
Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.73-89, 2018

 www.techscience.com/cmc

 A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia

Systems

Hangjun Zhou1, 2, *, Guang Sun1, Sha Fu1, Wangdong Jiang1, Tingting Xie3 and

Danqing Duan1

Abstract: In the large-scale Distributed Virtual Environment (DVE) multimedia systems,

one of key challenges is to distributedly preserve causal order delivery of messages in

real time. Most of the existing causal order control approaches with real-time constraints use

vector time as causal control information which is closely coupled with system scales. As

the scale expands, each message is attached a large amount of control information that

introduces too much network transmission overhead to maintain the real-time causal

order delivery. In this article, a novel Lightweight Real-Time Causal Order (LRTCO)

algorithm is proposed for large-scale DVE multimedia systems. LRTCO predicts and

compares the network transmission times of messages so as to select the proper causal

control information of which the amount is dynamically adapted to the network latency

variations and unconcerned with system scales. The control information in LRTCO is

effective to preserve causal order delivery of messages and lightweight to maintain the

real-time property of DVE systems. Experimental results demonstrate that LRTCO costs

low transmission overhead and communication bandwidth, reduces causal order

violations efficiently, and improves the scalability of DVE systems.

Keywords: Distributed computing, distributed virtual environment, multimedia system,

causality violation, causal order delivery, real time.

1 Introduction

With the rapid development of Cloud Computing, Big Data, Artificial Intelligence and

Internet technologies, large-scale multimedia systems are increasingly implemented

on the Internet and mobile networks. A DVE multimedia system is a kind

of distributed computing system that simulates the real world and regards

geographically distributed users as a group of sequential processes among

which data are communicated solely by messages [Fujimoto (2000); Balci, Fujimoto,
Goldsman et al. (2017)]. One important issue in DVE systems is to preserve the causal

1 Hunan University of Finance and Economy, Fenglin Road, No. 139, Changsha, 410205, China.
2 Nanjing University of Science and Technology, Xiaolingwei Road, No. 200, Nanjing, 210094, China.
3 School of Electrical Engineering and Computer Science, Queen Mary University of London, Mile End Rd,

London E1 4NS, UK.
* Corresponding Author: Hangjun Zhou. Email: zhjnudt@gmail.com.

CMC. doi:10.3970/cmc.2018.02411

©74 Copyright 2018 Tech Science Press CMC, vol.56, no.1, pp.73-89, 2018

order delivery of messages at each process [Lamport (1978); Zhou, Cai
and Turner (2007)]. Moreover, since a DVE is a computer-generated virtual world
which simulates the real one, messages are requested to be orderly delivered in real time.

Presently, how to effectively maintain the real-time causal order delivery of messages is

still one of the important and fundamental issues in large-scale DVE systems

[Fujimoto (2000); Zhou, Cai and Turner (2007); Evropeytsev, Dominguez, Hernandez et
al. (2017)].

Causality of messages has been widely studied in parallel and distributed computing

systems. Previously, many distributed causal order control approaches have been

proposed. Vector Time [Schwarz and Mattern (1994); Kshemkalyani and Singhal (1998);
Cai,Turner and Lee (2005)] and Immediate Dependency Relation (IDR) [Prakash, Raynal
and Singhal (1997); Hernandez (2015); Hernandez, Fanchon and Drira (2004)] are two
kinds of traditional approaches to keep causal order. They assume data of all messages

have unlimited time validity so that they are not mainly researched with real-time issues

[Baldoni, Mostefaoui and Raynal (1996); Zhou, Cai and Turner (2007)]. a Δ-Causal
Order [Baldoni, Prakash and Raynal (1998); Yavatkar (1992)] is defined for the
distributed systems in which data of messages have limited time validity and real-time

constraints. However, this approach can merely set each message with the identical time

validityΔ, which may not suit for DVE systems [Rodrigues, Baldoni and Anceaume
(2000)]. Moreover, because it uses Vector Time to maintain causal order, the amount of

control information with each message is closely coupled with the scale of processes.

Hence, when in large-scale DVE systems, Δ-Causal Order needs to attach a large amount
of control information to each message, which introduces too high overhead of sending,

transmitting and receiving messages to preserve causal order delivery in real time. In

Rodrigues et al. [Rodrigues, Baldoni and Anceaume (2000)], another causal order
algorithm is proposed to take each message’s own time validity into consideration, but it

still uses Vector Time to keep causal order which limits the scalability and degrades the

real-time property of the algorithm. Zhou et al. [Zhou, Cai and Turner (2007)] gives a
real-time causal order mechanism to define and reduce critical causal order violations.

The control information of each message is irrelevant to the scale of processes by

attaching a critical causal pair in it. However, since critical causal order merely preserves

the cause-effect relation existing between two immediate dependent events, other cause-

effect relations might not be maintained and would change into concurrent relations,

which would violate the causal order. In Evropeytsev et al. [Evropeytsev, Dominguez,
Hernandez et al. (2017)], a causal protocol CODM is proposed of which the overhead

timestamp in each message is based on immediate dependency relation, but it is oriented

to a reliable hierarchical overlay network where the direct communication among peers is
disabled.
Thus it can be seen that the key challenge is to preserve causal order delivery of
messages with the control information of which the transmitting and processing overhead
is subject to real-time property in large-scale DVE systems. In this article, we aim to
propose a novel Lightweight Real-Time Causal Order (LRTCO) algorithm for large-scale
DVE systems. Different to the previous approaches, LRTCO can compute causal control
information by the prediction and comparison of transmission delays of messages, and
deduce the reasonable termination condition of the computation. Therefore, the causal
control information is unconcerned with the scale of processes and dynamically adapted
to the network latency variations.

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 75

In this way, LRTCO could exclude the redundant data for the control information
so that it is efficient to preserve the causality of messages and lightweight to
maintain the real-time property of DVE systems. Experimental results demonstrate
that the LRTCO algorithm costs low control information overhead and com-munication
bandwidth, effectively reduces causal order violation, and is more efficient than the
previous approaches in preserving the causal order delivery of messages in real time.
The rest of the paper is organized as follows. Section 2 introduces the formal definition
of real-time causal order delivery. A novel distributed LRTCO algorithm to resolve the
problem is proposed in Section 3. In Section 4, experiments are implemented to
evaluate the efficiency of the algorithm. Conclusions are summarized in Section 5.

2 Real-time causal order delivery of messages
In a DVE multimedia system, geographically distributed users, who connect with each
other via LAN/WAN, are usually regarded as a finite set P of n sequential processes
{p1, p2,. . . ,pn} that do not have shared memory and communicate merely by exchang-
ing messages(events) through the serverless network. Generally, an event generated at the
process pi is denoted as e which can be identified with r(e) where r(e) = (i, a) and a is the
logical time [Lamport (1978)] when e is generated at pi. Ei denotes all the events that have
been generated at pi, Vi denotes all the events that have been received at pi, and Hi denotes
all the events that have been delivered at pi. E =∪in=1Ei denotes all the events generated at
P . As a DVE is real-time multimedia system with wallclock time, t is uesed to denote the
current wallclock time of the DVE system and tx to denote the time when event ex is
generated. Base on the above discussions, we have the following definitions.
Definition 2.1 (Aappen-Before Relationship). I A e x ∈ E i , e y ∈ Ej , r (ex) = (i, a),
r(ey) = (j, b), then ex → ey iff

(1) i = j ∧ a < b;

(2) i 6= j, ex is the sending event of a message and ey is the corresponding
receiving event;

(3) ∃ez ∈ E, and (ex → ez) ∧ (ez → ey).

If ¬(ex → ey) ∧ ¬(ey → ex), then ex and ey are concurrent events denoted as ex‖ey.
Definition 2.2 (Immediate Dependency Relation). If ex ∈ Ei, ey ∈ Ej , ex and ey are of
immediate dependency relation(denoted as ex ↓ ey) iff ex → ey and ∀ez ∈ E,¬(ex →
ez → ey).
Definition 2.3 (Causal Order Delivery). If ex ∈ Ei, ey ∈ Ej , ex → ey and ex, ey are sent
to the same process pk, ex must be delivered before ey at pk. In this case, we say that there
is a causal order between ex and ey regarding pk, and ex is called a causal predecessor of
ey.

In DVE multimedia systems, because distinct types of messages usually have different
validity time values, the validity time of ey can be denote as ∆Ty. The real-time causal
order delivery of events is defined as follows.
Definition 2.4 (Real-Time Causal Order Delivery). ∀pdes ∈ P , the real-time causal order
delivery of events in the messages at pdes is preserved iff

(1) ∀ey ∈ Vdes −Hdes, at the time when t = ty + ∆Ty or ey is required

76 Copyright ©c 2018 Tech Science Press

to be delivered, ∀ex ∈ Vdes −Hdes, if ex → ey, ex must be delivered
before ey at pdes;

(2) ∀ey ∈ Vdes − Hdes, let Fy = {ex|∀ex ∈ E ∧ ex → ey}, when ty ≤ t ≤
ty + ∆Ty, if Fy ⊆ Hdes, ey must be delivered immediately at pdes.

It is denoted as ex −
∆T→ ey.

3 A lightweight real-time causal order algorithm
3.1 Analysis and basic idea

In this section, we analyze the basic idea to preserve ex −
∆T→ ey at each pdes of ey base on the

following definitions.

Definition 3 .1 (Cause-Effect Relation Graph). G = (E′, D) is a cause-effect relation graph
iff the ertex et E ' ⊆ E and the irected edge set D = {d(x,y)|ex ↓ ey, ∀ex, ey ∈ E '}, where ex is
the initial ertex and ey is the terminal ertex of the irected edge d(x,y).
Definition 3.2 (Cause-Effect Relation P ath). If G = (E′, D), ∀ex, e y ∈ E ′, cause-effect
relation path W = (E′′, D′), E′′ ⊆ E′, D′ ⊆ D, linking ex and ey is a directed sequence of
vertices and edges in the form as w(ex, ey) = exd(x,z)ez . . . evd(v,y)ey.

G = (E′, D) clearly illustrates the cause-effect relation among events in E′, but it is not
easy to propose the causal order control approach directly based on the graph. With further
analysis, it can be found that ∀ex, ey ∈ E′, if ex → ey in G, there is bound to be at least one
W = (E′′, D′) linking ex and ey; if ex||ey, there must not be any directed edge or path
between ex and ey. Therefore, the cause-effect relations merely exist in directed paths.
From Definition 1 , we know the delivery order of concurrent events is not considered in
causal order control approaches, thus as long as ex −

∆T→ ey of each path is well preserved,

ex −
∆T→ ey of the whole graph is equivalently preserved.

Definition 3 .3 (Causal L ength). If G = (E′, D), ∀ex, e y ∈ E ′ s uch t hat e x → e y, let
W = (E′′, D′) = wr(ex, ey) denote any one of cause-effect relation paths from ex to ey in
G, thus the causal length between ex and ey is

L(ex, ey) = max
r≥1

(∣∣∣D′wr(ex,ey)

∣∣∣) . (1)

Assuming r(ey) = (j, b), pj needs to compute the causal control information for ey, de-

noted as CI(ey), to identify ex ∈ Vdes and recursively preserve ex −
∆T→ ey according to the

item (1) or (2) in Definition 4. After receiving ey, if ty ≤ t ≤ ty + ∆Ty, pdes would
periodically use CI(ey) to check whether item (2) in Definition 4 is satisfied. In terms with
causal order delivery, if ∀ex ∈ E such that ex ↓ ey, ex ∈ Hdes, item (2) in Definition 4 is
satisfied, then pdes could delivery ey immediately for better real-time property. However, it
is quite possible, especially on WAN, that When t = ty + ∆Ty or ey is required to be
delivered, item (2) is not satisfied due to large transmission delay. For this case, it is
necessary for pdes to use CI(ey) to reconstruct the cause-effect relation and preserve ex

−∆T→ ey according to item (1) in Definition 4. Then, the current minimum causal event in a
path is defined, and a theorem and its proof about causality preservation is given.

CMC, vol.56, no.1, pp.73-89, 2018

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 77

Definition 3.4 (Current Minimum Causal Event). ∀ey ∈ Ej ,W (E′′, D′) = w(ex, ey), the
current minimum causal event, denoted as em, is the one such that at the current moment t,

L(em, ey) = min
ex′∈Vdes∩E′′

(L(ex′ , ey)) . (2)

From the definition, it is known that em may change with the variation of t and Vdes ∩ E′′.
Theorem 3.1 ∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), at the time when t = ty + ∆Ty or ey is
required to be delivered, if item (2) in Definition 4 is not satisfied, pdes can preserve

∆T
ex −→ ey according to item (1) in Definition 4 through using C I(ey) to identify e m of
w(ex, ey) and reconstructing em ↓ ey relation for w(ex, ey).

Proof. When t = ty + ∆Ty or ey is required to be delivered, assume that there is ex′ ∈
Vdes ∩ E′′, and ex′ 6= em, ex′ 6= ey, then 1 ≤ L(em, ey) < L(ex′ , ey), hence ex′ → em.
Because ∀ex′′ ∈ E′′ such that L(ex′′ , ey) < L(em, ey), ex′′ ∈/ Vdes, thus if pdes reconstruct
the cause-effect relation between em and ey, it must be em ↓ ey. If pdes uses CI(ey) to
identify ex′ and reconstruct ex′ ↓ ey, it can get that new L(ex′ , ey) = 1. But L(em, ey) isn’t
renewed, so L(ex′ , ey) ≤ L(em, ey), i.e. em → ex′ . That violates the original causal order
between ex′ and em. Therefore, the correct way for pdes is to reconstruct em ↓ ey relation,
and after that the new L(em, ey) = 1. Recursively, pdes uses CI(em) to identify the
current minimum causal event em′ of em and renew L(em′ , ey). The rest may be deduced
by analogy until the events in Vdes ∩ E′′ are identified. T hen, p des would r equire these

events to be delivered in causal order so as to preserve ex −
∆T→ ey according to item (1) in

Definition 4. Hence, the theorem.
Furthermore, if CI(ey) can be used to identify em for item (1) in Definition 4, it can also be
used to identify the special em for item (2) in Definition 4. Thereby, the focus is the way pj
constructs CI(ey) so that pdes could utilize it to find out em ∈ Vdes to preserve causal order
delivery. Meanwhile, the amount of CI(ey) greatly affects the transmission overhead so it
also needs to be considered particularly. If pj selects too much r(ex) into CI(ey), such as
all the r(ex) in the causal history of ey in a extremely case, it is bound for pdes to identify
em with CI(ey), but it also destructs the real-time property of DVE multimedia systems
due to the huge transmission overhead. On the other side, if pj selects not enough r(ex)
into CI(ey), it may not sufficient for to p des to identify em. Therefore, in order to preserve

ex −
∆T→ ey, the problem is about how to identify em at each pdes with the proper amount of

CI(ey) selected by pj .

3.2 Selection mode of causal control information

For the purpose of dynamically selecting effective CI(ey) adapted to the network latency
variation, it might predict the round-trip transmission delay according to the
distributed network coordinate algorithm in Dabek et al. [Dabek, Cox and Kaashoek
(2004); Agarwal and Lorch (2009)]. The equation to compute and update the network
coordinate is as follows.
Xj = Xj + δ × (rtt − ‖Xj − Xi‖) × u(Xj − Xi). (3)

Xj and Xi respectively denote the distributed network coordinates of pj and pi. δ is an
adaptive timestep. u(Xj − Xi) is an unit vector giving the direction of the force on pj .
rtt (round-trip time) is the the round-trip latency between pj and pi. ‖Xj − Xi‖ is the
distance between the coordinates of pj and pi in the chosen coordinate space and it could

78 Copyright ©c 2018 Tech Science Press

be regarded as the current round-trip network latency between pj and pi. During the course
of communications at the application layer, it could approximately admit that the one-way
transmission delay ∆tji from pj to pi is half of the round-trip one, i.e. ∆tji = ‖Xj−Xi‖/2.
However, ∆tji is peer-to-peer, which is merely enough for pj to compute the CI(ey) solely
effective at pi. In this way, if ey is not just sent to one destination process, pj needs to
compute the control information for each pdes respectively, and then merge to form CI(ey),
which computes repeatedly in a great deal. In order to speed up the computation course,
the unnecessary computing overhead of CI(ey) needs to be eliminated.
With further analysis, it can be found that the transmission time of ey should have a certain
range, i.e. through prediction, pj can maintain a transmission time range:[∆tmin, ∆tmax],
where ∆tmin indicates the minimum transmission time of ey from pj to pdes and ∆tmax

indicates the maximum transmission time similarly. Thus, [∆tmin, ∆tmax] includes all the
transmission times of ey. As ey is sent at time ty, [ty + ∆tmin, ty + ∆tmax] denotes the
time range including all the times when ey arrives at pdes. Then, when pj computes CI(ey)
based on the time range, it needs not to respectively compute the control information for

each pdes. Instead, pj can select CI(ey) suitable for all pdes to preserve ex −
∆T→ ey at a

time, which is beneficial to enhance the real-time property.
∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), pj may use the arriving time ranges [ty + ∆tmin, ty +
∆tmax] and [tx + ∆txmin, tx + ∆txmax] to select proper CI(ey) with which pdes could
identify em ∈ Vdes ∩ E′′. However, when t = ty + ∆Ty or ey is required to be delivered,
Vdes ∩ E′′ of one pdes may be not identical with that of the other pdes in that the late events
may be different at each pdes due to different transmission delays. Therefore, pj should
select this kind of CI(ey) with which each pdes could identify its own em from its own
Vdes ∩ E′′.
Definition 3.5 (Immediate Dependency Relation Reconstructibility). ∀ey ∈ Ej , W (E′′, D′)
=w(ex, ey), |CI(ey)| = h, i.e. h is the number of elements in CI(ey), x′ ∈ [2, h], if the cause-
effect relation among ey and all the events that can be identified by CI(ey) has the
form of e1 ↓ e2 ↓ . . . ↓ eh ↓ ey and satisfies{
t1 + ∆t1max ≤ ty + ∆tmin e1 ↓ ey ∧ h = 1
(t1 + ∆t1max ≤ ty + ∆tmin) ∧ (tx′ + ∆tx′max > ty + ∆tmin) ¬e1 ↓ ey ∧ h > 1

x

CI(ey) has the immediate dependency relation reconstructibility.
Theorem 3.2 ∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), |CI(ey)| = h, if the selected CI(ey) has
the immediate dependency relation reconstructibility, each pdes can use CI(ey) to iden-tify
its own em from its own Vdes ∩ E′′.

Proof. Assume that the time when t = ty + ∆Ty or ey is required to be delivered at
pdes is denoted as t′ and ∀x′ ∈ [1, h],the time ex′ arrives pdes is denoted as t ′

des. Because
CI(ey) has the immediate dependency relation reconstructibility, if h > 1 ∧ ¬(e1 ↓ ey),
∀x′ ∈ [2, h], tx′ + ∆tx′max > ty + ∆tmin. For e1 ↓ e2 ↓ . . . ↓ eh ↓ ey, ex′ → ey. Thus
tx′ + ∆tx′min < ty + ∆tmin. Thereby, [tx′ + ∆tx′min, tx′ + ∆tx′max]∩ [ty + ∆tmin, ty +
∆tmax] 6= Φ. That is to say, it’s possible that tdesx′ ≥ ty + ∆tmin at some pdes. In this
case, if (tdesx′ ≤ t′) ∧ (L(ex′ , ey) = 1 ‖ (L(ex′ , ey) > 1 ∧ (∀x′′ ∈ (x′, h], tdesx′′ > t′))),
em = ex′ would be achieved with CI(ey) at pdes. Otherwise if tdesx′ > t′, ex′ /∈ Vdes ∩ E′′
at t′, so em 6= ex′ . If ∀x′ ∈ [2, h], tdesx′ > t′, e1 needs to be considered to identify em. For
t1 + ∆t1max ≤ ty + ∆tmin ∧ e1 → ey, [t1 + ∆t1min, t1 + ∆t1max] ∩ [ty + ∆tmin, ty
+∆tmax] = Φ.

CMC, vol.56, no.1, pp.73-89, 2018

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 79

Figure 1: pj selects CI(ey) through the comparison of time ranges

x

Furthermore, t′ ≥ ty + ∆tmin, thus t1 + ∆t1max ≤ t′, i.e. e1 ∈ Vdes ∩ E′′at t′, which is
similar to the case when h = 1 ∧ e1 ↓ ey. Therefore, at any pdes, if
tx′
des > t′ ‖ (h = 1 ∧ e1 ↓ ey), em = e1 can be achieved with CI(ey). Hence, the theorem.

Theorem 3.3 ∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), |CI(ey)| = h, if CI(ey) has the im-
mediate dependency relation reconstructibility, pj selects no redundant control information
into CI(ey).

Proof. Assume that the time when t = ty + ∆Ty or ey is required to be delivered at pdes is
denoted as t′ and ∀x′ ∈ [1, h],the time ex′ arrives pdes is denoted as t ′

des. For CI(ey) has
the immediate dependency relation reconstructibility, if h = 1 ∧ e1 ↓ ey, e1 is the solely
event that can be identified with CI(ey) and em = e1. Obviously, in this case there is no
redundant control information in CI(ey). If h > 1 ∧ ¬(e1 ↓ ey), assume that ∃x′ ∈ [1, h],
r(ex′) is redundant in CI(ey). However, it is possible that (tdesx′ ≤ t′) ∧ (L(ex′ , ey) = 1 ‖
(L(ex′ , ey) > 1 ∧ (∀x′′ ∈ (x′, h], tdesx′′ > t′))) at some pdes, thus em = ex′ is achieved with
CI(ey). Thereby, r(ex′) is indispensable in CI(ey). Furthermore, because t1 + ∆t1max ≤
ty + ∆tmin, em = e1 can be achieved if ∀x′ ∈ [2, h], tdesx′ > t′ at any pdes. Therefore,
any other r(ex′′) such that L(ex′′ , ey) > L(e1, ey) is redundant or unnecessary for CI(ey).
Hence, the theorem.
For example, in the scenario shown Fig. 1, w(e1, ey) = e1 → e2 → e3 → ey, t3 +
∆t3max > ty + ∆Ty, e3 may be delayed at some pdes. Thus if pj only selects r(e3) into
CI(ey), it’s not enough to identify em at all pdes. For [t2 + ∆t2min, t2 + ∆t2max] ∩ [ty +
∆tmin, ty + ∆tmax] 6= Φ, if e2 could arrive in time, pj may select r(e2) into CI(ey). But
if e2 would arrive late either, em 6= e2 and CI(ey) containing r(e2) and r(e3) remains not
enough for all pdes. Then because [t1 +∆t1min, t1 +∆t1max]∩ [ty +∆tmin, ty +∆tmax] =
Φ, e1 could arrive timely so that even if e2, e3 are late, em = e1 at pdes. Therefore, when
CI(ey) contains r(e1), r(e2) and r(e3), each pdes would identify its own em and pj could
terminate the selection.
∀ey ∈ Ej ,W (E′′, D′) = w(ex, ey),∀ex′ ∈ E′′, x′ 6= y, before sending ey, pj would se-
lect CI(ey) according to the ascending order of L(ex′ , ey) until CI(ey) has the immediate

80 Copyright ©c 2018 Tech Science Press

dependency relation reconstructibility, which is the termination condition of CI(ey) se-
lection. Correspondently, pdes could identify the em, whether for item (1) or item (2) in
Definition 4, by reading and searching CI(ey) in the same ascending order. Generally, this
kind of computing time overhead is negligible as compared to that of transmission delay.
Moreover, because each W (E′′, D′) in a G = (E′, D) can be traversed with Depth-First
Search algorithm, the above selection mode and searching method on W (E′′, D′) are also
suitable for the whole G = (E′, D). Then, the definition of CI(ey) of G = (E′, D) could
be described as follows.
Definition 3.6 (Causal Information on Cause-Effect G raph). ∀ ey ∈ Ej ,G = (E′, D) is the
cause-effect graph of ey, ex ∈ E′, the causal control information of ey on G = (E′, D)
is that CI(ey) = {element(i,a)|element(i,a) = (r(ex), tx, [∆txmin, ∆txmax], L(ex, ey))},
where r(ex) = (i, a) and the subset of CI(ey) on each directed path has the immediate
dependency relation reconstructibility.

Because CI(ey) is selected based on the comparison of time ranges, the content of CI(ey)
could be dynamically adapted to the network latency variation so as to let pdes identify em
effectively. In the meanwhile, for the amount of CI(ey) is unconcerned with the scale of

processes, the low transmission overhead could be beneficial to preserve e x −
∆T→ e y with

real-time property in large-scale DVE multimedia systems.

3.3 Sending and receiving algorithms of LRTCO

3.3.1 Sending messages algorithm

With the selection of CI(ey), pj sends it with ey in a message to pdes. Before describing the
algorithm of sending the message, several structures of local variants are given as follows.

• V T (pj)—the vector of logical times to track the numbers of messages diffused by
processes. The size of V T (pj) is equal to n. V T (pj) records the logical time of pj .

• CG(pj)—the multi-linked list storing the current effective cause-effect relation graph
of pj . To represent an event and its relation, each node of CG(pj) contains four vari-
ants: (r(ex), tx, [∆txmin,∆txmax], ptr[num]), where ptr[num] is a set of multiple
pointers of which each one is pointed to the node that represents the predecessor
which has immediate dependency relation with the event represented by this node.
Thus L(ex, ey) could be indicated by ptr[num]. To avoid the unlimited increment
of CG(pj), pj would periodically delete redundant nodes in it. Assume the current
time is t, then t < t + ∆tmin. If a node (r(ex), tx, [∆txmin,∆txmax], ptr[num])
meets that tx + ∆txmax < t, it can obtain that tx + ∆txmax ≤ t+ ∆tmin. Thus the
other causal nodes of it could be deleted if they are not in multiple paths.

• CI(ey)—the set storing causal information which would be sent to pdes to with ey
in a message. Each element in it contains four parts: (r(ex), tx, [∆txmin,∆txmax],
lc[num]). r(ex), tx, [∆txmin,∆txmax] could be obtained from CG(pj) and the
function of lc[num] is similar to ptr[num] in CG(pj) by storing the indexes of
its immediate dependent elements in CI(ey).

• CDM—the vector storing the indexes of the immediate dependent elements contain-
ing r(ex) such that ex ↓ ey in CI(ey). An element in CDM contains two variants:
(r(ex), ltr), where ltr denotes the index of one immediate dependent element con-
taining r(ex). With theCDM , pdes could begin to traverseCI(ey) using Depth-First
Search algorithm.

CMC, vol.56, no.1, pp.73-89, 2018

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 81

Figure 2: The form of message M

The algorithm of sending message M

1. VT(pj)[j]=VT(pj)[j] + 1 ; % update the logical time of pj

2. ty = timeGetTime() ; % obtain wallclock time ty

3. for(a=0; a<CN(pj).size(); a++) % traverse CG(pj) from each pointer in CN(pj)
4. SelectCI(null, null, CN(pj)[a].ptr); % recursively compute CI(ey) and its CDM

5. M ← (ey, j, VT(pj)[j], ty, [∆tmin, ∆tmax], ∆Ty, CDM, CI(ey)); % message M
6. SendMessage(M);
7. p = CG(pj).add(r(ey), ty, [∆tmin, ∆tmax], ptr[CN(pj).size()]); % add the new node representing

 % ey into CG(pj) and return the pointer to it
8. for(a=0; a<CN(pj).size(); a++) % each pointer in ptr[num] of the new node points to the
9. p→ ptr[a]=CN(pj)[a].ptr; % node representing the immediate dependent event of ey

10. CN(pj).clear; % clear the original elements in CN(pj)
11. CN(pj).add(r(ey), p); % add new element (r(ey), p) into CN(pj)
12. CI(ey).clear(); % clear content of CI(ey)
13. CDM.clear(); % clear content of CDM

14. exit();

Figure 3: The algorithm of sending message M

• CN(pj)—the vector storing the pointers to the immediate dependent nodes con-
taining r(ex) such that ex ↓ ey in CG(pj). An element in CN(pj) has two parts:
(r(ex), ptr), where ptr denotes the pointer to one immediate dependent node con-
taining r(ex). With the CN(pj), pj could traverse CG(pj) using Depth-First Search
algorithm.

In order to effectively preserve ex
∆T−→ ey at pdes, the form of message M is set as shown

in Fig. 2.
The algorithm of sending message M is implemented as described in Fig. 3.
The line 4 of the algorithm described in Fig. 3 is the procedure to recursively compute
CI(ey) and its CDM . The starting argument of the procedure is a pointer stored in an
element of CN(pj). Then, pj could begin to traverse CG(pj) with Depth-First Search
algorithm until the subset of CI(ey) on each directed path has the immediate dependency
relation reconstructibility. The procedure is implemented as described in Fig. 4.

82 Copyright c© 2018 Tech Science Press

Procedure SelectCI(up, nm, p)
{

% the argument up is the index of the element in CI(ey) which is the caller of this procedure
% CI(ey)[up] could be regard as the pointer to the element
% CI(ey)[up].lc[nm] would usually store the indexes of its immediate dependent elements
% p is the pointer to the node in CG(pj) which is going to be selected into CI(ey)

if (!FindInCG(p)) % if the node pointed by p is not in CG(pj), it indicates that the end
return false ; % of a path is reached or an exception occurs

vi = FindInCI(p.r(ex)) ; % if it's in CG(pj), check whether it is already selected into CI(ey)
if (vi)
{ % if it is already in CI(ey), vi would record the index of that element

CI(ey)[up].lc[nm] = vi ; % return the index to the caller
return ture ;

}
vi = CI(ey).add(*p) ; % if it isn't in CI(ey), add it into CI(ey) and record the index in vi
if (up == null && nm == null) % if the new added element represents ex and ex↓ey

CDM.add(CI(ey)[vi].r(ex), vi) ; % the (r(ex), vi) should be added into CDM
else % if ⌐(ex↓ey)

CI(ey)[up].lc[nm] = vi ; % return the index to the caller
if (CI(ey)[vi].((tx + Δtxmax) ≤ (ty + Δtmin)) % if the subset of CI(ey) on this path has the

 % immediate dependency relation reconstructibility
for (a=0; a<num; a++) % terminate the selection on this path

CI(ey)[vi].lc[a] = null ;
else % if the termination condition is not met

for (a=0; a<num; a++) % continue to recursively select
if (! SelectCI(vi, a, CG(pj)[p].ptr[a])) % the new node of CG(pj) into CI(ey)

CI(ey)[vi].lc[a] = null ; % if the end of a path is reached
 % or an exception occurs, terminate the selection on this path

return ture ;
}

Figure 4: The procedure to recursively compute CI(ey) and its CDM

The algorithm of receiving message M

1. t = timeGetTime() ;
2. if((t>ty+∆Ty) || (VT(pj)[j]≤VT(pdes)[j]))

 % obtain current wallclock time t
 % M is expired or has been discarded

3.
{

 AbandonMessage(M) ; % abandon M
4. exit() ;

}
5. else

6.
{

 for(b=0; b<CDM.size(); b++)

 % M is valid

 % check whether item (2) in Definition 4 is satisfied
7. if(CDM[b].r(ex).a > VT(pdes)[CDM[b].r(ex).i]) % if there exists ex such that ex↓ey

{ % and ex is not delivered at pdes

 % buffer M to MQ(pdes)8. BufferMessage(M) ;
9. exit() ;

}
10. ProcessMessage(M) ; % if item (2) in Definition 4 is satisfied, process M immediately
11. exit() ; }

Figure 5: The algorithm of receiving message M

CMC, vol.56, no.1, pp.73-89, 2018

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 83

3.3.2 Receiving messages algorithm

After receiving the message M containing ey, pdes would check whether the immediate
cause events ex of ey, i.e. ex ↓ ey, have been delivered. If all the ex are delivered, it is
necessary for pdes to deliver ey immediately according to the item (2) in Definition 4 . In this
case, em = ex. If there exists any undelivered immediate cause event, pdes would buffer
M . Then, pdes periodically checks the message buffer to find out whether all those e x have
been delivered. If at the moment t = ty + ∆Ty or M is required to be delivered, all the
ex are delivered, i.e. em = ex, pdes could directly deliver ey. If there are still delayed and
undelivered immediate cause events in some paths, then pdes would commence to compute
em in those paths.
Therefore, there exist different cases for M as follows: If M has been discarded at pdes or
current moment t > ty + ∆Ty, i.e. M is expired, M would be abandoned; if M is valid and
item (2) in Definition 4 concerned with e y is satisfied at t, pd es would process M
immediately; if M is valid but item (2) in Definition 4 is not satisfied at current moment t,
pdes would buffer M into MQ(pdes).

• MQ(pdes)—messages buffer at pdes. pdes would periodically scan the buffer, if item
(2) in Definition 4 concerned with ey is satisfied, or current moment t = ty + ∆Ty,
or M is required to be delivered, pdes would call the procedure to process M .

The algorithm of receiving message M is implemented as described in Fig. 5.
When pdes needs to process M , it would handle M and its undelivered predecessor mes-
sages in causal order, which is realized by recursively calling the procedure in line 10 of
Fig. 5. If item (2) in Definition 4 concerned with e y i s s atisfied, M could be delivered
immediately. If there exist delayed messages, pdes could use CI(ey) to create a local mes-
sage, which contains no actual event but control information, to replace a delayed message
so that the recursively calling of the processing procedure can function well.

84 Copyright c© 2018 Tech Science Press

Procedure ProcessMessage(M)
{

% M contains { ey, j, VT(pj)[j], ty, [Δtmin, Δtmax], ΔTy, CDM, CI(ey) }
% an element in CDM contains (r(ex), ltr) such that ex↓ey and ltr is the index of the element
% in CI(ey) which has the same r(ex)

p = CG(pdes).add(r(ey), ty, [Δtmin, Δtmax], ptr[CDM.size()]) ; % the new node with relative
 % data of ey is added into CG(pdes), and pointer to the node is returned

for(b=0; b<CDM.size(); b++) % search CDM
{

tp = CI(ey)[CDM[b].ltr] ; % find the element containing r(ex) such that ex↓ey in CI(ey)
if(tp.r(ex).a ≤ VT(pdes)[tp.r(ex).i]) % if ex is delivered at pdes, return the pointer to

p→ptr[b] = FindInCG(tp.r(ex)) ; % the node representing ex in CG(pdes)
else % ex is not delivered at pdes

{
M' = FindInMQ(tp.r(ex)) ; % check the message M' containing ex in MQ(pdes)
if(M') % if M' is in the buffer, recursively call the

p→ptr[b] = ProcessMessage(M') ; % procedure to process M'
else % if M' is not in MQ(pdes), it is a delayed message
{ % create a local message M'' to replace M'

for(c=0; c<num; c++) % create CDM'' and M''
CDM''.add(CI(ey)[tp.lc[b]].r(ex), tp.lc[b]);

M'' ← (null, tp.r(ex).i, tp.r(ex).a, tp.tx, tp.[Δtxmin ,Δtxmax], null, CDM'', CI(ey)) ;
p→ptr[b] = ProcessMessage(M'') ;

}
}
for(d=0; d<CN(pdes).size(); d++) % if CN(pdes) contains the element pointing

if(CDM[b].r(ex) == CN(pdes)[d].r(ex)) % to the node representing ex in CG(pdes)
CN(pdes).remove(d) ; % delete the element

}
CN(pdes).add(r(ey), p) ; % add the new element (r(ey), p) into CN(pdes)
if(VT(pj)[j] > VT(pdes)[j]) % update the logical time at pdes

VT(pdes)[j] = VT(pj)[j] ;
DeliveryEvent(e); % delivery ey itself

return p ; % return p pointing to the node representing ey in CG(pdes) to the caller
}

Figure 6: The procedure to recursively process M

Thus, pdes could identify em and preserve ex −
∆T→ ey effectively. Once a message, remotely

received or locally created, is delivered at pdes, the new node with relative data of the
message would be added into CG(pdes). Then, as pdes is going to send a message, it could
select correct control information from CG(pdes). The procedure is described in Fig. 6.

4 Experimental results and analysis
Experiments have been conducted to evaluate the efficiency of LRTCO algorithm in
the distributed causality verification environment established on a PC cluster of 30 high
performance machines. The framework of the environment is illustrated in Fig. 7. The
run time infrastructure of the environment is BH-RTI [Zhao, Zhou and Lu
(2008)] developed by Beijing University of Aeronautics and Astronautics following
the High Level Architecture (HLA) standard [IEEE (2000, 2001, 2003)]. The
middleware between BH-RTI and federates is designed to consist of the network
coordinate computation module and the real-time causal order delivery module.

CMC, vol.56, no.1, pp.73-89, 2018

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 85

Figure 7: The framework of the distributed causality verification environment

A distributed real-time air battle simulation is developed to run at federates to display the
effects of causal order control algorithms. To simulate the transmission delay of WAN, a
Spirent ConNIE is utilized to generate network impairments. The ordering mechanism in
BH-RTI is set to be Receive Order (RO) in the experiments.
Through the distributed air battle simulation, LRTCO algorithm is compared with the ex-
isting real-time causal order control approaches: ERO [Zhou, Cai and Turner (2007)]
and DCCO [Rodrigues, Baldoni and Anceaume (2000)]. Multiple experiments are
conducted with different scales of entities running as processes and for each scale the three
algorithms are implemented in turn. The GUI of distributed air battle simulation is shown
in Fig. 8.
For the correctness of the delivery order of events can be evaluated by the numbers of
causal order violations, Fig. 9 shows the causal order violations of ERO, DCCO and
LRTCO in the experiments. Because each message in ERO merely contains an immediate
dependent event as control information, the causal order violations of it are greater
than those of DCCO and LRTCO in each scale. When the scale is 3000, the number
of violations is approximately 300 while it is over 1400 when the scale is 11000. The
complete vector time used by DCCO in each message can reduce causal order
violations lower than 100 when scale is 3000, but as the transmission overhead is closely
coupled with the scale, the number of violations rises a lot as the scale expands. In 9000 it
is approximately 166% of that in 7000 and in 11000 it is about 187% of that in 9000. The
violation number of LRTCO is slightly higher than that of DCCO in 3000, but it is lower
when the scale is above 3000 due to the control information irrelevant to the scale.
Especially when the scale is 11000, the violation number is merely 200 or so, which is
approximately 30% of that of DCCO and 15% of that of ERO in the identical scale.

86 Copyright c© 2018 Tech Science Press

Figure 8: The GUI of the distributed air battle simulation

Figure 9: Causal order violations in different scales

CMC, vol.56, no.1, pp.73-89, 2018

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 87

Figure 10: Average causal control information percentage

As the transmission overhead can be estimated by the average amount of causal control
information in each message, Fig. 10 shows the percentage of average causal control in-
formation of LRTCO compared to the size of vector time of DCCO in different average
network transmission delay conditions. As can be seen in scale 3000, when average net-
work transmission delay is 50 ms, the percentage is about 6%. As the transmission delay
rises, the number of messages that can not arrive in time may increase, so that the average
amount of control information increases either, but when transmission delay is 200 ms, the
percentage is merely 27% or so. With the expanding scale, the size of vector time raises
a lot, whereas the average amount of causal control information of LRTCO is irrelevant to
the scale, so the percentage gradually diminishes. In 3000, the percentage is approximately
6%, 13%, 22% and 27% when the average transmission delay is 50 ms,100 ms, 150 ms and
200 ms. And in 11000, the percentage correspondently decreases to 2%, 3%, 6% and 7%.

5 Conclusions
In the large-scale DVE systems, causal order delivery of events needs to be preserved in
real-time. However, some causal events may arrive late due to the large network transmis-
sion delay especially on WAN, which would lead to that the cause-effect relations among
received events change into concurrent relations and that causal order violations occur if
without the causal order control. In this article, we investigate real-time causal order deliv-
ery of events. First, the two cases of real-time causal order delivery are defined. Then, we
analyze and define the current minimum causal event, and prove that if the proper causal
control information selected by the sending process could be used by each destination pro-
cess to identify its own current minimum causal event in the received events, the two cases
of real-time causal order delivery could be preserved. Thus, we discuss the network trans-
mission time range and arriving time range of an event, based on which it is proved that
if the selected causal control information has the immediate dependency relation recon-
structibility, each destination process could use it to find out its own current minimum

88 Copyright c© 2018 Tech Science Press

causal event in received events and the control information has no redundant data. Af-
ter the above analysis and proofs, we propose the Lightweight Real-Time Causal Order
(LRTCO) algorithm for large-scale DVE systems, which distributedly realizes designing
and implementing the procedure to select the causal control information with the immedi-
ate dependency relation reconstructibility at sending process, sending messages algorithm,
receiving messages algorithm, and the procedure to recursively deliver the received events
in real-time causal order at each destination process. At last, multiple experiments are con-
ducted to evaluate the efficiency o f L RTCO a l gorithm c o mpared w i th t h e o t her exis-
ting real-time causal order algorithms in the distributed causality verification e nvironment.
The experimental results demonstrate that LRTCO could effectively preserve real-time
causal order delivery of events in large-scale DVE systems by greatly reducing the
causal order violations at destination processes and costing low transmission overhead and
communica-tion bandwidth due to the causal control information dynamically adapted to
the network latency variation and irrelevant to the system scale.
In our future work, we would like to implement more large-scale DVE application sys-
tems using LRTCO programs on Internet, and evaluate the performance of the distributed
computing systems, so as to obtain more evaluation results about LRTCO preservation
efficiency of real-time causal order delivery.

Acknowledgement: This research work is supported by Hunan Provincial Natural Sci-
ence Foundation of China (Grant No. 2017JJ2016), Hunan Provincial Education
Science 13th Five-Year Plan (Grant No. XJK016BXX001), Social Science
Foundation of Hunan Province (Grant No. 17YBA049), 2017 Hunan Provincial
Higher Education Teaching Re-form Research Project (Grant No. 564) and Scientific
Research Fund of Hunan Provin-cial Education Department (Grant No. 16C0269 and
No. 17B046). The work is also sup-ported by Open foundation for University
Innovation Platform from Hunan Province, China (Grand No. 16K013) and the 2011
Collaborative Innovation Center of Big Data for Finan-cial and Economical Asset
Development and Utility in Universities of Hunan Province. We also thank the
anonymous reviewers for their valuable comments and insightful sug-gestions.

References
Agarwal, S.; Lorch, J. (2009): Matchmaking for online games and other latency-sensitive
p2p systems. Proceedings of SIGCOMM Conference, pp. 1239-1255.

Balci, O.; Fujimoto, R.; Goldsman, D.; Nance, R.; Zeigler, B. (2017): The state of
innovation in modeling and simulation: The last 50 years. Simulation Conference, pp.
821-836.

Baldoni, R.; Mostefaoui, A.; Raynal, M. (1996): Causal delivery of messages with teal-
time data in unreliable networks. Real-Time Systems, vol. 10, no. 3, pp. 245-262.

Baldoni, R.; Prakash, R.; Raynal, M. (1998): Efficient δ-causal broadcasting. Journal of
Computer System Science and Engineering, vol. 13, no. 5, pp. 263-269.

Cai, W.; Turner, S.; Lee, B. (2005): An alternative time management mechanism for
distributed simulations. ACM Transactions on Modeling and Computing Simulation, vol.
15, no. 2, pp. 109-137.

CMC, vol.56, no.1, pp.73-89, 2018

A Distributed LRTCO Algorithm in Large-Scale DVE Multimedia Systems 89

Dabek, F.; Cox, R.; Kaashoek, F. (2004): Vivaldi: a decentralized network coordinate
system. ACM SIGCOMM Computer Communication Review, vol. 34, no. 4, pp. 15-26.
Evropeytsev, G.; Dominguez, E.; Hernandez, S.; Trinidad, M.; Cruz, J. (2017): An ef-
ficient causal group communication protocol for p2p hierarchical overlay networks. Journal
of Parallel and Distributed Computing, vol. 102, no. C, pp. 149-162.
Fujimoto, R. (2000): Parallel and Distributed Simulation Systems. New York: Wiley In-
terscience.
Hernandez, S. (2015): The minimal dependency relation for causal event ordering in dis-
tributed computing. Applied Mathematics and Information Sciences, vol. 9, no. 1, pp. 57-61.
Hernandez, S.; Fanchon, J.; Drira, K. (2004): The immediate dependency relation: an
optimal way to ensure causal group communication. Annual Review of Scalable Comput-
ing, vol. 6, no. 3, pp. 61-79.
IEEE (2000): IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture(HLA)-Framework and Rules (IEEE Std 1516-2000). The Institute of
Electrical and Electronics Engineers, Inc.
IEEE (2001): IEEE Standard for Modeling and Simulation (M&S) High Level
Architecture(HLA)-Federate Interface Specification (IEEE Std 1516.1-2000). The
Institute of Electrical and Electronics Engineers, Inc.
IEEE (2003): IEEE Recommended Practice for High Level Architecture(HLA) Federation
Development and Execution Process (FEDEP) (IEEE Std 1516.3-2003). The Institute of
Electrical and Electronics Engineers, Inc.
Kshemkalyani, A.; Singhal, M. (1998): Necessary and sufficient conditions on informa-
tion for causal message ordering and their optimal implementation. Distributed
Computing, vol. 11, no. 2, pp. 91-111.
Lamport, L. (1978): Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, vol. 21, no. 7, pp. 558-565.
Prakash, R.; Raynal, M.; Singhal, M. (1997): An adaptive causal ordering algorithm
suited to mobile computing environments. Journal of Parallel and Distributed Computing,
vol. 41, no. 2, pp. 190-204.
Rodrigues, L.; Baldoni, R.; Anceaume, E. (2000): Deadline-constrained causal order.
Proceedings of the 3rd IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, pp. 234-241.
Schwarz, R.; Mattern, F. (1994): Detecting causal relationships in distributed computa-
tions: In search of the holy grail. Distributed Computing, vol. 7, no. 3, pp. 149-174.
Yavatkar, R. (1992): MCP: A protocol for coordination and temporal synchronization
in multimedia collaborative applications. Proceedings of the 12th International
Conference on Distributed Computing Systems, pp. 606-613.

Zhao, Q.; Zhou, Z.; Lu, F. (2008): Algorithm of simulation time synchronization
over large-scale nodes. Science in China Series F: Information Sciences, vol. 51, no.
9, pp. 1239-1255.
Zhou, S.; Cai, W.; Turner, S. (2007): Critical causal order of events in distributed virtual
environments. ACM Transactions on Multimedia Computing, Communications and Appli-
cations, vol. 3, no. 3.

