

Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

CMC. doi:10.3970/cmc.2018.03697 www.techscience.com/cmc

Efficient Secure Data Provenance Scheme in Multimedia

Outsourcing and Sharing

Zhen Yang1, 2, Yongfeng Huang1, 2, *, Xing Li1, 2 and Wenyu Wang3

Abstract: To cope with privacy leakage caused by multimedia outsourcing and sharing,

data provenance is used to analyze leaked multimedia and provide reactive accountability.

Existing schemes of multimedia provenance are based on watermarking protocols. In an

outsourcing scenario, existing schemes face two severe challenges: 1) when data leakage

occurs, there exists a probability that data provenance results can be repudiated, in which

case data provenance tracking fails; and 2) when outsourced data are shared, data

encryption transfer causes key management burden outside the schemes, and privacy

leakage threatens users. In this paper, we propose a novel data provenance scheme with an

improved LUT-based fingerprinting protocol, which integrates an asymmetric watermarking

protocol, robust watermark algorithm and homomorphic encryption and digital signatures to

achieve full non-repudiation provenance. We build an in-scheme stream cipher to protect

outsourced multimedia data from privacy leakage and complicated key management. Our

scheme is also lightweight and easy to deploy. Extensive security and performance analysis

compares our scheme with the state of the art. The results show that our scheme has not only

better provenance security and data confidentiality but also higher efficiency for multimedia

outsourcing, sharing and provenance.

Keywords: Data provenance, asymmetric fingerprint protocol, digital watermarking,

multimedia outsourcing.

1 Introduction

In multimedia data distribution, copyright violation disputes become an important problem

because of illegal redistribution. To solve this problem, data provenance has been

introduced to “construct a disclosure chain of given data” [Wohlgemuth, Echizen,

Soneharaand et al. (2010)]. Data provenance identifies “where a piece of data came from

and the process by which it arrived in a database” [Buneman, Khanna and Tan (2001)]. In

the most common case, multimedia data provenance involves letting the Data Provider

embed a distinctive robust digital watermark, called a fingerprint, into each authorized

users’ data. Every distribution’s copyright information can be extracted from the

fingerprint, which makes illegal redistribution identifiable.

1 Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China.

2 Tsinghua National Laboratory for Information Science and Technology, Beijing, 100084, China.

3 Information Networking Institute, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.

* Corresponding Author: Yongfeng Huang. Email: yfhuang@tsinghua.edu.cn.

2 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

Recently, data outsourcing services, such as cloud storage, have become more and more

popular. However, while data are outsourced, data control is also outsourced. Thus, data

leakage threats are becoming more and more serious [Sundareswaran, Squicciarini, Lin et

al. (2011)]. When outsourced data leakage occurs, users have to resort to data provenance

for accountability.

Among the varieties of approaches of data provenance, watermarking protocols play an

important role, especially for multimedia data. A basic problem is the issue of the

customer’s rights. When the watermark is embedded by the Data Provider, a customer

whose watermark has been found on unauthorized copies can claim that he has been framed

by a malicious Data Provider who has embedded his identity in an arbitrary object [Bianchi

and Piva (2013)]. To cope with this customer’s rights problem, an asymmetric

watermarking protocol has been proposed whereby only the customer has access to the

watermarked data, and thus the Data Provider can later prove that a found copy of data has

been shared by the customer. Several such suitable protocols include Buyer-Seller

Watermarking Protocols (BSWP) [Memon and Wong (2001); Kuribayashi and Tanaka

(2005); Prins, Erkin and Lagendijk (2007)], Zero-Knowledge Watermarking Protocols

(ZKWP) [Wohlgemuth, Echizen, Soneharaand et al. (2010); Tharaud, Wohlgemuth,

Echizen et al. (2010)], and Oblivious Transfer Watermarking Protocols (OTWP) [Backes,

Grimm and Kate (2014)].

Existing watermarking techniques for outsourced data provenance have been developed to

address two significant practical issues. The security problem is related to data

provenance’s non-repudiation. With a robust watermark (usually called a fingerprint)

embedded into the multimedia data, the data copy can be used to identify the user

corresponding with the fingerprint. To ensure data provenance’s non-repudiation, the

watermarking protocol should protect the watermarked data so that it is only touched by

the user that the watermark identifies. Although ZKWP and OTWP [Wohlgemuth, Echizen,

Sonehara et al. (2011); Backes (2016)] have been proposed, non-repudiation is still not

fully ensured in outsourcing data sharing scenarios.

The second issue is related to the privacy protection of multimedia data. When outsourced

multimedia data are shared, the Data Provider needs to transfer data to another user. To

protect data privacy, the Data Provider has to use an encryption algorithm, which is not

considered in existing multimedia provenance schemes [Wohlgemuth, Echizen, Sonehara

et al. (2011); Backes, Grimm and Kate (2016)]. Even without considering the encryption

and decryption computation burden, key management is quite complicated: Data

encryption usually needs mixed encryption in which symmetric and asymmetric keys are

both used, and data provenance needs to use other keys in the scheme as well. Complicated

key management schemes always face privacy leakage attacks, which can be caused by

key misuse.

In our work, we propose a novel multimedia provenance scheme to cope with the non-

repudiation problem, especially in the scenario of outsourcing data sharing. On the basis

of LUT-based watermark embedding [Bianchi and Piva (2014)], we present an LUT-based

fingerprinting protocol that fuses asymmetric watermarking protocol, robust watermark,

homomorphic encryption and digital signature, and achieve non-repudiation for every

participant. In consideration of key management, we bring about a stream cipher in our

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 3

provenance scheme to implement multimedia encryption for outsourcing, which controls

all keys in our scheme and protects multimedia data privacy from leakage. Moreover, we

make some reductions to make the protocol efficient with regard to computational cost.

Our contribution in this work can be summarized as the following three aspects:

1) We provide a multimedia provenance scheme with an improved LUT-based

fingerprinting protocol. The scheme ensures full non-repudiation for every participant

in a multimedia outsourcing scenario.

2) We design a stream cipher for multimedia data that is seamless integrated in the

provenance scheme to control key management in multimedia outsourcing and sharing

and to prevent privacy leakage caused by key abuse.

3) Our scheme has not only stronger security but also greater efficiency than the state of

the art, and can be adapted for various watermarking algorithms. The efficiency and

usability makes our protocol easy to deploy in reality.

The rest of the paper is organized as follows: Section 2 overviews the related work and

Section 3 offers preliminaries. Then, we introduce the problem statement in Section 4,

followed by the detailed description of our scheme in Section 5. Section 6 analyze system

security. Then, Section 7 gives the performance evaluation. Finally, Section 8 presents the

paper’s conclusions.

2 Related work

As data provenance has a great influence on accountability for data leakage, many different

approaches have been proposed. There are two main directions for building data

provenance among these approaches: Reliable logging and asymmetric watermarking

protocols. We review the two approaches below.

2.1 Reliable logging schemes

Reliable logging based schemes was proposed for secure provenance in Hasan et al. [Hasan,

Sion and Winslett (2009)]. The scheme adopted a hash chain to generate associated logs

for data provenance, but only supported record of data writing.

In 2011, data-centric log mechanism was designed to record several normal data operations

[Ko, Kirchberg and Lee (2011)]. Later, an automated logging mechanism was proposed to

be executed by data itself [Sundareswaran, Squicciarini, Lin et al. (2011)]. In the scheme,

data operation can be recorded into logs by a JAR that encloses the data. An extension

work adapted an automated logging scheme to the cloud storage environment and

improved log generation and storage efficiency [Yang, Wang and Huang (2017)].

However, logs can still be tampered to disable the above provenance schemes. Their

alternative solutions involve finding a responsible party for the attack, which is not the

leakage provenance.

2.2 Asymmetric watermarking protocols

To resist malicious deletion attacks, robust digital watermark was used to save provenance

information [Wohlgemuth, Echizen, Sonehara et al. (2010)]. Thus they proposed a

provenance scheme of robust digital watermark tags that are embedded into data.

4 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

In the data distribution, we still require asymmetric watermarking protocol in which every

participant (distributor or receiver) only holds a data copy embedded into his watermark.

Subsequently, Wohlgemuth et al. [Wohlgemuth, Echizen, Sonehara et al. (2011)] put

forward an asymmetric watermarking protocol based on commitment of a zero knowledge

proof. Although provenance security is ensured, commitment computation yields heavy

burden on practical deployment.

Backes et al. [Backes, Grimm and Kate (2014); Backes, Grimm and Kate (2016)] proposed

an oblivious-transfer-based watermarking protocol to trace the provenance of multimedia

data. They proved that this scheme is obviously lightweight with regard to both time and

space costs. However, the scheme just has a possible security, which is not secure enough.

3 Preliminaries

3.1 LUT-Based watermark embedding

Given a vector 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑀) representing a set of features of the original data and a

hidden fingerprint of user 𝑈 represented as a binary vector 𝒃𝑼 = (𝑏𝑈1, … , 𝑏𝑈𝐿) , an

embedder inserts the fingerprint 𝒃𝑼 into host signal data to produce watermarked data 𝒚.

Often 𝒃𝑼 is transferred to the same size of 𝒙 as a watermark signal 𝒘, so the watermarking

can be expressed simply as 𝒚 = 𝒙 + 𝒘.

In LUT-Based Watermark Embedding [Celik, Lemma, Katzenbeisser et al. (2008)], the

Data Provider generates a long-term Look-Up Table (LUT) 𝑬 with size 𝑇 for the master

encode, whose entries are i.i.d. random variables following a Gaussian distribution

𝑁(0, 𝜎𝐸
2). Then, the Data Provider generates an LUT 𝑾𝑼 with size 𝑇 from 𝒃𝑼. With 𝑬 and

𝑾𝑼, the Data Provider can calculate the personalized decode LUT 𝑫𝑼 with size 𝑇:

𝐷𝑈(𝑡) = 𝑊𝑈(𝑡) − 𝐸(𝑡), 𝑓𝑜𝑟 𝑡 = 1, … , 𝑇 (1)

Then with a session key, an 𝑀 × 𝑅 set of values 𝑡𝑖ℎ is generated featuring integers between

1 and 𝑇 for 𝑖 = 1, … , 𝑀 and ℎ = 1, … , 𝑅. Calculated with a perceptual mask vector 𝒑𝒎 =
(𝑝𝑚0, … , 𝑝𝑚𝑀) that ranges within [0, 1], each of the 𝑀 data features 𝒙 can be encoded by

adding 𝑅 perceptual masked entries of the encoding LUT 𝑬 identified by the indexes

𝑡𝑖1, … , 𝑡𝑖𝑅, obtaining the encoded feature as follows:

𝑐𝑖 = 𝑥𝑖 + 𝑝𝑚𝑖 ∑ 𝐸(𝑡𝑖ℎ)𝑅
ℎ=1 (2)

Then, the data consumer can also use the session key to get 𝑡𝑖ℎ. Each of the 𝑀 encoded

features 𝑐 can be decoded by adding 𝑅 entries of the decoding LUT 𝐷𝑈 identified by the

indexes 𝑡𝑖1, … , 𝑡𝑖𝑅, obtaining the decoded feature as follows:

𝑦𝑖 = 𝑐𝑖 + 𝑝𝑚𝑖 ∑ 𝐷𝑈(𝑡𝑖ℎ)𝑅
ℎ=1 = 𝑥𝑖 + 𝑝𝑚𝑖 ∑ 𝑊𝑈 (𝑡𝑖ℎ)𝑅

ℎ=1 (3)

3.2 Homomorphic cryptosystem

A homomorphic cryptosystem has an operator 𝛷(∙ ,∙) in a ciphertext field related to an

operator ∗ in a plaintext field such that, for any two plain messages 𝑚1 and 𝑚2, we have:

𝛷(⟦𝑚1⟧, ⟦𝑚2⟧) = ⟦𝑚1 ∗ 𝑚2⟧, where ⟦ ∙ ⟧ denotes the encryption operator. Homomorphic

encryption allows a set of operations to be performed by working on encrypted data. In

particular, an additively homomorphic cryptosystem usually maps an addition in the

plaintext domain to a multiplication in the ciphertext domain, which means that ⟦𝑚1⟧ ∗

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 5

⟦𝑚2⟧ = ⟦𝑚1 + 𝑚2⟧ . Then, for a constant integer 𝑎 , ⟦𝑚⟧𝑎 = ⟦𝑚 ∗ 𝑎⟧ . A well-known

additively homomorphic asymmetric encryption scheme was proposed by Paillier [Paillier

(1999)].

3.3 Robust spread spectrum watermark

Cox et al. [Cox, Kilian, Leighton et al. (1997)] proposed a popular robust watermark with

spread spectrum, which shows strong resilience to lossy operations, such as aggressive

scale changes, JPEG compression, dithering and data conversion. The watermark vector

has a distribution of 𝑁(0, 𝜎𝑤
2).

Before watermark embedding, the original image 𝑖𝑚𝑔 needs to be preprocessed with a

DCT transformation and zigzag scan. We use 𝑑𝑐𝑡𝑖𝑚𝑔 to represent the preprocessed vector.

The watermark vector is embedded into a subset of 𝑑𝑐𝑡𝑖𝑚𝑔, the lowest frequency DCT AC

coefficients, to ensure robustness without causing perceptible artifacts.

4 Problem statement

4.1 System model

Fig. 1 shows a multimedia data outsourcing and sharing architecture including three entities

as follows.

Figure 1: Architecture of data outsourcing and sharing

Data Provider (DP): An entity that outsources its data to an Outsourcing Server can

authorize other users as Data Consumers to access that outsourced data. For any given

piece of data, there is only one data provider.

Outsourcing Server (OS): An entity that stores data from the Data Provider can transfer

data to authorized users (Data Consumers) at their request.

Data Consumer (DC): An entity that hopes to access data on an Outsourcing Server can

ask the Data Provider for authorization and ask the Outsourcing Server for data. For any

given piece of data, there may be several data consumers.

In the architecture above, the DP hopes that every data copy can be embedded into the

fingerprint of a related authorized DC. Once the data leaks, the DP can use a leaked data

copy to trace the provenance, ensure accountability and compensate for its loss.

4.2 Security model

We consider a secure scheme to exhibit the following characteristics. 1) No cross-holding:

The DC cannot access the original data, whereas the DP cannot access the data copy that

embeds the DC’s fingerprint. Moreover, neither the original data nor the DC’s data copy

6 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

can be accessed by the OS. 2) No framing: When a user has not leaked data, he cannot be

framed by anyone as the leakage provenance.

With these two properties achieved, a data provenance scheme definitely exhibits non-

repudiation, which means that no suspect can deny the leakage. As the security definitions

given by Wohlgemuth et al. [Wohlgemuth, Echizen, Sonehara et al. (2011); Backes,

Grimm and Kate (2016)] both express no denial and no framing, our security model builds

these properties based on a more specific trust assumption as below.

The DP first hopes that every shared data copy can be traced for provenance. On the

condition that the provenance principle is not violated, the DP may collude with other

participants to frame another user.

Based on this trust assumption, our security model ensures strong results, i.e. correctness

and non-repudiation of data provenance. In addition, the OS is introduced that enables our

security model to be more suitable for a practical three-party system model.

5 The proposed scheme

This section presents our data provenance scheme in detail. We start from an overview of

the entire scheme framework. Then, we introduce three underlying protocols to show how

non-repudiation is achieved in our scheme design.

In our scheme, we assume that there is a PKI in our framework, which means that each

participant (DP/OS/DC) has a pair consisting of a public key and private key. For the

purpose of our discussion, we take an image file as an example of multimedia data.

Running our outsourcing multimedia provenance protocol includes three phases:

Secure Outsourcing: The DP encrypts the original data with an LUT-based stream cipher

and then uploads the ciphertext data to the OS.

Secure Sharing: The DC sends a data request to the DP. After the DP permits authorization

of the DC, the DP sends a stream key to the DC for data decryption.

Data Provenance: When the DP finds a leaked copy of its data, it extracts the fingerprint

from the leaked copy. With the extracted fingerprint, the DP can identify the leakage data

provenance.

5.1 Improved LUT-based fingerprint enabled secure outsourcing

In our architecture, as Fig. 1 shows, multimedia data outsourcing needs both encryption

preprocessing for confidentiality and fingerprinting for accountability.

Although classical LUT-based watermarking enables watermark vector embedding

between the DP and DC directly, neither transferring the fingerprint into the watermark

vector nor encrypting the watermarked data are included. Therefore, we integrate these two

parts seamlessly to propose our improved LUT-based fingerprinting for secure outsourcing.

The user first uses binary antipodal modulation to generate the fingerprint message with 𝐿-

bit fingerprint 𝒃 : 𝒇𝒎 = 𝜎𝑤 ∙ (2𝒃 − 1) . Then, a 𝑇 × 𝐿 generation matrix 𝑮 is used to

process 𝒇𝒎 to get 𝑾, which is subject to 𝑁(0, 𝜎𝑤
2): 𝑾 = 𝑮 ∙ 𝒇𝒎.

𝑮 is a matrix of linear block code. Note that 𝑮 can be derived with repetition code, which

means that 𝑮 only has one entry equal to 1 in each row and approximately 𝑇/𝐿 entries

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 7

equal to 1 in each column. Another means of generating 𝑮 is that all entries of 𝑮 are

subject to 𝑁(0,1/𝐿) i.i.d., which is called Gaussian random code.

Thus, the Decode LUT for fingerprinting can be derived as below:

𝑫 = 𝑾 − 𝑬 = 𝑮 ∙ 𝒇𝒎 − 𝑬 = 𝑮 ∙ 𝜎𝑤 ∙ (2𝒃 − 1) − 𝑬 (4)

we remove 𝑡𝑖ℎ in LUT-based watermark embedding to enhance efficiency:

𝑦𝑖 = 𝑥𝑖 + 𝛼 ∙ 𝑊𝑖 = 𝑥𝑖 + 𝛼 ∙ (𝐸𝑖 + 𝐷𝑖) (5)

Then we use a session key 𝑠𝑒𝑘 to generate the mask vector 𝑬𝒎𝒂𝒔𝒌, whose length is that of

𝒅𝒄𝒕𝒊𝒎𝒈 minus that of the encode LUT 𝑬. Thus, we concatenate 𝑬 and 𝑬𝒎𝒂𝒔𝒌 to generate

a vector 𝑬𝒇𝒖𝒍𝒍, which has the same length as the AC coefficients of 𝒅𝒄𝒕𝒊𝒎𝒈: 𝑬𝒇𝒖𝒍𝒍 =

𝑬|𝑬𝒎𝒂𝒔𝒌. Then, we embed 𝑬𝒇𝒖𝒍𝒍 into 𝒅𝒄𝒕𝒊𝒎𝒈, which means that 𝑬 is embedded into the

real watermark frequency band and that 𝑬𝒎𝒂𝒔𝒌 is embedded into all other frequency bands:

𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈 = 𝒅𝒄𝒕𝒊𝒎𝒈 + 𝛼 ∙ 𝑬𝒇𝒖𝒍𝒍, and this 𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈 is the ciphertext image. Thus, we

use 𝑠𝑒𝑘 and the watermark approach to build a stream cipher on a multimedia image. For

non-image multimedia data, we can take advantage of the corresponding frequency

transformation domain to embed in all frequencies of the data.

To protect the 𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈 real watermark frequency band from recognition for malicious

tampering, the DP chooses 𝑬 and 𝑬𝒎𝒂𝒔𝒌 subject to the same distribution 𝑁(0, 𝜎𝐸
2) i.i.d. To

ensure that 𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈 is incomprehensible, 𝜎𝐸 is identified as a large number.

Finally, the DP can outsource 𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈 to the OS directly.

5.2 Secure sharing protocol

In the data outsourcing scenario, the Data Consumer (DC) shares data from the Data

Provider (DP). This process includes three sub-protocols: Fingerprint generation,

authorization granting, and data decoding. All messages sent and received are protected

with signature and verification.

5.2.1 Fingerprint generation

First, we give a description of our fingerprint structure: DP-ID, DC-ID, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝,

𝑅𝑎𝑛𝑑𝑜𝑚, 𝑆𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝐷𝐶, as shown in Fig. 2. The first 4 fields can be called fingerprint

core.

Figure 2: Fingerprint structure

Here DP-ID represents the identity of the Data Provider, and DC-ID represents the identity

of the Data Consumer. The 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 field expresses the time of fingerprint generation.

The 𝑅𝑎𝑛𝑑𝑜𝑚 field is a random number given by the DC. The last field is DC’s signature

of the fingerprint core. The fingerprint generation sub-protocol is shown in Fig. 3.

8 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

Figure 3: Fingerprint generation process

In the fingerprint generation protocol, the DC first generates a random number and encrypts

it with his public key and sends it to the OS.

The OS then finds the DP-ID to whom the request data belongs and records the current

time as the timestamp. Next, the OS encrypts the DP-ID, DC-ID, and timestamp with the

DC’s public key and concatenates these three ciphertext fields and ⟦𝑟𝑎𝑛𝑑𝑜𝑚⟧ to derive the

ciphertext fingerprint core. Then these information is sent to the DC.

The DC then checks whether the DC-ID and timestamp in the fingerprint core are correct.

When the DC ensures the legality of the fingerprint core, the DC makes the ciphertext full

fingerprint with signature and encryption. Then the ciphertext full fingerprint are sent to

the OS.

The OS then compares its ciphertext fingerprint core with that from the DC. When

comparison shows that both of the two ciphertext fingerprint cores are exactly the same,

the OS forwards the message sent by the DC to the DP.

If any verification step of the process fails, the process terminates.

5.2.2 Authorization granting

After fingerprint generation, the Data Provider will decide whether to grant authorization

to the DC. We demonstrate the authorization granting process in Fig. 4.

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 9

Figure 4: Authorization granting process

When the DP receives a legal ciphertext fingerprint and accepts request, he calculates the

ciphertext decode LUT 𝑫 for DC with the ciphertext fingerprint.

As watermarking and LUT encoding are both linear, the decode LUT 𝐷 can be generated

through additive homomorphic encryption in the ciphertext domain. Here we use ⟦𝒃⟧ to

express the ciphertext fingerprint that is encrypted by the Paillier homomorphic algorithm.

Thus, ⟦𝒎⟧ can be derived as below:

⟦𝒎⟧ = (⟦𝒃⟧2 ∙ ⟦−1⟧)𝜎𝑤 (6)

Then, the ciphertext watermark can be expressed as

The DP encrypts session key 𝑠𝑒𝑘 with its public key. It sends ⟦𝑫⟧, ⟦𝑠𝑒𝑘⟧ to the DC. Then

the DC decrypts the message with its secret key and gets the decode LUT 𝑫 and session

key 𝑠𝑒𝑘.

5.2.3 Data decoding

After authorization, the DC is able to download and decode the outsourced data. Fig. 5

shows the data decoding process.

Figure 5: Outsourced data decoding process

(7)

(8)

10 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

The DC first sends download request to the OS. Then he waits for the encoded data from

the OS. The DC then decodes the data with the LUT 𝑫 and session key 𝑠𝑒𝑘 as

below: 𝑬𝒎𝒂𝒔𝒌 = 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒(𝑠𝑒𝑘), 𝑫𝒇𝒖𝒍𝒍 = 𝑫| − 𝑬𝒎𝒂𝒔𝒌.

𝒅𝒆𝒄𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈 = 𝒅𝒄𝒕𝒊𝒎𝒈 + 𝛼 ∙ (𝑬𝒇𝒖𝒍𝒍 + 𝑫𝒇𝒖𝒍𝒍) = 𝒅𝒄𝒕𝒊𝒎𝒈 + 𝛼 ∙ 𝑮 ∙ 𝜎𝑤(2𝒃 − 1) (9)

Here, 𝒅𝒆𝒄𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈 is the image DCT vector in which the DC’s fingerprint 𝒃 is embedded.

After performing the inverse zigzag scan and inverse DCT tranform on 𝒅𝒆𝒄𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈, the

DC gets 𝒊𝒎𝒈𝑫𝑪, in which its fingerprint 𝒃 is embedded.

5.3 Multimedia tracing provenance

Data leakage often occurs in the data outsourcing scenario. If the DP outsources and shares

its data with our secure outsourcing and sharing, then the DP can trace the provenance of

leaked data from the fingerprint in the leaked data copy. We show our multimedia tracing

provenance protocol in Fig. 6.

Figure 6: Tracing leakage provenance process

Here, we use 𝒊𝒎𝒈𝒍𝒆𝒂𝒌 to express a leaked data copy. When the DP wants to trace the

provenance of 𝒊𝒎𝒈𝒍𝒆𝒂𝒌, he first extracts the watermark from 𝒊𝒎𝒈𝒍𝒆𝒂𝒌:

𝑾𝒍𝒆𝒂𝒌 = 𝑑𝑐𝑡(𝑧𝑖𝑔𝑧𝑎𝑔(𝒊𝒎𝒈𝒍𝒆𝒂𝒌)) − 𝒅𝒄𝒕𝒊𝒎𝒈)/𝛼 (10)

Then, the DP extracts the binary fingerprint vector from 𝑾𝒍𝒆𝒂𝒌 with matched filter (MF)

decoder:

𝒃𝒍𝒆𝒂𝒌 = 𝑠𝑔𝑛(𝑮𝑻 ∙ 𝑾𝒍𝒆𝒂𝒌) (11)

or pseudo-inverse (PI) decoder:

𝒃𝒍𝒆𝒂𝒌 = 𝑠𝑔𝑛((𝑮𝑻𝑮)
−1

𝑮𝑻 ∙ 𝑾𝒍𝒆𝒂𝒌) (12)

The DP first checks whether the signature in 𝒃𝒍𝒆𝒂𝒌 is correct. If the result is no, the leaked

data copy may be damaged and cannot be used to trace the provenance.

Otherwise, the DP extracts the DC-ID from 𝒃𝒍𝒆𝒂𝒌 and sends 𝒃𝒍𝒆𝒂𝒌 with 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝐷𝑃 to

the DC. If the DC verifies that the message signature or received fingerprint signature is

incorrect, the DC declines to answer this message. Otherwise, the DC sends its 𝒊𝒎𝒈𝑫𝑪 and

its signature to the DP. If the DP checks that the 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝐷𝐶 is incorrect with 𝒊𝒎𝒈𝑫𝑪,

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 11

DP can conclude that the DC-ID in 𝒃𝒍𝒆𝒂𝒌 is the leakage provenance.

If the DP verifies that 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒𝐷𝐶 is correct, the DP then extracts 𝒃𝑫𝑪 from 𝒊𝒎𝒈𝑫𝑪 and

checks whether the signature in 𝒃𝑫𝑪 is correct. If the signature in 𝒃𝑫𝑪 fails the check, the

DC-ID in 𝒃𝒍𝒆𝒂𝒌 is also determined to be the provenance of the leaked copy.

If the signature in 𝒃𝑫𝑪 is correct, the DP compares the fingerprint cores of 𝒃𝒍𝒆𝒂𝒌 and 𝒃𝑫𝑪.

If these two are the same, then the DC-ID in 𝒃𝒍𝒆𝒂𝒌 is the provenance of the leakage.

Otherwise, the DC-ID in 𝒃𝒍𝒆𝒂𝒌 is innocent, and its secret key must have been leaked.

6 Security analysis

6.1 Multimedia encryption security

Encoded data is the ciphertext of the stream cipher, which satisfies the security needs of

users in the data outsourcing scenario.

Encoded data generation includes the DCT transform, zigzag scan, and 𝑬𝒇𝒖𝒍𝒍 LUT

embedding. The first 2 steps require no parameters, whereas the last step needs the stream

key 𝑠𝑒𝑘 to generate. Our 𝑠𝑒𝑘 generation cycle is 1019.2𝑀 , which is much bigger than

global data scale 3.52 × 1023 bits from IDC statistics. And 𝑠𝑒𝑘 is transmitted with Paillier

encrypted, so content of 𝑠𝑒𝑘 has semantic security against chosen-plaintext attacks (CPA)

[Paillier (1999)]. Thus, encoded data is secure.

6.2 No cross-holding

1) The DC cannot hold the original data 𝒊𝒎𝒈. He cannot obtain the original data 𝒊𝒎𝒈 from

the encoded data 𝒆𝒏𝒄𝒅𝒄𝒕𝒊𝒎𝒈, because he cannot guess out or decrypt the correct content of

𝑠𝑒𝑘.

2) The DP cannot hold the data copy 𝒊𝒎𝒈𝑫𝑪 that is embedded with the DC’s fingerprint.

From fingerprinting process, we know that 𝒃 is protected by Paillier cryptosystem, Thus

the DP cannot derive 𝒊𝒎𝒈𝑫𝑪.

3) The OS cannot hold both 𝒊𝒎𝒈 and 𝒊𝒎𝒈𝑫𝑪. The OS cannot obtain a correct content of

𝑠𝑒𝑘, so he cannot hold 𝒊𝒎𝒈. The OS also cannot break Paillier cryptosystem to get 𝒃, so

he cannot hold 𝒊𝒎𝒈𝑫𝑪.

6.3 No framing

1) The DP cannot frame the DC. Because DC’s fingerprint 𝒃 includes a signature field, DP

cannot forge 𝒃. Thus, the DP cannot frame a DC.

2) A DC cannot frame another DC. Also because of the DC’s signature field in fingerprint

𝒃, the DC cannot frame another DC.

Tab. 1 shows a security comparison between our scheme, the ZKWP-based scheme

[Wohlgemuth, Echizen, Sonehara et al. (2011)] and the OTWP-based scheme [Backes,

Grimm and Kate (2016)]. In terms of data encryption, the ZKWP-based scheme and

OTWP-based scheme have to encrypt data outside the scheme, whereas we enable a stream

cipher in our scheme. Our scheme enables data encryption to be convenient and efficient

on the premise of being provably secure.

12 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

Table 1: Security comparison between three schemes

Security Property

ZKWP-based scheme

[Wohlgemuth,

Echizen, Sonehara et

al. (2011)]

OTWP-based

scheme [Backes,

Grimm and Kate

(2016)]

Our Scheme

Data Encryption Outside scheme Outside scheme In scheme

No cross-holding Strong Weak Strong

No framing Strong Strong Stronger

In terms of no cross-holding, our scheme relies on irreversible Paillier encryption

computation, whereas the ZKWP-based scheme relies on an irreversible blinding process.

These two both have strong security with regard to no cross-holding. However, the OTWP-

based scheme relies on a low probability of cheating. OTWP has a cheating probability of

1/2𝑛, in which 𝑛 is the number of data divided parts. Technically, the value of 𝑛 cannot

be too large because multimedia data cannot be divided into too many parts and the time

cost of sharing and provenance in the OTWP-based scheme increases very quickly along

with increasing 𝑛. Thus, the OTWP-based scheme has just weak security with regard to no

cross-holding.

In terms of no framing, the ZKWP-based scheme relies on unforgeable commitment. The

OTWP-based scheme relies on the unforgeable signature of the DC. Our scheme enhances

security with the unforgeable signature of the DC and information certification of the OS.

Thus, our scheme exhibits stronger security and more convenience.

7 Performance

We compare our secure data provenance scheme performance with the OTWP-based

scheme. For the oblivious transfer watermarking protocol, we adopt the protocol of Naor

et al. [Naor and Pinkas (2001)]. For the asymmetric encryption and signature algorithm,

we make use of the Paillier cryptosystem [Paillier (1999)]. For our watermark generation

and embedding, we use the Cox spread spectrum watermark [Cox, Kilian, Leighton et al.

(1997)] and LUT-based watermark embedding algorithm [Celik, Lemma, Katzenbeisser et

al. (2008)], respectively. We use the Lenna image as our test multimedia data, which has

four different image sizes: 128 × 128 , 256 × 256 , 512 × 512 , 1024 × 1024 . Our

fingerprint core has 128 bits including timestamp (40 bits), DP-ID (34 bits), DC-ID (34

bits) and random (20 bits).

In our experiments, we use a powerful server with an Intel Xeon X3430 CPU (4-core, 2.4

GHz) and 8 GB of RAM to act as the OS. Moreover, we use two equivalent common PCs

with an Intel i5 2430 M CPU (2-core, 2.4 GHz) and 4 GB of RAM to act as the DP and

DC. All these computers are in our experimental LAN. The experiments below are

implemented in Java.

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 13

7.1 Data outsourcing

We select the length of the encode LUT 𝑬 as 𝑇 = 4096. Suppose that the test data is the

128 × 128 Lenna image, then the length of 𝑬𝒎𝒂𝒔𝒌 is 128 × 128 − 4096 − 1 = 12287.

𝑬 and 𝑬𝒎𝒂𝒔𝒌 are both subject to the same zero-mean Gaussian distribution, whose standard

deviation is selected as 𝜎𝐸 = 3000.

Fig. 7 shows the original image and outsourced image encrypted by our stream cipher.

Compared to the original image, the PSNR of outsourced image is only 27.1727, which

means great degradation of image quality. Almost no information of original image can be

obtained from the encoded data in the right.

Figure 7: Images before and after stream cipher encoding

Figure 8: Multimedia encryption computation cost

To evaluate the stream cipher efficiency, we compare the encryption time cost of our

stream cipher with the widely used AES encryption algorithm on different data sizes, which

is shown in Fig. 8. When the image size is small, our stream cipher computation cost is

very close to AES encryption. As image size enlarges, our stream cipher computation cost

increases slower than AES. When the image size is 1024 × 1024, our scheme only costs

48.2% of the time of AES encryption.

For the space cost, if we use 𝑝𝑥 to represent the image pixel unit, then the AES encrypted

image has 64 𝑝𝑥 bits. Alternately, our outsourced data encoded by the stream cipher also

has 64 𝑝𝑥 bits. The space efficiencies of the two are basically equal.

14 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

These results shows that our stream cipher enables high-efficiency data outsourcing for the

DP.

7.2 Data sharing

In data sharing protocols, after the 128-bit fingerprint is generated, the DC signs the

fingerprint core with a 1024-bit signature. Thus, our full fingerprint length is 1152 bits.

Our watermark vector is subject to a zero-mean Gaussian distribution, whose standard

deviation is 𝜎𝑤 = 1000. To locate a certain piece of data in the outsourcing storage, the

DataID is used as an 80-bit vector.

Fig. 9 shows a comparison between the 128 × 128 original image and its fingerprinted

copy. The PSNR of the fingerprinted copy compared with the original image is 34.2178,

which indicates quite high fidelity.

Figure 9: Comparison of original and fingerprinted images

Figure 10: Multimedia sharing computation cost

In a data sharing protocol, the main computation time of our scheme is spent on many

homomorphic computations in the Paillier ciphertext domain. We measure the data sharing

computation time on different image sizes and make a comparison with the OTWP-based

scheme, as shown in Fig. 10. Because the data sharing computation cost of the OTWP-

based scheme is positively correlated with the number of parts of data division, we test data

divided into 4, 16, 64 and 256 parts for the OTWP-based scheme. To make the figure clear,

the logarithmic coordinates are used on the vertical axis. In the figure, as the data size

increases, our LUT-based watermark embedding data sharing protocol maintains a slow

increase of computation time cost, whereas the OTWP-based scheme’s data sharing

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 15

computation cost enlarges rapidly. On the 1024 × 1024 image, our scheme achieves only

10.1% ∼ 11.7% of the computation time cost of data sharing compared to the OTWP-

based scheme, which is a significant reduction.

Then, we analyze the communication cost of the three steps. In the fingerprint generation

step, the DC sends 2 messages whose total volume is 1024 × 2 + 34 + 80 + 1024 × 3 +
34 = 5268 bits; the OS sends 2 messages, whose total volume is 1024 × 2 + 34 +
1024 × 3 + 34 = 5188 bits. In the authorization granting step, the DP sends 1 message,

whose total volume is 1024 × 𝑇 + 1024 × 2 + 34 = 1024 𝑇 + 2082 bits. In the final

step of data decoding, the DC sends 1 message, which includes 80 + 34 + 1024 = 1138

bits in total; the OS also sends 1 message, which includes 64 𝑝𝑥 + 1024 bits. In summary,

the DC sends 6406 bits; the OS sends 64 𝑝𝑥 + 6212 bits; and the DC sends 1024 𝑇 +
2082 bits. For our example of the image with size 128 × 128 and 𝑇 = 4096 , the

communication cost of the OS is 128.75 KB, and the communication cost of the DC is

512.25 KB, which is practical in outsourcing scenario.

In general, data sharing in our scheme has high computational efficiency and practical

communication efficiency.

7.3 Data provenance

Because the Cox spread spectrum watermark is a non-blind watermark algorithm, data

provenance should only be conducted by the party that can access the original data. Thus,

it has to be the DP itself or a particular server that is fully trusted by the DP.

The correctness of provenance is ensured first by the Cox robust watermark. Moreover, the

generation matrix 𝑮, which is repetition code or Gaussian random code, can assure that

𝐺𝑇𝐺 is a strict diagonal dominance matrix. Thus, either an MF or PI receiver can extract

the correct fingerprint from a robust watermark.

Figure 11: Data provenance tracking computation cost

Here, we implement the process in Fig. 6 to compare the provenance time with the OTWP-

based provenance scheme, as shown in Fig. 11. As stated before, the logarithmic

coordinates are also used here on the vertical axis. Our scheme shows a slower increasing

16 Copyright © 2018 Tech Science Press CMC, vol.56, no.1, pp.1-17, 2018

trend along with increasing image size and achieves better efficiency, which costs only

1.7% ∼ 61.9% of the time.

For the communication cost of data provenance, the data volume from the DP is 1152 +
1024 = 2176 bits; the data volume from the DC is 64 𝑝𝑥 + 1024 bits. Taking the

128 × 128 image as an example, the communication data volume of the DC in the

provenance phase is 128.13 KB.

In summary, data provenance in our scheme has higher time efficiency and reasonable

communication efficiency.

8 Conclusion

We present a multimedia data provenance scheme that can track the provenance of leaked

multimedia data securely and efficiently. We regulate system participants and security

definitions, and propose an improved LUT-based fingerprinting protocol. Simultaneously,

we present a stream cipher embedded in our scheme to provide a secure and efficient data

outsourcing algorithm. We prove that multimedia data provenance can satisfy our security

regulations and achieve better efficiency performance.

Although our scheme cannot prevent data leakage from occurring, reactive accountability

is ensured by our scheme. The system model and security model are both suitable for

practical data outsourcing circumstances, which makes our provenance scheme

convincible for a neutral entity, such as a judge.

Acknowledgement: The authors would like to thank the anonymous referees for their

valuable comments and helpful suggestions. The work is supported by the National Key

Research and Development Program of China (No. 2016YFB0800402) and the National

Natural Science Foundation of China (No. U1405254, No. U1536207).

References

Backes, M.; Grimm, N.; Kate, A. (2014): Lime: Data lineage in the malicious

environment. International Workshop on Security and Trust Management, pp. 183-187.

Backes, M.; Grimm, N.; Kate, A. (2016): Data lineage in malicious environments. IEEE

Transactions on Dependable and Secure Computing, vol. 13, no. 2, pp. 178-191.

Bianchi, T.; Piva, A. (2013): Secure watermarking for multimedia content protection: A

review of its benefits and open issues. IEEE Signal Processing Magazine, vol. 30, no. 2,

pp. 87-96.

Bianchi, T.; Piva, A. (2014): TTP-free asymmetric fingerprinting protocol based on client

side embedding. IEEE International Conference on Acoustics, Speech and Signal

Processing, pp. 3987-3991.

Buneman, P.; Khanna, S.; Tan, W. (2001): Why and where: A characterization of data

provenance. International Conference on Database Theory, pp. 316-330.

Celik, M. U.; Lemma, A. N.; Katzenbeisser, S.; van der Veen, M. (2008): Lookup-

tablebased secure client-side embedding for spread-spectrum watermarks. IEEE

Transactions on Information Forensics and Security, vol. 3, no. 3, pp. 475-487.

Efficient Secure Data Provenance Scheme in Multimedia Outsourcing and Sharing 17

Cox, I. J.; Kilian, J.; Leighton, F. T.; Shamoon, T. (1997): Secure spread spectrum

watermarking for multimedia. IEEE Transactions on Image Processing, vol. 6, no. 12, pp.

1673-1687.

Hasan, R.; Sion, R.; Winslett, M. (2009): The case of the fake picasso: Preventing history

forgery with secure provenance. 7th USENIX Conference on File and Storage

Technologies, vol. 9, pp. 1-14.

Ko, R. K.; Kirchberg, M.; Lee, B. S. (2011): From system-centric to data-centric logging

accountability, trust & security in cloud computing. IEEE Defense Science Research

Conference and Expo, pp. 1-4.

Kuribayashi, M.; Tanaka, H. (2005): Fingerprinting protocol for images based on

additive homomorphic property. IEEE Transactions on Image Processing, vol. 14, no. 12,

pp. 2129-2139.

Memon, N. D.; Wong, P. W. (2001): A buyer-seller watermarking protocol. IEEE

Transactions on Image Processing, vol. 10, no. 4, pp. 643-649.

Naor, M.; Pinkas, B. (2001): Efficient oblivious transfer protocols. Proceedings of the

12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 448-457.

Paillier, P. (1999): Public-key cryptosystems based on composite degree residuosity

classes. International Conference on the Theory and Applications of Cryptographic

Techniques, pp. 223-238.

Prins, J.; Erkin, Z.; Lagendijk, R. L. (2007): Anonymous fingerprinting with robust QIM

watermarking techniques. EURASIP Journal on Information Security, vol. 2007, no. 20.

Sundareswaran, S.; Squicciarini, A.; Lin, D.; Huang, S. (2011): Promoting distributed

accountability in the cloud. IEEE International Conference on Cloud Computing, pp. 113-

120.

Tharaud, J.; Wohlgemuth, S.; Echizen, I.; Sonehara, N.; Muller, G. et al. (2010): Privacy

by data provenance with digital watermarking-a proof-of-concept implementation for medical

services with electronic health records. International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, pp. 510-513.

Wohlgemuth, S.; Echizen, I.; Sonehara, N.; Muller, G. (2010): Tagging disclosures of

personal data to third parties to preserve privacy. IFIP International Information Security

Conference, pp. 241-252.

Wohlgemuth, S.; Echizen, I.; Sonehara, N.; Muller, G. (2011): On privacy-compliant

disclosure of personal data to third parties using digital watermarking. Journal of

Information Hiding & Multimedia Signal Processing, vol. 2, no. 2, pp. 270-281.

Yang, Z.; Wang, W.; Huang, Y. (2017): Ensuring reliable logging for data accountability in

untrusted cloud storage. IEEE International Conference on Communications, pp. 1966-1971.

