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Abstract: In the large-scale Distributed Virtual Environment (DVE) multimedia systems, 

one of key challenges is to distributedly preserve causal order delivery of messages in 

real time. Most of the existing causal order control approaches with real-time constraints use 

vector time as causal control information which is closely coupled with system scales. As 

the scale expands, each message is attached a large amount of control information that 

introduces too much network transmission overhead to maintain the real-time causal 

order delivery. In this article, a novel Lightweight Real-Time Causal Order (LRTCO) 

algorithm is proposed for large-scale DVE multimedia systems. LRTCO predicts and 

compares the network transmission times of messages so as to select the proper causal 

control information of which the amount is dynamically adapted to the network latency 

variations and unconcerned with system scales. The control information in LRTCO is 

effective to preserve causal order delivery of messages and lightweight to maintain the 

real-time property of DVE systems. Experimental results demonstrate that LRTCO costs 

low transmission overhead and communication bandwidth, reduces causal order 

violations efficiently, and improves the scalability of DVE systems. 

Keywords: Distributed computing, distributed virtual environment, multimedia system, 

causality violation, causal order delivery, real time. 

1 Introduction

With the rapid development of Cloud Computing, Big Data, Artificial Intelligence and 

Internet technologies, large-scale multimedia systems are increasingly implemented 

on the Internet and mobile networks. A DVE multimedia system is a kind 

of distributed computing system that simulates the real world and regards 

geographically distributed users as a group of sequential processes among 

which data are communicated solely by messages [Fujimoto (2000); Balci, Fujimoto, 
Goldsman et al. (2017)]. One important issue in DVE systems is to preserve the causal
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order delivery of messages at each process [Lamport (1978); Zhou, Cai 
and Turner (2007)]. Moreover, since a DVE is a computer-generated virtual world 
which simulates the real one, messages are requested to be orderly delivered in real time. 

Presently, how to effectively maintain the real-time causal order delivery of messages is 

still one of the important and fundamental issues in large-scale DVE systems 

[Fujimoto (2000);  Zhou, Cai and Turner (2007); Evropeytsev, Dominguez, Hernandez et 
al. (2017)].

Causality of messages has been widely studied in parallel and distributed computing 

systems. Previously, many distributed causal order control approaches have been 

proposed. Vector Time [Schwarz and Mattern (1994); Kshemkalyani and Singhal (1998); 
Cai,Turner and Lee (2005)] and Immediate Dependency Relation (IDR) [Prakash, Raynal 
and Singhal (1997); Hernandez (2015); Hernandez, Fanchon and Drira (2004)] are two 
kinds of traditional approaches to keep causal order. They assume data of all messages 

have unlimited time validity so that they are not mainly researched with real-time issues 

[Baldoni, Mostefaoui and Raynal (1996); Zhou, Cai and Turner (2007)]. a Δ-Causal 
Order [Baldoni, Prakash and Raynal (1998); Yavatkar (1992)] is defined for the 
distributed systems in which data of messages have limited time validity and real-time 

constraints. However, this approach can merely set each message with the identical time 

validityΔ, which may not suit for DVE systems [Rodrigues, Baldoni and Anceaume 
(2000)]. Moreover, because it uses Vector Time to maintain causal order, the amount of 

control information with each message is closely coupled with the scale of processes. 

Hence, when in large-scale DVE systems, Δ-Causal Order needs to attach a large amount 
of control information to each message, which introduces too high overhead of sending, 

transmitting and receiving messages to preserve causal order delivery in real time. In 

Rodrigues et al. [Rodrigues, Baldoni and Anceaume (2000)], another causal order 
algorithm is proposed to take each message’s own time validity into consideration, but it 

still uses Vector Time to keep causal order which limits the scalability and degrades the 

real-time property of the algorithm. Zhou et al. [Zhou, Cai and Turner (2007)] gives a 
real-time causal order mechanism to define and reduce critical causal order violations. 

The control information of each message is irrelevant to the scale of processes by 

attaching a critical causal pair in it. However, since critical causal order merely preserves 

the cause-effect relation existing between two immediate dependent events, other cause-

effect relations might not be maintained and would change into concurrent relations, 

which would violate the causal order. In Evropeytsev et al. [Evropeytsev, Dominguez, 
Hernandez et al. (2017)], a causal protocol CODM is proposed of which the overhead 

timestamp in each message is based on immediate dependency relation, but it is oriented 

to a reliable hierarchical overlay network where the direct communication among peers is 
disabled.
Thus it can be seen that the key challenge is to preserve causal order delivery of 
messages with the control information of which the transmitting and processing overhead 
is subject to real-time property in large-scale DVE systems. In this article, we aim to 
propose a novel Lightweight Real-Time Causal Order (LRTCO) algorithm for large-scale 
DVE systems. Different to the previous approaches, LRTCO can compute causal control 
information by the prediction and comparison of transmission delays of messages, and 
deduce the reasonable termination condition of the computation. Therefore, the causal 
control information is unconcerned with the scale of processes and dynamically adapted 
to the network latency variations. 
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In this way, LRTCO could exclude the redundant data for the control information 
so that it is efficient to preserve the causality of messages and lightweight to 
maintain the real-time property of DVE systems. Experimental results demonstrate 
that the LRTCO algorithm costs low control information overhead and com-munication 
bandwidth, effectively reduces causal order violation, and is more efficient than the 
previous approaches in preserving the causal order delivery of messages in real time.
The rest of the paper is organized as follows. Section 2 introduces the formal definition 
of real-time causal order delivery. A novel distributed LRTCO algorithm to resolve the 
problem is proposed in Section 3. In Section 4, experiments are implemented to 
evaluate the efficiency of the algorithm. Conclusions are summarized in Section 5.

2 Real-time causal order delivery of messages
In a DVE multimedia system, geographically distributed users, who connect with each 
other via LAN/WAN, are usually regarded as a finite set P  of n  sequential processes 
{p1, p2,. . . ,pn} that do not have shared memory and communicate merely by exchang-
ing messages(events) through the serverless network. Generally, an event generated at the 
process pi is denoted as e which can be identified with r(e) where r(e) = (i, a) and a is the 
logical time [Lamport (1978)] when e is generated at pi. Ei denotes all the events that have 
been generated at pi, Vi denotes all the events that have been received at pi, and Hi denotes
all the events that have been delivered at pi. E =∪in=1Ei denotes all the events generated at 
P . As a DVE is real-time multimedia system with wallclock time, t is uesed to denote the 
current wallclock time of the DVE system and tx to denote the time when event ex is 
generated. Base on the above discussions, we have the following definitions.
Definition 2.1 ( Aappen-Before Relationship). I A e x ∈ E i , e y ∈ Ej , r (  ex) = (i, a), 
r(ey) = (j, b), then ex → ey iff

(1) i = j ∧ a < b;

(2) i 6= j, ex is the sending event of a message and ey is the corresponding
receiving event;

(3) ∃ez ∈ E, and (ex → ez) ∧ (ez → ey).

If ¬(ex → ey) ∧ ¬(ey → ex), then ex and ey are concurrent events denoted as ex‖ey.
Definition 2.2 (Immediate Dependency Relation). If ex ∈ Ei, ey ∈ Ej , ex and ey are of
immediate dependency relation(denoted as ex ↓ ey) iff ex → ey and ∀ez ∈ E,¬(ex →
ez → ey).
Definition 2.3 (Causal Order Delivery). If ex ∈ Ei, ey ∈ Ej , ex → ey and ex, ey are sent
to the same process pk, ex must be delivered before ey at pk. In this case, we say that there
is a causal order between ex and ey regarding pk, and ex is called a causal predecessor of
ey.

In DVE multimedia systems, because distinct types of messages usually have different
validity time values, the validity time of ey can be denote as ∆Ty. The real-time causal
order delivery of events is defined as follows.
Definition 2.4 (Real-Time Causal Order Delivery). ∀pdes ∈ P , the real-time causal order
delivery of events in the messages at pdes is preserved iff

(1) ∀ey ∈ Vdes −Hdes, at the time when t = ty + ∆Ty or ey is required
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to be delivered, ∀ex ∈ Vdes −Hdes, if ex → ey, ex must be delivered
before ey at pdes;

(2) ∀ey ∈ Vdes − Hdes, let Fy = {ex|∀ex ∈ E ∧ ex → ey}, when ty ≤ t ≤
ty + ∆Ty, if Fy ⊆ Hdes, ey must be delivered immediately at pdes.

It is denoted as ex −
∆T→ ey.

3 A lightweight real-time causal order algorithm 
3.1 Analysis and basic idea

In this section, we analyze the basic idea to preserve ex −
∆T→ ey at each pdes of ey base on the 

following definitions.

Definition 3 .1 (Cause-Effect Relation Graph). G = (E′, D) is a cause-effect relation graph
iff the ertex et E ' ⊆ E  and the irected edge set D = {d(x,y)|ex ↓ ey, ∀ex, ey ∈ E  '}, where ex is 
the initial ertex and ey is the terminal ertex of the irected edge d(x,y).
Definition 3.2 (Cause-Effect Relation P ath). If G  =  (E′, D ), ∀ex, e y ∈  E ′, cause-effect 
relation path W = (E′′, D′), E′′ ⊆ E′, D′ ⊆ D, linking ex and ey is a directed sequence of 
vertices and edges in the form as w(ex, ey) = exd(x,z)ez . . . evd(v,y)ey.

G = (E′, D) clearly illustrates the cause-effect relation among events in E′, but it is not 
easy to propose the causal order control approach directly based on the graph. With further 
analysis, it can be found that ∀ex, ey ∈ E′, if ex → ey in G, there is bound to be at least one 
W = (E′′, D′) linking ex and ey; if ex||ey, there must not be any directed edge or path 
between ex and ey. Therefore, the cause-effect relations merely exist in directed paths. 
From Definition 1 , we know the delivery order of concurrent events is not considered in
causal order control approaches, thus as long as ex −

∆T→ ey of each path is well preserved,

ex −
∆T→ ey of the whole graph is equivalently preserved.

Definition 3 .3 ( Causal L ength). If G  =  (E′, D), ∀ex, e y ∈  E ′ s uch t hat e x →  e y, let 
W = (E′′, D′) = wr(ex, ey) denote any one of cause-effect relation paths from ex to ey in 
G, thus the causal length between ex and ey is

L(ex, ey) = max
r≥1

(∣∣∣D′wr(ex,ey)

∣∣∣) . (1)

Assuming r(ey) = (j, b), pj needs to compute the causal control information for ey, de-

noted as CI(ey), to identify ex ∈ Vdes and recursively preserve ex −
∆T→ ey according to the 

item (1) or (2) in Definition 4. After receiving ey, if ty ≤ t ≤ ty + ∆Ty, pdes would 
periodically use CI(ey) to check whether item (2) in Definition 4 is satisfied. In terms with 
causal order delivery, if ∀ex ∈ E such that ex ↓ ey, ex ∈ Hdes, item (2) in Definition 4 is 
satisfied, then pdes could delivery ey immediately for better real-time property. However, it 
is quite possible, especially on WAN, that When t = ty + ∆Ty or ey is required to be 
delivered, item (2) is not satisfied due to large transmission delay. For this case, it is 
necessary for pdes to use CI(ey) to reconstruct the cause-effect relation and preserve ex 

−∆T→ ey according to item (1) in Definition 4. Then, the current minimum causal event in a 
path is defined, and a theorem and its proof about causality preservation is given.

CMC, vol.56, no.1, pp.73-89, 2018
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Definition 3.4 (Current Minimum Causal Event). ∀ey ∈ Ej ,W (E′′, D′) = w(ex, ey), the
current minimum causal event, denoted as em, is the one such that at the current moment t,

L(em, ey) = min
ex′∈Vdes∩E′′

(L(ex′ , ey)) . (2)

From the definition, it is known that em may change with the variation of t and Vdes ∩ E′′.
Theorem 3.1 ∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), at the time when t = ty + ∆Ty or ey is 
required to be delivered, if item (2) in Definition 4 is not satisfied, pdes can preserve

∆T
ex −→ ey according to item (1) in Definition 4  through using C I(ey) to identify e m of 
w(ex, ey) and reconstructing em ↓ ey relation for w(ex, ey).

Proof. When t = ty + ∆Ty or ey is required to be delivered, assume that there is ex′ ∈ 
Vdes ∩ E′′, and ex′ 6= em, ex′ 6= ey, then 1 ≤ L(em, ey) < L(ex′ , ey), hence ex′ → em. 
Because ∀ex′′ ∈ E′′ such that L(ex′′ , ey) < L(em, ey), ex′′ ∈/ Vdes, thus if pdes reconstruct 
the cause-effect relation between em and ey, it must be em ↓ ey. If pdes uses CI(ey) to 
identify ex′ and reconstruct ex′ ↓ ey, it can get that new L(ex′ , ey) = 1. But L(em, ey) isn’t 
renewed, so L(ex′ , ey) ≤ L(em, ey), i.e. em → ex′ . That violates the original causal order 
between ex′ and em. Therefore, the correct way for pdes is to reconstruct em ↓ ey relation, 
and after that the new L(em, ey) = 1. Recursively, pdes uses CI(em) to identify the 
current minimum causal event em′ of em and renew L(em′ , ey). The rest may be deduced 
by analogy until the events in Vdes ∩ E′′ are identified. T hen, p des would r equire these

events to be delivered in causal order so as to preserve ex −
∆T→ ey according to item (1) in 

Definition 4. Hence, the theorem.
Furthermore, if CI(ey) can be used to identify em for item (1) in Definition 4, it can also be 
used to identify the special em for item (2) in Definition 4. Thereby, the focus is the way pj
constructs CI(ey) so that pdes could utilize it to find out em ∈ Vdes to preserve causal order 
delivery. Meanwhile, the amount of CI(ey) greatly affects the transmission overhead so it 
also needs to be considered particularly. If pj selects too much r(ex) into CI(ey), such as 
all the r(ex) in the causal history of ey in a extremely case, it is bound for pdes to identify 
em with CI(ey), but it also destructs the real-time property of DVE multimedia systems 
due to the huge transmission overhead. On the other side, if pj selects not enough r(ex) 
into CI(ey), it may not sufficient for to p des to identify em. Therefore, in order to preserve

ex −
∆T→ ey, the problem is about how to identify em at each pdes with the proper amount of 

CI(ey) selected by pj .

3.2 Selection mode of causal control information

For the purpose of dynamically selecting effective CI(ey) adapted to the network latency 
variation, it might predict the round-trip transmission delay according to the 
distributed network coordinate algorithm in Dabek et al. [Dabek, Cox and Kaashoek 
(2004); Agarwal and Lorch (2009)]. The equation to compute and update the network 
coordinate is as follows.
Xj = Xj + δ × (rtt − ‖Xj − Xi‖) × u(Xj − Xi). (3)

Xj and Xi respectively denote the distributed network coordinates of pj and pi. δ is an 
adaptive timestep. u(Xj − Xi) is an unit vector giving the direction of the force on pj . 
rtt (round-trip time) is the the round-trip latency between pj and pi. ‖Xj − Xi‖ is the 
distance between the coordinates of pj and pi in the chosen coordinate space and it could
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be regarded as the current round-trip network latency between pj and pi. During the course 
of communications at the application layer, it could approximately admit that the one-way 
transmission delay ∆tji from pj to pi is half of the round-trip one, i.e. ∆tji = ‖Xj−Xi‖/2.
However, ∆tji is peer-to-peer, which is merely enough for pj to compute the CI(ey) solely 
effective at pi. In this way, if ey is not just sent to one destination process, pj needs to 
compute the control information for each pdes respectively, and then merge to form CI(ey), 
which computes repeatedly in a great deal. In order to speed up the computation course, 
the unnecessary computing overhead of CI(ey) needs to be eliminated.
With further analysis, it can be found that the transmission time of ey should have a certain 
range, i.e. through prediction, pj can maintain a transmission time range:[∆tmin, ∆tmax], 
where ∆tmin indicates the minimum transmission time of ey from pj to pdes and ∆tmax

indicates the maximum transmission time similarly. Thus, [∆tmin, ∆tmax] includes all the 
transmission times of ey. As ey is sent at time ty, [ty + ∆tmin, ty + ∆tmax] denotes the 
time range including all the times when ey arrives at pdes. Then, when pj computes CI(ey) 
based on the time range, it needs not to respectively compute the control information for

each pdes. Instead, pj can select CI(ey) suitable for all pdes to preserve ex −
∆T→ ey at a 

time, which is beneficial to enhance the real-time property.
∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), pj may use the arriving time ranges [ty + ∆tmin, ty + 
∆tmax] and [tx + ∆txmin, tx + ∆txmax] to select proper CI(ey) with which pdes could 
identify em ∈ Vdes ∩ E′′. However, when t = ty + ∆Ty or ey is required to be delivered, 
Vdes ∩ E′′ of one pdes may be not identical with that of the other pdes in that the late events 
may be different at each pdes due to different transmission delays. Therefore, pj should 
select this kind of CI(ey) with which each pdes could identify its own em from its own 
Vdes ∩ E′′.
Definition 3.5 (Immediate Dependency Relation Reconstructibility). ∀ey ∈ Ej , W (E′′, D′)  
=w(ex, ey), |CI(ey)| = h, i.e. h is the number of elements in CI(ey), x′ ∈ [2, h], if the cause-
effect relation among ey and all the events that can be identified by CI(ey) has the
form of e1 ↓ e2 ↓ . . . ↓ eh ↓ ey and satisfies{
t1 + ∆t1max ≤ ty + ∆tmin e1 ↓ ey ∧ h = 1
(t1 + ∆t1max ≤ ty + ∆tmin) ∧ (tx′ + ∆tx′max > ty + ∆tmin) ¬e1 ↓ ey ∧ h > 1

x

CI(ey) has the immediate dependency relation reconstructibility.
Theorem 3.2 ∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), |CI(ey)| = h, if the selected CI(ey) has 
the immediate dependency relation reconstructibility, each pdes can use CI(ey) to iden-tify 
its own em from its own Vdes ∩ E′′.

Proof. Assume that the time when t = ty + ∆Ty or ey is required to be delivered at 
pdes is denoted as t′ and ∀x′ ∈ [1, h],the time ex′ arrives pdes is denoted as t ′

des. Because
CI(ey) has the immediate dependency relation reconstructibility, if h > 1 ∧ ¬(e1 ↓ ey),
∀x′ ∈ [2, h], tx′ + ∆tx′max > ty + ∆tmin. For e1 ↓ e2 ↓ . . . ↓ eh ↓ ey, ex′ → ey. Thus
tx′ + ∆tx′min < ty + ∆tmin. Thereby, [tx′ + ∆tx′min, tx′ + ∆tx′max]∩ [ty + ∆tmin, ty +
∆tmax] 6= Φ. That is to say, it’s possible that tdesx′ ≥ ty + ∆tmin at some pdes. In this
case, if (tdesx′ ≤ t′) ∧ (L(ex′ , ey) = 1 ‖ (L(ex′ , ey) > 1 ∧ (∀x′′ ∈ (x′, h], tdesx′′ > t′))),
em = ex′ would be achieved with CI(ey) at pdes. Otherwise if tdesx′ > t′, ex′ /∈ Vdes ∩ E′′
at t′, so em 6= ex′ . If ∀x′ ∈ [2, h], tdesx′ > t′, e1 needs to be considered to identify em. For
t1 + ∆t1max ≤ ty + ∆tmin ∧ e1 → ey, [t1 + ∆t1min, t1 + ∆t1max] ∩ [ty + ∆tmin, ty 
+∆tmax] = Φ.

CMC, vol.56, no.1, pp.73-89, 2018
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Figure 1: pj selects CI(ey) through the comparison of time ranges

x

Furthermore, t′ ≥ ty + ∆tmin, thus t1 + ∆t1max ≤ t′, i.e. e1 ∈ Vdes ∩ E′′at t′, which is 
similar to the case when h = 1 ∧ e1 ↓ ey. Therefore, at any pdes, if
tx′
des > t′ ‖ (h = 1 ∧ e1 ↓ ey), em = e1 can be achieved with CI(ey). Hence, the theorem.

Theorem 3.3 ∀ey ∈ Ej , W (E′′, D′) = w(ex, ey), |CI(ey)| = h, if CI(ey) has the im-
mediate dependency relation reconstructibility, pj selects no redundant control information 
into CI(ey).

Proof. Assume that the time when t = ty + ∆Ty or ey is required to be delivered at pdes is 
denoted as t′ and ∀x′ ∈ [1, h],the time ex′ arrives pdes is denoted as t ′

des. For CI(ey) has
the immediate dependency relation reconstructibility, if h = 1 ∧ e1 ↓ ey, e1 is the solely
event that can be identified with CI(ey) and em = e1. Obviously, in this case there is no
redundant control information in CI(ey). If h > 1 ∧ ¬(e1 ↓ ey), assume that ∃x′ ∈ [1, h],
r(ex′) is redundant in CI(ey). However, it is possible that (tdesx′ ≤ t′) ∧ (L(ex′ , ey) = 1 ‖
(L(ex′ , ey) > 1 ∧ (∀x′′ ∈ (x′, h], tdesx′′ > t′))) at some pdes, thus em = ex′ is achieved with
CI(ey). Thereby, r(ex′) is indispensable in CI(ey). Furthermore, because t1 + ∆t1max ≤
ty + ∆tmin, em = e1 can be achieved if ∀x′ ∈ [2, h], tdesx′ > t′ at any pdes. Therefore,
any other r(ex′′) such that L(ex′′ , ey) > L(e1, ey) is redundant or unnecessary for CI(ey).
Hence, the theorem.
For example, in the scenario shown Fig. 1, w(e1, ey) = e1 → e2 → e3 → ey, t3 +
∆t3max > ty + ∆Ty, e3 may be delayed at some pdes. Thus if pj only selects r(e3) into
CI(ey), it’s not enough to identify em at all pdes. For [t2 + ∆t2min, t2 + ∆t2max] ∩ [ty +
∆tmin, ty + ∆tmax] 6= Φ, if e2 could arrive in time, pj may select r(e2) into CI(ey). But
if e2 would arrive late either, em 6= e2 and CI(ey) containing r(e2) and r(e3) remains not
enough for all pdes. Then because [t1 +∆t1min, t1 +∆t1max]∩ [ty +∆tmin, ty +∆tmax] =
Φ, e1 could arrive timely so that even if e2, e3 are late, em = e1 at pdes. Therefore, when
CI(ey) contains r(e1), r(e2) and r(e3), each pdes would identify its own em and pj could
terminate the selection.
∀ey ∈ Ej ,W (E′′, D′) = w(ex, ey),∀ex′ ∈ E′′, x′ 6= y, before sending ey, pj would se-
lect CI(ey) according to the ascending order of L(ex′ , ey) until CI(ey) has the immediate
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dependency relation reconstructibility, which is the termination condition of CI(ey) se-
lection. Correspondently, pdes could identify the em, whether for item (1) or item (2) in 
Definition 4, by reading and searching CI(ey) in the same ascending order. Generally, this 
kind of computing time overhead is negligible as compared to that of transmission delay. 
Moreover, because each W (E′′, D′) in a G = (E′, D) can be traversed with Depth-First 
Search algorithm, the above selection mode and searching method on W (E′′, D′) are also 
suitable for the whole G = (E′, D). Then, the definition of CI(ey) of G = (E′, D) could 
be described as follows.
Definition 3.6 (Causal Information on Cause-Effect G raph). ∀ ey ∈ Ej ,G = (E′, D) is the 
cause-effect graph of ey, ex ∈ E′, the causal control information of ey on G = (E′, D) 
is that CI(ey) = {element(i,a)|element(i,a) = (r(ex), tx, [∆txmin, ∆txmax], L(ex, ey))}, 
where r(ex) = (i, a) and the subset of CI(ey) on each directed path has the immediate 
dependency relation reconstructibility.

Because CI(ey) is selected based on the comparison of time ranges, the content of CI(ey) 
could be dynamically adapted to the network latency variation so as to let pdes identify em
effectively. In the meanwhile, for the amount of CI(ey) is unconcerned with the scale of

processes, the low transmission overhead could be beneficial to preserve e x −
∆T→ e y with 

real-time property in large-scale DVE multimedia systems.

3.3 Sending and receiving algorithms of LRTCO

3.3.1 Sending messages algorithm

With the selection of CI(ey), pj sends it with ey in a message to pdes. Before describing the 
algorithm of sending the message, several structures of local variants are given as follows.

• V T (pj)—the vector of logical times to track the numbers of messages diffused by
processes. The size of V T (pj) is equal to n. V T (pj) records the logical time of pj .

• CG(pj)—the multi-linked list storing the current effective cause-effect relation graph
of pj . To represent an event and its relation, each node of CG(pj) contains four vari-
ants: (r(ex), tx, [∆txmin,∆txmax], ptr[num]), where ptr[num] is a set of multiple
pointers of which each one is pointed to the node that represents the predecessor
which has immediate dependency relation with the event represented by this node.
Thus L(ex, ey) could be indicated by ptr[num]. To avoid the unlimited increment
of CG(pj), pj would periodically delete redundant nodes in it. Assume the current
time is t, then t < t + ∆tmin. If a node (r(ex), tx, [∆txmin,∆txmax], ptr[num])
meets that tx + ∆txmax < t, it can obtain that tx + ∆txmax ≤ t+ ∆tmin. Thus the
other causal nodes of it could be deleted if they are not in multiple paths.

• CI(ey)—the set storing causal information which would be sent to pdes to with ey
in a message. Each element in it contains four parts: (r(ex), tx, [∆txmin,∆txmax],
lc[num]). r(ex), tx, [∆txmin,∆txmax] could be obtained from CG(pj) and the
function of lc[num] is similar to ptr[num] in CG(pj) by storing the indexes of
its immediate dependent elements in CI(ey).

• CDM—the vector storing the indexes of the immediate dependent elements contain-
ing r(ex) such that ex ↓ ey in CI(ey). An element in CDM contains two variants:
(r(ex), ltr), where ltr denotes the index of one immediate dependent element con-
taining r(ex). With theCDM , pdes could begin to traverseCI(ey) using Depth-First
Search algorithm.

CMC, vol.56, no.1, pp.73-89, 2018
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Figure 2: The form of message M

The algorithm of sending message M

1. VT(pj)[j]=VT(pj)[j] + 1 ;  % update the logical time of pj

2. ty = timeGetTime() ;         % obtain wallclock time ty

3. for( a=0; a<CN(pj).size(); a++ )  % traverse CG(pj) from each pointer in CN(pj) 
4. SelectCI( null, null, CN(pj)[a].ptr );  % recursively compute CI(ey) and its CDM

5. M ← ( ey, j, VT(pj)[j], ty, [∆tmin, ∆tmax], ∆Ty, CDM, CI(ey) );  % message M
6. SendMessage(M);
7. p = CG(pj).add( r(ey), ty, [∆tmin, ∆tmax], ptr[CN(pj).size()] );     % add the new node representing

        % ey into CG(pj) and return the pointer to it 
8. for( a=0; a<CN(pj).size(); a++ )   % each pointer in ptr[num] of the new node points to the 
9. p→ ptr[a]=CN(pj)[a].ptr;  % node representing the immediate dependent event of ey

10. CN(pj).clear;     % clear the original elements in CN(pj)
11. CN(pj).add( r(ey), p );  % add new element ( r(ey), p ) into CN(pj)
12. CI(ey).clear();  % clear content of CI(ey)
13. CDM.clear();    % clear content of CDM

14. exit();

Figure 3: The algorithm of sending message M

• CN(pj)—the vector storing the pointers to the immediate dependent nodes con-
taining r(ex) such that ex ↓ ey in CG(pj). An element in CN(pj) has two parts:
(r(ex), ptr), where ptr denotes the pointer to one immediate dependent node con-
taining r(ex). With the CN(pj), pj could traverse CG(pj) using Depth-First Search
algorithm.

In order to effectively preserve ex
∆T−→ ey at pdes, the form of message M is set as shown

in Fig. 2.
The algorithm of sending message M is implemented as described in Fig. 3.
The line 4 of the algorithm described in Fig. 3 is the procedure to recursively compute
CI(ey) and its CDM . The starting argument of the procedure is a pointer stored in an
element of CN(pj). Then, pj could begin to traverse CG(pj) with Depth-First Search
algorithm until the subset of CI(ey) on each directed path has the immediate dependency
relation reconstructibility. The procedure is implemented as described in Fig. 4.
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Procedure SelectCI( up, nm, p )
{

% the argument up is the index of the element in CI(ey) which is the caller of this procedure
% CI(ey)[up] could be regard as the pointer to the element
% CI(ey)[up].lc[nm] would usually store the indexes of its immediate dependent elements
% p is the pointer to the node in CG(pj) which is going to be selected into CI(ey)

if ( !FindInCG(p) )  % if the node pointed by p is not in CG(pj), it indicates that the end 
return false ;  % of a path is reached or an exception occurs

vi = FindInCI( p.r(ex) ) ;    % if it's in CG(pj), check whether it is already selected into CI(ey)
if ( vi ) 
{         % if it is already in CI(ey), vi would record the index of that element

CI(ey)[up].lc[nm] = vi ;                                                   % return the index to the caller
return ture ;       

}
vi = CI(ey).add( *p ) ;  % if it isn't in CI(ey), add it into CI(ey) and record the index in vi
if ( up == null && nm == null )  % if the new added element represents ex and ex↓ey 

CDM.add( CI(ey)[vi].r(ex), vi ) ;         % the ( r(ex), vi ) should be added into CDM 
else  %   if ⌐( ex↓ey ) 

CI(ey)[up].lc[nm] = vi ;        % return the index to the caller
if ( CI(ey)[vi].( (tx + Δtxmax) ≤ (ty + Δtmin) )  % if the subset of CI(ey) on this path has  the 

 % immediate dependency relation reconstructibility
for (  a=0; a<num; a++ )     % terminate the selection on this path

CI(ey)[vi].lc[a] = null ; 
else  % if the termination condition is not met

for ( a=0; a<num; a++ )        % continue to recursively select 
if ( ! SelectCI( vi, a, CG(pj)[p].ptr[a] ) )       % the new node of CG(pj) into CI(ey)

CI(ey)[vi].lc[a] = null ;  % if the end of a path is reached 
 % or an exception occurs, terminate the selection on this path

return ture ;
}

Figure 4: The procedure to recursively compute CI(ey) and its CDM

The algorithm of receiving message M

1. t = timeGetTime() ;
2. if( (t>ty+∆Ty) || (VT(pj)[j]≤VT(pdes)[j]) )

       % obtain current wallclock time t
 % M is expired or has been discarded 

3. 
{

  AbandonMessage(M) ;  % abandon M
4. exit() ;

}
5. else

6. 
{

 for( b=0; b<CDM.size(); b++ ) 

 % M is valid

 % check whether item (2) in Definition 4 is satisfied 
7. if( CDM[b].r(ex).a > VT(pdes)[ CDM[b].r(ex).i ] )  % if there exists ex such that ex↓ey

{  % and ex is not delivered at pdes

 % buffer M to MQ(pdes)8. BufferMessage(M) ;
9. exit() ;

}
10. ProcessMessage(M) ;  % if item (2) in Definition 4 is satisfied, process M immediately
11. exit() ; }

Figure 5: The algorithm of receiving message M
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3.3.2 Receiving messages algorithm

After receiving the message M containing ey, pdes would check whether the immediate 
cause events ex of ey, i.e. ex ↓ ey, have been delivered. If all the ex are delivered, it is 
necessary for pdes to deliver ey immediately according to the item (2) in Definition 4 . In this 
case, em = ex. If there exists any undelivered immediate cause event, pdes would buffer 
M . Then, pdes periodically checks the message buffer to find out whether all those e x  have 
been delivered. If at the moment t = ty + ∆Ty or M is required to be delivered, all the 
ex are delivered, i.e. em = ex, pdes could directly deliver ey. If there are still delayed and 
undelivered immediate cause events in some paths, then pdes would commence to compute 
em in those paths.
Therefore, there exist different cases for M as follows: If M has been discarded at pdes or 
current moment t > ty + ∆Ty, i.e. M is expired, M would be abandoned; if M is valid and 
item (2) in Definition 4 concerned with e y is satisfied at t, pd es would process M 
immediately; if M is valid but item (2) in Definition 4  is not satisfied at  current moment t, 
pdes would buffer M into MQ(pdes).

• MQ(pdes)—messages buffer at pdes. pdes would periodically scan the buffer, if item
(2) in Definition 4 concerned with ey is satisfied, or current moment t = ty + ∆Ty,
or M is required to be delivered, pdes would call the procedure to process M .

The algorithm of receiving message M is implemented as described in Fig. 5.
When pdes needs to process M , it would handle M and its undelivered predecessor mes-
sages in causal order, which is realized by recursively calling the procedure in line 10 of 
Fig. 5. If item (2) in Definition 4  concerned with e y i s s atisfied, M could be  delivered 
immediately. If there exist delayed messages, pdes could use CI(ey) to create a local mes-
sage, which contains no actual event but control information, to replace a delayed message 
so that the recursively calling of the processing procedure can function well. 
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Procedure ProcessMessage( M )
{

% M contains { ey, j, VT(pj)[j], ty, [Δtmin, Δtmax], ΔTy, CDM, CI(ey) }
% an element in CDM contains ( r(ex), ltr ) such that ex↓ey and ltr is the index of the element 
% in CI(ey) which has the same r(ex)

p = CG(pdes).add( r(ey), ty, [Δtmin, Δtmax], ptr[ CDM.size() ] ) ;      % the new node with relative 
 % data of ey is added into CG(pdes), and pointer to the node is returned 

for( b=0; b<CDM.size(); b++ )  % search CDM 
{

tp = CI(ey)[ CDM[b].ltr ] ;    % find the element containing r(ex) such that ex↓ey in CI(ey)
if( tp.r(ex).a ≤ VT(pdes)[ tp.r(ex).i ] )  % if ex is delivered at pdes, return the pointer to

p→ptr[b] = FindInCG( tp.r(ex) ) ;  % the node representing ex in CG(pdes)
else  % ex is not delivered at pdes

{
M' = FindInMQ( tp.r(ex) ) ;      % check the message M' containing  ex in MQ(pdes)
if( M' )                                                  %  if M' is in the buffer, recursively call the 

p→ptr[b] = ProcessMessage( M' ) ;                       % procedure to process M' 
else  % if M' is not in MQ(pdes), it is a delayed message
{  % create a local message M'' to replace M' 

for( c=0; c<num; c++ )  % create CDM'' and M''
CDM''.add( CI(ey)[ tp.lc[b]].r(ex), tp.lc[b] ); 

M'' ← ( null, tp.r(ex).i, tp.r(ex).a, tp.tx, tp.[Δtxmin ,Δtxmax], null, CDM'', CI(ey) ) ;
p→ptr[b] = ProcessMessage(M'') ;       

} 
}
for( d=0; d<CN(pdes).size(); d++ ) % if  CN(pdes) contains the element pointing

if( CDM[b].r(ex) == CN(pdes)[d].r(ex) )     % to the node representing ex in  CG(pdes)
CN(pdes).remove(d) ;  % delete the element

} 
CN(pdes).add( r(ey), p ) ;  % add the new element ( r(ey), p ) into CN(pdes) 
if( VT(pj)[j] > VT(pdes)[j] )      % update the logical time at pdes

VT(pdes)[j] = VT(pj)[j] ; 
DeliveryEvent(e);  % delivery ey itself 

return p ;  % return p pointing to the node representing ey in CG(pdes) to the caller
}

Figure 6: The procedure to recursively process M

Thus, pdes could identify em and preserve ex −
∆T→ ey effectively. Once a message, remotely 

received or locally created, is delivered at pdes, the new node with relative data of the 
message would be added into CG(pdes). Then, as pdes is going to send a message, it could 
select correct control information from CG(pdes). The procedure is described in Fig. 6.

4 Experimental results and analysis
Experiments have been conducted to evaluate the efficiency of LRTCO algorithm in 
the distributed causality verification environment established on a PC cluster of 30 high 
performance machines. The framework of the environment is illustrated in Fig. 7. The 
run time infrastructure of the environment is BH-RTI [Zhao, Zhou and Lu 
(2008)] developed by Beijing University of Aeronautics and Astronautics following 
the High Level Architecture (HLA) standard [IEEE (2000, 2001, 2003)]. The 
middleware between BH-RTI and federates is designed to consist of the network 
coordinate computation module and the real-time causal order delivery module. 
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Figure 7: The framework of the distributed causality verification environment

A distributed real-time air battle simulation is developed to run at federates to display the 
effects of causal order control algorithms. To simulate the transmission delay of WAN, a 
Spirent ConNIE is utilized to generate network impairments. The ordering mechanism in 
BH-RTI is set to be Receive Order (RO) in the experiments.
Through the distributed air battle simulation, LRTCO algorithm is compared with the ex-
isting real-time causal order control approaches: ERO [Zhou, Cai and Turner (2007)] 
and DCCO [Rodrigues, Baldoni and Anceaume (2000)]. Multiple experiments are 
conducted with different scales of entities running as processes and for each scale the three 
algorithms are implemented in turn. The GUI of distributed air battle simulation is shown 
in Fig. 8.
For the correctness of the delivery order of events can be evaluated by the numbers of 
causal order violations, Fig. 9 shows the causal order violations of ERO, DCCO and 
LRTCO in the experiments. Because each message in ERO merely contains an immediate 
dependent event as control information, the causal order violations of it are greater 
than those of DCCO and LRTCO in each scale. When the scale is 3000, the number 
of violations is approximately 300 while it is over 1400 when the scale is 11000. The 
complete vector time used by DCCO in each message can reduce causal order 
violations lower than 100 when scale is 3000, but as the transmission overhead is closely 
coupled with the scale, the number of violations rises a lot as the scale expands. In 9000 it 
is approximately 166% of that in 7000 and in 11000 it is about 187% of that in 9000. The 
violation number of LRTCO is slightly higher than that of DCCO in 3000, but it is lower 
when the scale is above 3000 due to the control information irrelevant to the scale. 
Especially when the scale is 11000, the violation number is merely 200 or so, which is 
approximately 30% of that of DCCO and 15% of that of ERO in the identical scale.
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Figure 8: The GUI of the distributed air battle simulation

Figure 9: Causal order violations in different scales
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Figure 10: Average causal control information percentage

As the transmission overhead can be estimated by the average amount of causal control 
information in each message, Fig. 10 shows the percentage of average causal control in-
formation of LRTCO compared to the size of vector time of DCCO in different average 
network transmission delay conditions. As can be seen in scale 3000, when average net-
work transmission delay is 50 ms, the percentage is about 6%. As the transmission delay 
rises, the number of messages that can not arrive in time may increase, so that the average 
amount of control information increases either, but when transmission delay is 200 ms, the 
percentage is merely 27% or so. With the expanding scale, the size of vector time raises 
a lot, whereas the average amount of causal control information of LRTCO is irrelevant to 
the scale, so the percentage gradually diminishes. In 3000, the percentage is approximately 
6%, 13%, 22% and 27% when the average transmission delay is 50 ms,100 ms, 150 ms and 
200 ms. And in 11000, the percentage correspondently decreases to 2%, 3%, 6% and 7%.

5 Conclusions
In the large-scale DVE systems, causal order delivery of events needs to be preserved in 
real-time. However, some causal events may arrive late due to the large network transmis-
sion delay especially on WAN, which would lead to that the cause-effect relations among 
received events change into concurrent relations and that causal order violations occur if 
without the causal order control. In this article, we investigate real-time causal order deliv-
ery of events. First, the two cases of real-time causal order delivery are defined. Then, we 
analyze and define the current minimum causal event, and prove that if the proper causal 
control information selected by the sending process could be used by each destination pro-
cess to identify its own current minimum causal event in the received events, the two cases 
of real-time causal order delivery could be preserved. Thus, we discuss the network trans-
mission time range and arriving time range of an event, based on which it is proved that 
if the selected causal control information has the immediate dependency relation recon-
structibility, each destination process could use it to find out its own current minimum
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causal event in received events and the control information has no redundant data. Af-
ter the above analysis and proofs, we propose the Lightweight Real-Time Causal Order 
(LRTCO) algorithm for large-scale DVE systems, which distributedly realizes designing 
and implementing the procedure to select the causal control information with the immedi-
ate dependency relation reconstructibility at sending process, sending messages algorithm, 
receiving messages algorithm, and the procedure to recursively deliver the received events 
in real-time causal order at each destination process. At last, multiple experiments are con-
ducted to evaluate the efficiency o f L  RTCO a l gorithm c o mpared w i th t h e o t her exis-
ting real-time causal order algorithms in the distributed causality verification e  nvironment. 
The experimental results demonstrate that LRTCO could effectively preserve real-time 
causal order delivery of events in large-scale DVE systems by greatly reducing the 
causal order violations at destination processes and costing low transmission overhead and 
communica-tion bandwidth due to the causal control information dynamically adapted to 
the network latency variation and irrelevant to the system scale.
In our future work, we would like to implement more large-scale DVE application sys-
tems using LRTCO programs on Internet, and evaluate the performance of the distributed 
computing systems, so as to obtain more evaluation results about LRTCO preservation 
efficiency of real-time causal order delivery.
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