

Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.61-72, 2018

CMC. doi:10.3970/cmc.2018.02449 www.techscience.com/cmc

A Distributed Intrusion Detection Model via Nondestructive
Partitioning and Balanced Allocation for Big Data

Xiaonian Wu1, *, Chuyun Zhang3, Runlian Zhang2, Yujue Wang2 and Jinhua Cui4

Abstract: There are two key issues in distributed intrusion detection system, that is,
maintaining load balance of system and protecting data integrity. To address these issues,
this paper proposes a new distributed intrusion detection model for big data based on
nondestructive partitioning and balanced allocation. A data allocation strategy based on
capacity and workload is introduced to achieve local load balance, and a dynamic load
adjustment strategy is adopted to maintain global load balance of cluster. Moreover, data
integrity is protected by using session reassemble and session partitioning. The
simulation results show that the new model enjoys favorable advantages such as good
load balance, higher detection rate and detection efficiency.

Keywords: Distributed intrusion detection, data allocation, load balancing, data integrity,
big data.

1 Introduction
Intrusion detection system (IDS) is an important tool in protecting network security
[Denning (1987)]. With the fast development of network technology, big data age arrived
[Gupta and George (2016)], which brings many challenges to traditional IDS. Due to the
huge volume of data and potential attacks in big data, it is rather difficult to provide
effective security support for traditional IDS. In fact, traditional IDS has many
disadvantages such as delaying response, reducing detection rate, thus it cannot
effectively complete the detection work in big data environment. To solve these issues,
distributed instruction detection system (DIDS) was introduced [Konstantinos, Ioannis
and Spiros (2006); Genge, Haller and Kiss (2016)]. Although many DIDS schemes have
proposed with different approaches, they have many shortcomings and need to be
improved. For instance, data integrity may be destroyed when data is inappropriately
partitioned, and the imbalance of data allocation may affect performance. Therefore, it is
an urgent task to improve the efficiency and detection rate of IDS.

1 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, Guilin 541004,
China.
2 Guangxi Key Laboratory of Cryptography and Information Security, Guilin University of Electronic
Technology, Guilin 541004, China.
3 Guangxi Wireless Broadband Communication and Signal Processing Key Laboratory, Guilin University of
Electronic Technology, Guilin 541004, China.
4 School of Information Systems, Singapore Management University, Singapore 178902, Singapore.
* Corresponding Author: Xiaonian Wu. Email: xnwu@guet.edu.cn.

62 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.61-72, 2018

The challenge work in current IDS is to improve data processing speed so that it can
successfully match the speed of network transmission and processing for massive data. In
this case, the key point is to look for some appropriate data partition algorithms to
partition data, and efficiently process data. Kruegel et al. [Kruegel, Valeur, Vigna et al.
(2002)] used a slicing mechanism to process data in a parallel mode. Later, Charitakis et
al. [Charitakis, Anagnostakis and Markatos (2003)] introduced an active traffic splitter
based on hash algorithm. In 2005, an algorithm is presented by the idea of priority to
partition and distribute the data to the lightest load node [Jiang, Song and Dai (2005)].
Also, a hash mechanism is used to distribute network traffic load [Schaelicke, Wheeler
and Freeland (2005)]. Recently, a distributed outlier detection algorithm for computing
outliers is proposed [Wang, Shen and Mei (2016)]. Notice that data integrity in above
methods could be destroyed when the traffic is inappropriately divided into subsets.
Moreover, to ensure data integrity, a partition algorithm [Lai, Cai and Huang (2004)] is
introduced to divide traffic into small slices by address, port and attack types. Furthermore,
Liu et al. [Liu, Xin, Gang et al. (2008)] investigated the issue using the independent neural
network. Recently, Cheng introduced an abnormal network flow feature sequence
prediction approach to detect DDoS attacks in big data environment. However, the problem
is still not well solved.
On the other hand, data partitioning has been widely used in parallel computing and data
processing in various fields, to raise throughput and provide load balancing [Soklic
(2002); Rosas, Sikora and Jorba (2014); Wang, Chen, Li et al. (2016)]. Although the
throughput of system is increased by data partition and load policy, there still exists a
bottleneck in IDS system.
In this paper, a new distributed intrusion detection model is proposed based on
nondestructive partitioning and balanced allocation for big data (DIDS-NPBA).
Specifically, a data allocation approach is introduced based on capacity and load to
achieve local load balance, a dynamic load adjustment strategy is adopted to maintain
global load balance of cluster and data integrity is protected by reassembling TCP session
and session allocation policy.
The rest of this paper is organized as follows. A brief introduction and overview of
DIDS-NPBA model are given in Section 2. The process about session assembly and data
classification are described in Session 3. Section 4 presents a data allocation approach
and a nondestructive data partitioning algorithm. The experimental results of the
proposed model are shown in Section 5. Finally, the conclusions and future work are
discussed in Section 6.

2 DIDS-NPBA system model
In high-speed network, massive amount of data makes traditional IDS difficult to detect
attacks. Hadoop is an open-source framework and is used for large scale data processing.
In this paper, our DIDS-NPBA is built on Hadoop to detect big data. As shown in Fig. 1,
DIDS-NPBA consists of data acquisition, control center, data storage and data detection,
where control center contains system monitoring, task scheduler and alarm response.
According to Hadoop framework, control center acts as the master node, whereas other

A Distributed Intrusion Detection Model via Nondestructive Partitioning 63

components play as slave nodes and communicate with MapReduce, which will be
described in Section 5.1.

Control centerData
acquisition

sensor

sensor

sensor

Data storage

Task scheduler

System monitor

Alarm response

Data detection

Detection nodeN
E
T
W
O
R
K

Detection node

Detection node

Data storage node Data storage node…

……

Capacity computing Load computing

load adjustment
Weight computing Data allocation
Data partitioning

Data storage node

Figure 1: The DIDS-NPBA model

The mechanism of DIDS-NPBA is as follows. In Fig. 1, data acquisition is to collect
network packets using many independent sensors. Packets are reassembled and classified
in sensors. The data storage nodes receive and store data from sensors and submit
summarizing information to control center.
System monitoring module monitors the state of detection nodes, including utilization
ratio of node CPU/RAM/hard disk, and network bandwidth. Then the information is sent
to task scheduler. According to the information and a data allocation strategy based on
capacity and load (DAS-CL), task scheduler partitions and allocates data to detection
nodes. Alarm response module receives and displays alarms coming from detection nodes.
Data detection module is used to detect and analyze data, which consists of many
distributed data detection nodes in parallel. Each detection node reads the allocated data
files from the corresponding data storage node, analyses and detects data, and sends
alarms to control center.

3 The work of data assembly and classification detection
The TCP session assembly is to assemble and restore session from the interrelated
network packets. A TCP link is determined uniquely by a tuple <source IP, source port,
destination IP, destination port>. The hash value calculated from such tuple can be used
as a unique identification of TCP link. Combining the hash value with linking number in
packet, each TCP session can be restored from the captured packets. Then in sensors,
each TCP session is stored into a data file named after its hash value. To protect data
integrity, each session file would not be permitted to be split out when files is partitioned.
In IDS, more feature rules would be helpful to raise the detection rate. However, the
growth of feature rules increases detection time. Thus, we introduce a classification
detection method to reduce detection time by cutting down feature rules of IDS, without
affecting the detection rate of IDS.

64 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.61-72, 2018

First, the session files are classified according to application protocols. For example,
assuming there are k class protocols, the files would be divided into k data groups. Then,
all detection nodes are divided into k node groups in the same way, and the feature rules
corresponding to the protocol are retained in each node group and the other rules are cut
down. Finally, each data group is assigned to a node group with the same protocol. In this
way, the feature rules can be reduced, which hardly affect the detection rate of IDS since
these feature rules meet the pending data.

4 Data allocation strategy and data partition algorithm
4.1 Capacity evaluation for detection nodes
The capacity of nodes is determined by many performance indexes, which can be
collected by the system monitoring module. Assume the evaluation indexes for node
capacity mainly include node CPU, memory and network bandwidth, since the work
focuses on computation and data transmission. We only evaluate the detection nodes
which are used to detect data. Let CAP(i) represent the capacity of node i, which is
defined as follows:

iii NaMaCPUaiCAP ×+×+×= 321)((1)

where CPUi is the product of CPU number and CPU frequency of node i, Mi is the
memory capacity, Ni is network bandwidth, and a1, a2, a3 are the weighting factors on
node capacity with a1+a2+a3=1.
To evaluate the diversity of memory among heterogeneous nodes, Mi is computed by
memory size, frequency and CAS latency (CL) of memory, where these parameters are
normalized by using Min-max linear function conversion method. The computation of Mi
avoids the influence from the discrete value of different indexes. Similarly, CPUi, Ni in
formula (1) are normalized with the same linear method.
The heterogeneity of detection node capacity makes it difficult to control the data
granularity allocated to each node when big data is split. If all nodes are assigned datasets
with the same size, the nodes with weak capacity would be bottleneck. Here, we
introduce a concept about node capacity factor (CF) to measure the capacity relationship
of nodes as follows.
Definition 1. CF is mainly used to measure or weigh capacity ratio of a node in cluster.
Assume there are n nodes in a cluster, CAP(i) is the capacity of node i, and node j (1≤j≤n)
has the lowest capacity CAP(j) in all nodes. The CF of node i can be computed as follows:

))(),..,(),...,2(),1((
)()(

nCAPjCAPCAPCAPMin
iCAPiCF = (2)

The node with the lowest capacity is used as a benchmark to measure or weigh other
node in cluster. Moreover, CF reflects the ratio among nodes in cluster, which can be
helped to calculate the weight for data allocation.

4.2 Load evaluation for detection nodes
The load of nodes is another important factor affecting the data processing efficiency. The
heavier load of a node, the more time is needed for data detection. In order to evaluate

A Distributed Intrusion Detection Model via Nondestructive Partitioning 65

node load, the utilization of CPU, memory and network bandwidth of nodes are collected
by the system monitoring module in real time. Suppose L(i) is the load of node i at a
certain moment, we define:

)()()()(321 iii NUbMUbCPUUbiL ×+×+×= (3)

where U(CPUi), U(Mi), U(Ni) are the CPU, memory and network bandwidth utilization of
node i, and b1, b2, b3 are the weight factors satisfying b1+b2+b3=1.
If the load of some node is changed, then the data granularity allocated to this node
should be changed accordingly. For instance, the overload nodes will no longer be
assigned data. Here, we give another definition about the load factor (LF) to estimate the
load degree of heterogeneous nodes.
Definition 2. LF is mainly used to measure the degree of node load. Suppose the light-
load threshold of a node is α and its overload threshold is β. The LF of node i can be
computed as follows:














<<
−

≥

≤
−

+

=

βα
β

β

α
α

)(
)(

)(
)(0

)(
)(

)(
1

)(

iL
iL

iL
iL

iL
iL

iL

iLF

，

，

，

 (4)

where LF is a piecewise function such that its value changes along with the node load.
Thus, LF is the other key factor to evaluate data allocation.

4.3 Data allocation strategy in a node group
In the proposed DAS-CL, the contribution of each node is quantified in a node group.
Assuming there are m nodes in node group k, and the total GDBk data are submitted to
node group k. The weight factor R(i) of node i in group k can be computed as follows:

∑
=

×

×
= m

i
iLFiCF

iLFiCFiR

1
))()((

)()()((5)

From Eq. (5), the stronger capacity and the lighter load of node i, it has the greater weight
or contribution in node group k.
Suppose D(i) is the assigned data size to node i from GDBk, which can be computed as
follows:

)()(iRGDBiD k ×= (6)

According to formula (6), each node will be allocated a data set conforming to its
capacity and load. Thus, the resource utilization is raised and the bottleneck can be
avoided, which means that a better local load balance can be achieved in node group.

4.4 Data partition
In the process of data partition, files allocated to node i may be roughly D(i), but does not
equal to D(i), since the size of each file is uncertain. If a file is split out to meet D(i), the

66 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.61-72, 2018

data integrity would be undermined. Thus, each file would not be permitted to be split out,
as discussed in Section 3.
An approximate allocation way is used to partition data. A fluctuation range closed to D(i)
is set to 5 MB, it has little influence on node load when compared with the massive data.
Then a file or many files from GDBk with size closed to D(i) will be allocated to node i,
and the file information including the address of data storage node (i.e. the real location
of storing data file), file directory and file name, etc. will be sent to node i by the task
scheduler. Node i will read the assigned data files from the data storage node, detect the
data, and send alarms to the alarm node.

4.5 Dynamic adjustment for load balancing among node groups
The data produced by the Internet applications is varying with time. For instance, during
some period, an application may be used frequently, thus the produced data would be
increased, whereas other data may be reduced. This changing could be able to affect the
load of node groups, even cause load imbalance among node groups. Therefore, we
present a dynamic load adjustment method among node groups to maintain global
balance in the cluster.
We need to evaluate the load of different node groups. In each node group, each node
may have different capacity and load. We introduce a new concept regarding the load of
node group (GL) to smooth the differences.
Definition 3. GL is used to measure the average load of all nodes in a node group, which
can be computed by the load and capacity of nodes. Suppose there are m nodes in node
group k, the load GL(k) of node group k is defined as follows:

∑
∑=

=

×
=

m

i
m

i
iCF

iLiCFkGL
1

1
)(

)()()((7)

The load dynamic adjustment method among node groups is as follows:
Step 1. Compute GL of each node group. The light-load threshold of node group is α' and
its overload threshold is β’. All the overload node groups are lined in an overload queue,
and all the light-load node groups are lined in a light-load queue.
Step 2. The task scheduler counts up the classified data coming from data storage nodes,
and assigns each dataset to a node group by protocols.
Step 3. Set a light dataset threshold δ, which is considered to have less impact on the load
of node group even if the node group is overload. Assuming a node group is assigned
data of size GDB, if GDB≤δ, then it will be removed from the overload queue.
Step 4. Suppose two queues are all not empty. From the first node group A in the light-
load queue, node i is searched, who has completed detection tasks and has lighter load,
and its CAP(i) is not the largest in the group. Node i is migrated to the first node group B
in the overload queue, and the feature rules of IDS in the migrated node i are changed
conforming to the new node group. Then, node groups A and B are removed from two
queues, respectively.
Step 5. If the light-load queue is empty and the overload queue is not empty, then the

A Distributed Intrusion Detection Model via Nondestructive Partitioning 67

assigned data of all node groups in the overload queue are split out such that half data
will be processed in the current round and the remaining will be processed in the next
round. Then all node groups are removed from the overload queue.

5 Experimental result analysis
5.1 Experiment environment
Based on Hadoop, a prototype of DIDS-NPBA model is implemented with Java. Nodes
running above function are deployed in campus network. For instance, sensors are
distributed in different subnet and near switches. The system monitor unit uses open
source tool Sigar to collect run-time information of each detection node. DAS-CL
strategy and data partitioning are implemented and embedded in task scheduler in control
center. The alarm response unit is used to count alarm results. In order to ensure the
consistency and validity of data detection, all detection nodes equip with Snort system
after detection nodes are grouped, feature rules in each detection node are configured to
conform to protocols of its node group. In Hadoop cluster, control center plays as a
Master node, which communicates with the slave nodes including data storage nodes and
detection nodes using MapReduce.
In this section, we test the DIDS-NPBA model in the above environment in terms of load
balancing, detection time and detection rate, and compare with two data allocation
methods, that is, consistency hash algorithm [Karger, Lehman, Leighton et al. (1997)]
and Rosas algorithm [Rosas, Sikora and Jorba (2014)].
The parameters in DIDS-NPBA model are set as follows:
(1) In formula (1) and (3), the computing power plays a major role in data detection, thus
a1, b1 are set to 0.6, a2, b2 are set to 0.3, and a3, b3 are 0.1.
(2) In formula (4), according to the empirical data, the rated output of nodes is about
0.7~0.8, and referring to the experimental data of node load, α and β are set to 0.23 and
0.77, respectively.
(3) In Section 4.4, α' and β' are set to 0.3 and 0.7, respectively, which are different from α
and β, since the average load of a node group can be impacted by more factors. And δ is
set to 200 MB.
(4) The detection nodes count up to 20 heterogeneous nodes, whose capacities are
computed as in Tab. 1.

5.2 Data preprocessing and grouping for detection nodes
We use DARPA2000 data set to conduct testing in this paper. Since the DARPA2000
data set is small, the data in inside, outside and DMZ environments from different dates
are extended to 3 GB to simulate data acquisition in high-speed network. The extended 3
GB data set is reassembled and processed in sensors, and each session is stored in a file
named after its hash value.
Through analyzing the above 3 GB data set, the total number of attacks is 15659.
Moreover, the data components are as follows: The http protocol data is 1782 MB, the ftp
data is 233 MB, and the telnet data is 522 MB. The rest 463 MB data are classified as

68 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.61-72, 2018

mixed data. Thus, the total data set is divided into four categories, that is, HTTP, FTP,
TELNET, and mixed data.
Accordingly, detection nodes are also divided into four node groups. The feature rules of
Snort in each node are configured according to its group, except the mixed node group is
with all original feature rules of Snort.
Initially, detection nodes are grouped as follows. HTTP node group is assigned 10 nodes
(S1~S10), FTP node group has 2 nodes (S11~S12), TELNET node group has 4 nodes
(S13~S16), and the mixed node group contains the resting 4 nodes (S17~S20). The
capacity of nodes is shown in Tab. 1.

5.3 Validity test and analysis for the DIDS-NPBA model
In this section, the load balancing, detection time and detection rate of DIDS-NPBA
model are investigated. The results are compared with that of consistency hash [Karger,
Lehman, Leighton et al. (1997)] and Rosas et al. [Rosas, Sikora and Jorba (2014)]
algorithm, which are listed in Tab. 1.

Table 1: The results of data allocation and detection with different methods

Node CAP L CF
Data size (MB) Detection time

(second)
Alarm number

NPBA Hash Rosas NPBA Hash Rosas NPBA Hash Rosas
S1 2350 0.35 1.65 225 180 230 9.6 9.7 9.6 357 263 361
S2 2278 0.33 1.60 218 178 203 9.5 9.5 10.3 330 252 345
S3 2021 0.40 1.42 193 173 207 9.8 9.3 10.1 320 244 332
S4 2010 0.35 1.41 192 165 206 10 9.7 9.8 305 235 319
S5 1920 0.38 1.35 184 177 171 10.2 10.1 9.4 285 257 274
S6 1750 0.41 1.23 167 180 170 11.2 10.9 9.3 260 261 268
S7 1675 0.37 1.17 160 182 153 10.2 10.5 10.2 253 258 243
S8 1630 0.45 1.14 156 187 151 11 11.1 10.5 250 267 231
S9 1580 0.35 1.11 151 185 161 10.8 10.8 10.3 240 259 232

S10 1425 0.40 1 136 175 130 11.5 12.3 10.9 215 248 186
S11 1690 0.37 1.44 138 123 131 9.6 9.2 8.5 184 168 180
S12 1171 0.48 1 95 110 102 8.9 12.2 11.6 131 143 135
S13 2149 0.52 1.77 166 120 159 9 8.3 10.4 193 163 187
S14 1850 0.51 1.52 143 135 149 10 9.6 8.6 178 170 181
S15 1542 0.44 1.27 119 142 113 9.4 11 10.8 140 153 136
S16 1214 0.55 1 94 125 101 9.1 12.3 10.6 115 139 121
S17 2098 0.35 1.51 147 113 144 9.9 8.4 10.2 3698 3416 3691
S18 1786 0.40 1.28 120 126 129 9.4 9.6 10.5 3152 3024 3161
S19 1470 0.51 1.06 101 118 99 9.6 9.8 9.7 2590 1587 2602
S20 1390 0.58 1 95 106 91 9.7 11.3 10.3 2460 2508 2439

 total 197.8 205.6 201.6 15656 14015 15624

A Distributed Intrusion Detection Model via Nondestructive Partitioning 69

In Tab. 1, nodes are listed by grouping in turn, and each group has different background
color. CAP represents node capacity, L is node load, CF is the node capacity factor, Data
size is the partitioned and assigned data to each node, Detection time is the time spent by
each node to detect the assigned data, and Alarm number is the attack number detected by
each node.

(1) Result analysis for load balancing experiments
In parallel computing, the data assigned to each node in cluster should be proportionate to
node performance [Soklic (2002)] to maximize resource utilization.
In Tab. 1, it can be seen that the difference of capacity (CAP) among nodes is great,
whereas the load (L) among nodes are close. This can be evaluated by the standard
deviation (SD). SD of CAP and L of 20 nodes are 335 and 0.076, respectively. In Tab. 1,
SD of the data assigned to each node group by DIDS-NPBA, hash and Rosas, are
computed. For HTTP, FTP, TELNET and mixed node group, there are 29.2, 30.4, 31,
23.4 in DIDS-NPBA, 6.3, 9.2, 9.9, 8.4 in hash, and 31.6, 20.5, 27.9, 24.9 in Rosas.
The above results show that, the capacity difference of nodes is great, whereas the
difference of the data assigned to each node is small in consistency hash, which means
that a node with weak capacity has to deal with the same data set like a strong node. In
fact, the consistency hash partitions data without considering node capacity and load.
Rosas algorithm adjusts the allocated data amount dynamically by the computing time
that the node dealt with the allocated data, which matches the performance of nodes. For
DIDS-NPBA, it can be seen that the data assigned to each node is proportionate to its
capacity and load, which improves resource utilization and throughput of system, and the
load balance of cluster system can also be maintained well.
(2) Analysis of experimental results for detection time
In Tab. 1, SD of detection time for DIDS-NPBA, Hash and Rosas, are 0.72, 1.19, 0.75,
respectively. The results show that the difference of detection time spent by each node in
DIDS-NPBA is smallest and its parallelism is the best. Consistency hash requires the
longest detection time (12.3 s) for a single detection node due to imbalance data
allocation, thus the parallelism is worst. Due to the balanced data allocation, the
parallelism of Rosas is roughly the same to DIDS-NPBA. Note that the sum of detection
time spent in DIDS-NPBA is the least, which shows that the system performance is
improved.
(3) Analysis of experimental results for detection rate
DR is defined as the ratio between number D of the detected intrusion behaviors and
number T of all intrusion behaviors, that is, DR=D/T.
It is shown in Tab. 1, DR of the hash is the lowest, i.e. 89%, which mainly lies in that the
data integrity is damaged heavily when data is partitioned by mapping relationship
between packets and virtual nodes. DR of the Rosas and DIDS-NPBA are near to 99%,
because the data integrity is protected by TCP session assembly and balanced data
allocation. Moreover, the original data that have not to be assembled based on TCP
session, DR of the Rosas and DIDS-NPBA are near to 93%.

70 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.61-72, 2018

5.4 Experimental test for the dynamic load balancing adjustment among node groups
To evaluate the efficiency of our proposed algorithms, we construct experiments on five
datasets, where each date set is about 3 GB as in Section 5.2. The components of five
data sets are as follows: The first data set is same as that used in Section 5.2, and other
four data sets are http data of 1382 MB, ftp data of 633 MB, telnet data of 522 MB, and
the mixed data of 522 MB, respectively, with the total alarm 15590.
In the experiments, the 3 GB data set is allocated and detected by 20 nodes in parallel
based on the DIDS-NPBA model, and the average detection time is about 10 seconds.
Thus, the processing of a data set including partition, allocation and detect data is 10
seconds. Note that 20 detection nodes are still used, and the initial group and
experimental results for the first data set are shown in Tab. 1. The experimental results
for the other four data sets are summarized in Tab. 2, where the titles, L, Data, Time and
Alarm, have same meaning as in Tab. 1.

Table 2: The experimental results of the dynamic load balancing adjustment strategy

Nod
es

The second data set Nod
es

The third data set The fourth data set The fifth data set
L

L Data Time Alarm L Data Time Alarm L Data Time Alarm L Data Time Alarm
S1 0.26 174 6.6 276 S1 0.30 199 8.6 316 0.28 199 9.1 316 0.30 199 9.3 316 0.30
S2 0.28 169 6.8 266 S3 0.29 171 8.7 272 0.29 171 9.3 272 0.29 171 8.6 272 0.29
S3 0.31 150 7.1 238 S4 0.24 170 9.5 270 0.31 170 9.7 270 0.33 170 9.7 270 0.33
S4 0.57 149 7.4 236 S5 0.25 163 10.7 252 0.62 163 10.2 252 0.65 163 11.1 252 0.62
S5 0.63 143 8 227 S6 0.33 148 11.9 239 0.61 148 11.3 239 0.63 148 10.9 239 0.63
S6 0.60 130 6.8 205 S7 0.31 141 10.8 224 0.60 141 11 224 0.61 141 11.3 224 0.64
S7 0.58 124 7.6 197 S8 0.35 137 11.6 215 0.57 137 10.8 215 0.65 137 11 215 0.65
S8 0.61 120 7.1 191 S9 0.31 134 11.3 212 0.60 134 11 212 0.61 134 10.9 212 0.67
S9 0.59 117 6.9 186 S10 0.34 120 10.8 191 0.63 120 10.9 191 0.64 120 11.3 191 0.64

S10 0.65 106 8.1 169 S2 0.35 345 13.9 415 0.70 345 13.7 417 0.66 262 8.9 353 0.68
S11 0.32 374 26.8 427 S11 0.73 288 10.8 368 0.69 288 10.7 368 0.67 219 10.8 298 0.62
S12 0.30 259 28.6 289 S12 0.87 0 0 0 0.89 0 0 0 0.42 152 10.5 213 0.65
S13 0.25 166 9.3 193 S13 0.29 166 8.9 193 0.27 166 9 193 0.33 166 9.5 193 0.30
S14 0.57 143 10.2 178 S14 0.60 143 10 178 0.59 143 10.4 178 0.57 143 10.2 178 0.62
S15 0.63 119 11 140 S15 0.59 119 10.9 140 0.64 119 11 140 0.59 119 10 140 0.58
S16 0.30 93 8.5 115 S16 0.27 93 8.3 115 0.31 93 8.5 115 0.30 93 9.1 115 0.34
S17 0.28 162 9.3 3698 S17 0.26 162 9.8 3698 0.31 162 9.3 3698 0.34 162 9.7 3698 0.22
S18 0.61 138 10 3152 S18 0.64 138 10.7 3152 0.59 138 10 3152 0.60 138 11.2 3152 0.63
S19 0.63 114 10.3 2590 S19 0.67 114 11.1 2590 0.65 114 11 2590 0.58 114 10.3 2590 0.57
S20 0.62 108 10 2460 S20 0.66 108 10.5 2460 0.63 108 10.7 2460 0.64 108 10 2460 0.67

 total 206.4 0 198.8 10.78 197.6 10.41 204.3 10.65

Compared the second data set with the first one, it is easy to see that http data are
decreased, whereas ftp data are increased. After the second data set has been split and
allocated, the nodes in ftp node group were assigned with more data than the first time.
As shown in Tab. 2, node S12 is overloaded at 0.87, and ftp node group is also
overloaded at 0.79. However, the load of nodes in http node group is decreased, and the
http node group has light load at 0.26. According to the dynamic load adjustment strategy,
node S2 in http node group is migrated to ftp node group. Then, in ftp node group, node

A Distributed Intrusion Detection Model via Nondestructive Partitioning 71

S2 and S11 are assigned data for the third and fourth data sets, but node S12 is ignored
since it has been overloaded. When the fifth data set is processed, node S12 is monitored.
It is assigned data according to its capacity and load, in this way to return to normal. And
the load of all nodes is also monitored after the fifth data set has been processed as shown
at the most right column in Tab. 2.
With network data sharply changes, some problems would inevitably occur for IDS, such
as the imbalance of system load, and the system performance and detection rate are
degraded. The global load imbalance due to the sharp change of data component can be
overcome in time following the dynamic load adjustment strategy, and the data
processing efficiency, load balance and detection rate of the system are relatively stable
during the process of continuous operation.

6 Conclusion
In view of the issue that data processing speed of existing IDS cannot match the speed of
network transmission and processing for massive data, a novel distributed intrusion
detection model DIDS-NPBA is proposed. More precisely, feature rules are decreased by
classification detection method. The data integrity can be protected by session reassembly
and nondestructive partitioning based on session files. Furthermore, the load balance of
system is achieved by the dynamic load adjustment strategy and DAS-CL strategy. The
simulation results demonstrate that our model has favorable advantages in providing
better load balance, reducing detection time, and raising detection rate and throughput.

Acknowledgement: This article is supported in part by Guangxi Key Laboratory of
Trusted Software of China (No. kx201622), Guangxi Key Laboratory of Cryptography
and Information Security of China (No. GCIS201623, GCIS201705), Guangxi Key Lab
of Wireless Wideband Communication and Signal Processing of China (No.
GXKL061510, GXKL0614110), Guangxi Colleges and Universities Key Laboratory of
cloud computing and complex systems of China (No. YF16205), and Innovation Project
of Guangxi Graduate Education (No. YCSW2018138, 2017YJCX26).

References
Charitakis, I.; Anagnostakis, K.; Markatos, E. (2003): An active traffic splitter
architecture for intrusion detection. Proceedings of the 11th IEEE/ACM International
Symposium on Modeling, Analysis and Simulation of Computer Telecommunications
Systems, pp. 238-241.
Denning, D. E. (1987): An intrusion-detection model. IEEE Transactions on Software
Engineering, vol. 13, no. 2, pp. 222-223.
Genge, B.; Haller, P.; Kiss, I. (2016): A framework for designing resilient distributed
intrusion detection systems for critical infrastructures. International Journal of Critical
Infrastructure Protection, vol. 15, pp. 3-11.
Gupta, M.; George, J. F. (2016): Toward the development of a big data analytics
capability. Information & Management, vol. 53, no. 8, pp. 1049-1064.

72 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.61-72, 2018

Jiang, W.; Song, H.; Dai, Y. (2005): Real-time intrusion detection for high-speed
networks. Computers & Security, vol. 24, no. 4, pp. 287-294.
Karger, D. R.; Lehman, E.; Leighton, T.; Panigrahy, R.; Levine, M. et al. (1997):
Consistent hashing and random trees: Distributed caching protocols for relieving hot
spots on the world wide web. Proceedings of the International Symposium on Theory of
Computing (ACM STOC), pp. 654-663.
Konstantinos, X.; Ioannis, C.; Spiros, A. (2006): An active splitter architecture for
intrusion detection and prevention. IEEE Transactions on Dependable and Secure
Computing, vol. 3, no. 1, pp. 31-44.
Kruegel, C.; Valeur, F.; Vigna, G.; Kemmerer, R. (2002): Stateful intrusion detection
for high-speed networks. Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pp. 285-294.
Lai, H.; Cai, S.; Huang, H. (2004): A parallel intrusion detection system for high-speed
networks. Proceedings of Applied Cryptography and Network Security, Second
International Conference, pp. 439-451.
Liu, Y. H.; Xin, T. D.; Gang, Y. X.; Jian, W. (2008): Large-Scale network intrusion
detection algorithm based on distributed learning. Journal of Software, vol. 19, no. 4, pp.
993-1003.
Rosas, C.; Sikora, A.; Jorba, J. (2014): Dynamic tuning of the workload partition factor
and the resource utilization in data-intensive applications. Future Generation Computer
Systems, vol. 37, no. 6, pp. 162-177.
Schaelicke, L.; Wheeler, K.; Freeland, C. (2005): A scalable network intrusion
detection loadbalancer. Proceedings of the 2nd Conference on computing Frontiers, pp.
315-322.
Soklic, M. E. (2002): Simulation of load balancing algorithms: A comparative study.
ACM SIGCSE Bulletin, vol. 34, no. 4, pp. 138-141.
Wang, X. T.; Shen, D. R.; Mei, B. (2016): An efficient algorithm for distributed outlier
detection. Chinese Journal of Computers, vol. 39, no. 1, pp. 36-51.
Wang, Z.; Chen, Q.; Li, Z. H.; Pan, W.; You, L. (2016): An incremental partitioning
strategy for data balance on mapreduce. Chinese Journal of Computers, vol. 39, no. 1, pp.
19-35.

http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri:(901e15870abc37cc)%20IEEE%20Symposium%20on%20Security%20&%20Privacy&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=confuri:(901e15870abc37cc)%20IEEE%20Symposium%20on%20Security%20&%20Privacy&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited

	A Distributed Intrusion Detection Model via Nondestructive Partitioning and Balanced Allocation for Big Data
	Xiaonian Wu0F , *, Chuyun Zhang3, Runlian Zhang1F , Yujue Wang2 and Jinhua Cui4

	5 Experimental result analysis
	6 Conclusion
	References

