment, 

and the results show that the coverless image information steganography based on 

generative model method can be implemented well. The sender and receiver share the 

same dataset and the same parameters. As shown in Fig. 4 and Fig. 5, we feed the secret 

image img into the generative model, generating the meaning-normal and independent 

IMG’ which is not related to the secret image we want to transmit. 
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Figure 4: Training generative model G1, G2 

 

Figure 5: Training generative model G3, G4 

As shown above, we choose Lena as the secret image img, it can generate the IMG’ 

visually the same as Baboon we want to transmit. In the meantime, we also trained 

Baboon to generate the IMG’ visually the same as Lena through the WGAN. We save the 

corresponding generative model G1 and G2 of generating visually the same as Baboon 

and Lena respectively. Using the same method, we take the Cameraman and Peppers as 

the secret image to experiment respectively, and they can generate corresponding 

Peppers and Cameraman. We also save the corresponding generative model G3 and G4 

of generating visually the same as Peppers and Cameraman respectively, and apply them 

to the next experiment, instead of the WGAN. We put the generative model G1, G2, G3 

and G4 of generating visually the same as Baboon, Lena, Peppers and Cameraman in a 

database respectively, so that the generative model database is built. Since both the 

sender and the receiver train well the generative model database, we perform experiments 

as shown in Fig. 6 and Fig. 7. 
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Figure 6: Training generative model database for sender 

 

Figure 7: Training generative model database for receiver 

As shown above, when the sender wants to transmit the secret image Lena, the generated 

image Baboon can be transmitted to the receiver to generate a generated image visually 

the same as the secret image Lena, similarly, if you want to transmit Baboon, you can 

transmit the generated image Lena, if you want to transmit Cameraman, you can transmit 

the generated image Peppers, if you want to transmit Peppers, you can transmit the 

generated image Cameraman. In this experiment, we have successfully achieved the 
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effect of coverless image steganographic scheme based on a generative model by feeding 

a secret image to generate a meaning-normal and independent image which is not related 

to the secret image we want to transmit, and when the secret image is given, the 

transmitted image is unique and specific. Consequently, the image steganographic 

scheme proposed in this paper is feasible. In practical application, we are more concerned 

with the content of the image rather than the pixels in addition to professional image 

workers, this scheme can produce a meaning-normal and independent image which is not 

related to the secret image we want to transmit, which can satisfy most requirements, 

thereby, we suppose that if you want to send a secret image, you only need to transmit a 

meaning-normal and independent image to the receiver, the receiver only need to feed 

transmitted image to the generative model database, generate an image visually the same 

as the secret one, no needing direct transmission of the secret image. Besides, the 

transmitted image does not embed any information of the secret image, so it does not give 

visual cues to attackers, and the image steganography analysis does not work. This 

scheme can resist detection of all the existing steganalysis tools, and improve the security 

of the image. 

The experimental results show that the image is completely different from the secret image 

based on the method of generative model. The attacker cannot know what the secret image 

to be transmitted is, and the generated image is visually the same as the secret image, which 

meet the practical application standard, In addition to the visually qualitative analysis, the 

histogram of Fig. 8 can also obtain the same quantitative analysis results.  

 
Figure 8: The histogram of the generated image and secret image distribution 

As shown in Fig. 8, the red portion represents the secret image, and the blue portion 

represents the generated image. It can be seen from this histogram that the distribution of 

the generated images and the secret images are almost identical, and the small differences 

are almost negligible. 
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5 Conclusion 

To sum up, the paper proposed the coverless image steganographic scheme based on a 

generative model. An image visually the same as the secret image is generated by 

transmitting a normal-meaningful image to the receiver. A fed image corresponds 

uniquely to a secret image. This method is practical. Therefore, it can be applied to image 

steganography and image protection. 
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