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Abstract: When dealing with the large-scale program, many automatic vulnerability 

mining techniques encounter such problems as path explosion, state explosion, and low 

efficiency. Decomposition of large-scale programs based on safety-sensitive functions 

helps solve the above problems. And manual identification of security-sensitive functions 

is a tedious task, especially for the large-scale program. This study proposes a method to 

mine security-sensitive functions the arguments of which need to be checked before they 

are called. Two argument-checking identification algorithms are proposed based on the 

analysis of two implementations of argument checking. Based on these algorithms, 

security-sensitive functions are detected based on the ratio of invocation instances the 

arguments of which have been protected to the total number of instances. The results of 

experiments on three well-known open-source projects show that the proposed method 

can outperform competing methods in the literature. 
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1 Introduction 

With the development of the Internet, information security has attracted widespread 

attention. In recent years, researchers have researched several related topics, such as 

cryptography [Kosba, Miller, Shi et al. (2016); Terzi, Terzi and Sagiroglu (2015)], 

information hiding [Luo, Song, Li et al. (2016); Ma, Luo, Li et al. (2018); Zhang, Qin, 

Zhang et al. (2018)] and software security [Stallings and Brown (2015)]. Vulnerabilities 

are a major threat to software security. Severe vulnerabilities have caused global hazards 

in the recent past, such as the “Heartbleed” vulnerability in a cryptographic library that 

caused a massive leak of private information [MITRE (2014)], and the WannaCry 

ransomware virus [Wikipedia (2017)] that exploited vulnerability MS17-010 [Microsoft 

(2017)] in Windows. The number of computer vulnerabilities worldwide continues to rise. 

From 2000 to 2017, the number of vulnerabilities identified every year has increased 

from 1,000 to 14,000 [Özkan (2017)].  

To detect software vulnerabilities, a variety of automated vulnerability detection 
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techniques have been proposed, such as fuzzing tests [Rawat, Jain, Kumar et al. (2017); 

Wang, Wei, Gu et al. (2010)], model checking [Engler and Musuvathi (2004)], symbolic 

execution [Godefroid, Klarlund and Sen (2005); Cadar, Dunbar and Engler (2008); 

Godefroid, Levin and Molnar (2008)] and machine learning [Menzies, Greenwald and 

Frank (2007); Yamaguchi, Lindner and Rieck (2011)]. However, the structure and scale of 

practical software are becoming increasingly complex. When dealing with large-scale 

software, the above techniques encounter such problems as path explosion, state explosion, 

high time complexity, and low efficiency. In light of the requirements of vulnerability 

detection in large-scale software, the problem can be divided into subclasses or subsets. For 

example, Yamaguchi et al. [Yamaguchi, Maier, Gascon et al. (2015)] proposed an 

automatically generated detection script for a given sink function to search for taint-style 

vulnerabilities on a code property graph. The guided fuzzer, which uses critical operations 

as starting point for testing, was proposed in Ganesh et al. [Ganesh, Leek and Rinard (2009); 

Haller, Slowinska, Neugschwandtner et al. (2013)], and yielded good fuzzer efficiency. 

AntMiner [Liang, Bian, Zhang et al. (2016)] proposed a detection technique that searches 

for bugs in sub-repositories of the original source code of a given software. 

The above automatic detection techniques improve the efficiency of detection by scale 

decomposition. Such segmentation at present is often based on a security-sensitive function or 

a type of security-sensitive function. Thus, the identification of security-sensitive functions is 

an important step in many automatic vulnerability detection methods. Many security 

vulnerabilities still depend on manual detection, which involves attending closely to high-

level security-sensitive functions. Therefore, the identification of security-sensitive functions 

is significant for automatic detection techniques and manual detection. 

Manual analysis is the most common method for the identification of security-sensitive 

functions these days. Of functions in the common libraries, security-sensitive ones, such 

as memcpy() and strcpy() in the C library, are identified by experience. However, in case 

of self-implementing functions of code projects (such as BlockMove() and SSL_free() in 

OpenSSL), the efficiency of manually identifying security-sensitive functions is low. In 

such problem, project documents are used to determine whether a function is security 

sensitive. However, document-based analysis requires the source code, and is challenging 

to apply when the documents are not clear or do not exist. Thus, manual identification of 

security-sensitive functions is a tedious task, especially for large-scale programs. 

Research on automatic mining of security-sensitive functions is scarce. Ganesh et al. 

[Yun, Min, Si et al. (2016)] analyzed the semantic relationship among arguments when 

inferring correct API usage from the source code, which provides some inspiration for the 

method proposed here. AntMiner [Liang, Bian, Zhang et al. (2016)] mined potentially 

bug-prone functions by checking arguments protected by a conditional statement. 

AntMiner considered only one implementation of argument checking and thus omitted 

some security-sensitive functions. Past research has shown that security-sensitive 

functions can be automatically mined, but due to the differences in the forms of these 

functions, many types of security-sensitive functions are ignored in the mining process. 

Based on the work in Liang et al. [Liang, Bian, Zhang et al. (2016); Yun, Min, Si et al. 

(2016)], this study proposes an improved method to automatically mine security-sensitive 

functions. The proposed method considers the common form of argument checking as 
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well as constraint checks between arguments, thus revealing more security-sensitive 

functions than AntMiner. The results of experiments show that the proposed method 

outperforms that proposed in AntMiner. 

2 Argument-sensitive functions 

A security-sensitive function is a function with security specifications. Failure to satisfy 

any of the specifications to call this function may result in bugs in the program. The 

forms and implementations of a security specification are diverse. One type of security-

sensitive functions attributes their security to the validity of their arguments. The form of 

security specification, in this case, is that the arguments of the function instance need to 

meet specific legal requirements, such as that the argument cannot be NULL or must be 

positive, and the implementation is that the caller of the function needs to ensure that this 

argument is legal. 

This article calls the above type of security-sensitive function an argument-sensitive 

security-sensitive function, or simply an argument-sensitive function. Argument-sensitive 

functions such as memcpy(), strcpy() in the early C library are used in many programs. If 

the callers want to safely call argument-sensitive functions, they need to check the 

validity of the incoming arguments. There are two main implementations: 

Openssl-OpenSSL_1_0_1f/apps/apps.c

551 int res = 0;

552 const char *prompt_info = NULL;

553 const char *password = NULL;

…  … 

564 if (password)

565 {

566 res = strlen(password);

567 if (res > bufsiz)

568 res = bufsiz;

569 memcpy(buf, password, res);

570 return res;

571 }

572

if (password)

res = strlen(password);

if (res > bufsiz)

res = bufsiz;

memcpy(buf, password, 

res);

return res;

next statement

(a) (b)

false

ε

ε

ε

ε

ε

false true

true

 

Figure 1: Code snippet of OpenSSL and its CFG 

(1) Explicit checking. The caller uses conditional statements to determine whether the 

argument satisfies the security requirements. If the condition is not satisfied, it means that 

the argument does not meet the security specifications, and the function is not executed. 
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Fig. 1 shows a code snippet of OpenSSL and its control flow graph, which illustrates two 

argument-checking methods. Fig. 1(a) calls two argument-sensitive functions, strlen() 

and memcpy(), on lines 566 and 569, respectively. The function prototype of strlen() is 

strlen(char *s), and is used to obtain the length of string s. Its security specification is 

that the parameters cannot be a null value, as this may result in undefined and unsafe 

behavior under certain circumstances. The function prototype of memcpy () is memcpy 

(void *dest, const void *src, size_t n), and is used to copy data of length n from src to 

dest. The security specification of this function is more complex, and requires that the 

parameters dest and src not have a null value, and that the size of dest and src must be 

greater than or equal to n; otherwise, it may cause buffer overflow. It is clear that if the 

caller wants to safely call strlen() and memcpy(), it must check the validity of the 

arguments. 

For the invocation instance of the function strlen(), res=strlen(password) (on line 566), 

statement 564 checks whether the argument is null in the conditional statement. If the 

check fails, the invocation instance is not executed. Therefore, this is an explicit check on 

the argument “password.” 

For the invocation instance of the function memcpy(), memcpy(buf, password, res) (on 

line 569), statement 564 is an explicit check on the argument “password.” While 

conditional statement 567 also checks the third argument “res” it cannot control the 

execution of the instance, and thus this is not an explicit check. 

(2) Implicit checking. This does not directly check the validity of arguments, but obtains 

legal values by means of assignment or calculation and passes them as arguments to 

satisfy the security specifications of function calls. 

For the invocation instance of the function memcpy(), memcpy(buf, password, res), 

through the control flow graph (CFG) in Fig. 1(b), two values of argument res under two 

execution paths can be obtained: res=strlen(password) (on line 566), and res = bufsiz (on 

line 568). In the first case, the value of res, is equal to the length of password, which is 

the second argument in memcpy (buf, password, res). It thus satisfies the security 

specification whereby the value of the third argument in memcpy() is smaller than the size 

of the second argument. Statement 566 is thus an implicit check on res and password. In 

the second case, as the source of the value of bufsize cannot be determined from the code 

snippet, and although bufsize may represent the size of buf, it cannot be determined 

whether the assignment of res on line 568 satisfies the security specification of memcpy(). 

Therefore, it cannot be determined whether this is an implicit check on the argument res. 

As shown in the above examples, both explicit and implicit checks can implement safety 

specifications for argument-sensitive functions. And explicit checks have more obvious 

characteristics, whereas implicit checks are more subtle and difficult to identify. 

3 Mining argument-sensitive functions based on check identification 

To prevent potential security problems, the validity of arguments should be checked 

before argument-sensitive functions are called. A mature program should have been 

tested repeatedly by developers and testers. Moreover, over a long-term deployment, 

developers continue to repair and update security issues. Therefore, following multiple 

iterations, most calls of argument-sensitive functions in a given program can be 
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considered correct, and their arguments are checked for validity. That is, for a given 

function, the higher the percentage of invocation instances the validity of which has been 

verified, the higher the probability that the function is an argument-sensitive function. 

Based on the above principle, this section provides a method to mine argument-sensitive 

functions based on the validity check proportion as shown in Fig. 2. The method consists 

of two parts. The first analyzes each invocation instance of the function and uses the 

identification algorithm to determine whether each argument has an explicit or an implicit 

check to obtain check information. The second part uses a decision algorithm to 

determine whether the given function is an argument-sensitive function based on the total 

number of invocation instances, the check information of each function instance and a 

threshold. 

Are the arguments protected?

Explicit check Implicit check

Argument-

sensitive function

调用实例调用实例调用实例Call 

instances

Check info 

of arguments

Decision 

algorithm

Check identification 

algorithm
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Function

…

Function

Function

Argument-
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…Function

Argument-
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Source
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Figure 2: Mining argument-sensitive functions based on check identification 

3.1 Explicit check identification algorithm 

The validity of the arguments is checked by a conditional statement during the explicit 

check. If it passes this check, the function instance is subsequently called; otherwise, it is 

not called. Based on this feature, AntMiner identified whether explicit checks were 

performed prior to the function call. To consider the overall efficiency of the 

identification of argument-sensitive functions, this section describes improvements to the 

explicit check of AntMiner in terms of selecting conditional statements and checking 

variable protection.  

AntMiner requires all conditional statements and their corresponding validated variables 

set (VVS). The VVS for each conditional statement contains all variables that are 

checked directly or indirectly by the conditional statement. However, only conditional 

statements that control the invocation instance have an effect on explicit checking. 

Therefore, this section only extracts control dependency conditions related to the given 

function instance 𝑓𝑖  to reduce the computational cost and subsequent matching tasks 

required for the VVS. 



 

 

 

204  Copyright © 2018 Tech Science Press              CMC, vol.56, no.2, pp.199-210, 2018 

AntMiner uses a recursive method to define the protection of variables in conditional 

statements. This section uses the non-recursive Algorithm 1 to identify the protected 

arguments. Procedure ExtractSymbolOfArg ( 𝑝𝑖𝑛𝑑𝑒𝑥 ) extracts the symbol set 

𝑠𝑦𝑚𝑏𝑜𝑙𝑆𝑒𝑡𝑝𝑖𝑛𝑑𝑒𝑥
 of the argument 𝑝𝑖𝑛𝑑𝑒𝑥 . The symbol set contains variables that 

constitute 𝑝𝑖𝑛𝑑𝑒𝑥 and all variables in the chain defined by 𝑝𝑖𝑛𝑑𝑒𝑥. If the intersection of the 

symbol set and VVS is not empty (line 7), there is an explicit check on argument 𝑝𝑖𝑛𝑑𝑒𝑥, 

which avoids recursive operations. 

The improved explicit check identification process is shown in Algorithm 1, and consists 

of three parts: First, the set 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑓𝑖
 of conditional statements related to the 

function instance 𝑓𝑖  is extracted. Second, the set of the VVS of each conditional 

statements in 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑓𝑖
 is calculated. The VVS can be extracted from a backward 

traversal of the instance statement on the data dependence subgraph (DDS) of the 

program dependence graph (PDG). Third, each argument is checked to determine if it is 

protected by a conditional statement. If variable 𝑣 belongs to the VVS of a conditional 

statement, or if another variable 𝑣′ defining 𝑣 and 𝑣′ belongs to the VVS, the conditional 

statement “protects” 𝑣. If argument 𝑝 is “protected” by a control dependency condition in 

a function instance, there is an explicit check on argument 𝑝 of the function instance. 

Algorithm 1. Identifying the explicit check on function instance 

procedure GetExplicitCheckInfo(𝑓𝑖) 

1:     𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑓𝑖
 =  ExtractDependencyCondition(𝑓𝑖)    

2:    for  𝑐 ∈  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑓𝑖
  do 

3:           𝑉𝑉𝑆𝑐 =  ExtractVVS(𝑐)              

4:    for  𝑝𝑖𝑛𝑑𝑒𝑥  ∈ 𝑎𝑟𝑔𝑆𝑒𝑡𝑓𝑖
  do      

5:          𝑠𝑦𝑚𝑏𝑜𝑙𝑆𝑒𝑡𝑝𝑖𝑛𝑑𝑒𝑥
=  ExtractSymbolOfArg(𝑝𝑖𝑛𝑑𝑒𝑥)        

6:          for   𝑐 ∈  𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑆𝑒𝑡𝑓𝑖
  do 

7:                 if  𝑠𝑦𝑚𝑏𝑜𝑙𝑆𝑒𝑡𝑝𝑖𝑛𝑑𝑒𝑥
⋂ 𝑉𝑉𝑆𝑐 ≠ ∅  then 

8:                     𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜[𝑖][𝑖𝑛𝑑𝑒𝑥] =  𝑡𝑟𝑢𝑒  

9:    return 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜 

3.2 Implicit check identification algorithm 

An implicit check has no obvious single feature compared with an explicit check, and 

involves the caller setting a valid value for an argument in the form of a direct assignment 

or an arithmetic operation based on a clear understanding of the function’s security 

specification. In case of a known security specification, one can determine whether the 

processing of the argument satisfies the corresponding security semantics, thereby decide 

whether there is an implicit check on the call instance. However, if the security 

specification is unknown or does not exist, it is difficult to determine whether there is an 

implicit check on the function instance. 

For a certain type of function, there is a constraint relationship among the parameters, 

such as the function memcpy (void *dest, const void *src, size_t n), and a constraint 



 

 

 

Automatic Mining of Security-sensitive Functions from Source Code                      205 

relationship on n, the size of src and dest. When the function is called, if the constraint is 

not satisfied, it is likely to cause security problems such as program crash. The constraint 

is a type of security specification for the function, an implicit check of the validity of its 

arguments. For this type of specification, this section proposes implicit check 

identification Algorithm 2, which determines whether there is an implicit check on the 

function instance by identifying whether a direct or indirect constraint obtains among the 

relevant arguments. 

Algorithm 2 first uses the procedure ExtractAllPath(𝑓𝑖) to extract all paths from the entry 

of the caller to the callee 𝑓𝑖, and uses the procedure ExtractDefineChains(𝑝𝑎𝑡ℎ, 𝑝𝑖𝑛𝑑𝑒𝑥) to 

calculate the definition chain of argument (𝑝𝑖𝑛𝑑𝑒𝑥) in the execution path (𝑝𝑎𝑡ℎ): 

𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛(𝑝𝑎𝑡ℎ, 𝑝𝑖𝑛𝑑𝑒𝑥) = {(𝑥1, 𝑙1), (𝑥2, 𝑙2) … }                                                                 (1) 

where (𝑥, 𝑙) represents the statement, 𝑙  defines variable 𝑥 , and 𝑥  defines  𝑝𝑖𝑛𝑑𝑒𝑥  along 

𝑝𝑎𝑡ℎ directly or indirectly. In case of two arguments along the same path, the intersection 

of their defined chain sets is not empty, indicating that there is a data constraint 

relationship between them, i.e. there is an implicit check on them. 

Algorithm 2. Identifying the implicit check on function instance  

procedure GetImplicitCheckInfo(fi) 

1:     𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑃𝑎𝑡ℎ𝑓𝑖
 =  ExtractAllPath(𝑓𝑖)      

2:     for  𝑝𝑎𝑡ℎ ∈ 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑃𝑎𝑡ℎ𝑓𝑖
 do 

3:           for  𝑝𝑖𝑛𝑑𝑒𝑥  ∈ 𝑝𝑎𝑟𝑎𝑚𝑆𝑒𝑡𝑓𝑖
  do 

3:                 𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛(𝑝𝑎𝑡ℎ, 𝑝𝑖𝑛𝑑𝑒𝑥) =  ExtractDefineChains(𝑝𝑎𝑡ℎ, 𝑝𝑖𝑛𝑑𝑒𝑥)  

4:     for  𝑝𝑎𝑡ℎ ∈ 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑃𝑎𝑡ℎ𝑓𝑖
 do 

5:           if  ∃ 𝑝𝑠, 𝑝𝑡 ∈ 𝑝𝑎𝑟𝑚𝑆𝑒𝑡𝑓𝑖
, 𝑠 ≠ 𝑡 and  

                    𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛(𝑝𝑎𝑡ℎ, 𝑝𝑠) ⋂ 𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛(𝑝𝑎𝑡ℎ, 𝑝𝑡) ≠ ∅   then 

6:                 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜[𝑖][𝑠] =  𝑡𝑟𝑢𝑒 

7:                 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜[𝑖][𝑡] =  𝑡𝑟𝑢𝑒 

8：  return 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜           

Algorithm 2 is used to identify the implicit check on memcpy (buf, password, res) (on line 

569) in the code snippet in Fig. 1. 

The set of execution paths from the entry of the code snippet to memcpy (buf, password, 

res) is: 

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑃𝑎𝑡ℎ = {𝑝𝑎𝑡ℎ1: 551 → 552 → 553 → 564 → 566 → 567 → 568 → 569,  

𝑝𝑎𝑡ℎ2: 551 → 552 → 553 → 564 → 566 → 567 → 569}.        (2) 

For 𝑝𝑎𝑡ℎ1, the definition chains of all arguments are: 

𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ1,′𝑏𝑢𝑓′) = {}                                                                                           (3) 

𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ1,′𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑′) = {(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 553)                                                        (4) 
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𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ1,′𝑟𝑒𝑠′) = {(𝑟𝑒𝑠, 568)}                                                                             (5) 

Clearly in 𝑝𝑎𝑡ℎ1, there is no non-empty intersection between any pair of definition chains; 

thus, on 𝑝𝑎𝑡ℎ1, the caller imposes no implicit check on the function instance memcpy(buf, 

password, res). 

For 𝑝𝑎𝑡ℎ2, the definition chains of all arguments are: 

𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ2,′𝑏𝑢𝑓′) = {}                                                                                              (6) 

𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ2,′𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑′) = {(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 553)                                                          (7) 

𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ2,′𝑟𝑒𝑠′) = {(𝑟𝑒𝑠, 566), (𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 553)}                                               (8) 

Obviously in the 𝑝𝑎𝑡ℎ2, there is a non-empty intersection between the definition chains 

of argument, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, and the definition chains of argument, 𝑟𝑒𝑠, that is, 

𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ2,′𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑′) ∩ 𝑑𝑒𝑓𝐶ℎ𝑎𝑖𝑛( 𝑝𝑎𝑡ℎ2,′𝑟𝑒𝑠′) = {(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 553)},               (9) 

Therefore, on 𝑝𝑎𝑡ℎ2, the caller imposes an implicit check on the arguments of function 

instance memcpy (buf, password, res). 

3.3 Decision algorithm for security-sensitive functions  

Algorithm 3. Identifying argument-sensitive function according to check information 

procedure IsArgumentSensitiveFunction(𝑓, 𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜, 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜, 𝜆) 

1:     𝑛 =  GetInstanceNums(𝑓)      

2:     𝑚 =  GetArgumentNums(𝑓)    

3:     for  𝑗 <   𝑚 do 

4:           for  𝑖 <  𝑛   do 

5:                 if  𝑒𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜[𝑖][𝑗] ∪ 𝑖𝑚𝑝𝑙𝑖𝑐𝑖𝑡𝐶ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜[𝑖][𝑗] then 

6:                     𝑐ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜[𝑖][𝑗] = 1 

7:           𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑗] += 𝑐ℎ𝑒𝑐𝑘𝐼𝑛𝑓𝑜[𝑖][𝑗] 

8:           𝑤𝑒𝑖𝑔ℎ𝑡[𝑗]  = 𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑗]/𝑛 

9:     𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑊𝑒𝑖𝑔ℎ𝑡 = GetMaxValue(𝑤𝑒𝑖𝑔ℎ𝑡）  

10:    return (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑊𝑒𝑖𝑔ℎ𝑡 ≥ 𝜆? 𝑡𝑟𝑢𝑒: 𝑓𝑎𝑙𝑠𝑒, 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑊𝑒𝑖𝑔ℎ𝑡 )           

Algorithm 3 determines whether the objective function is an argument-sensitive function 

based on the information related to the explicit and implicit checking of all function 

instances, and the corresponding threshold. In a function instance, if there is an explicit or 

implicit check on an argument, the instance is considered to conform to a security 

specification on the argument, and the protection counter of the parameter corresponding 

to the argument is incremented by one. Then, the protection counter for all parameters 

and the ratio of the maximum number of parameter protection counters to the total 

number of instances are calculated, where the latter is called the sensitive measure 

function: 
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𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑒𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑀𝑎𝑥𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝑛⁄                                                                            (10) 

where MaxCounter represents the largest value of the parameter protection counter, and n 

is the total number of calls to the instance. A high value of the sensitive measure function 

indicates more instances in the test for argument checking, implies a high probability of 

the given function being an argument-sensitive function. The threshold of Eq. (10) is set 

to determine whether the corresponding function is argument sensitive. 

4 Experimental results and analysis 

To evaluate the effectiveness of the proposed method, 3 well-known open-source projects 

were chosen for experiments. The detailed information is listed in Tab. 1, where 

OpenSSL is a cryptography library used for SSL communications, Libtiff is used to 

manipulate label images, and SQLite is a software library implementing the SQL 

database engine. All three software have been updated several times, and are widely used 

mature code projects. 

Table 1: Datasets of three open-source projects 

Project Version Size (M) 

OpenSSL 1.1.0f 8.2 

Libtiff 4.0.7 8.6 

SQLite 3.18.0 74 

The argument-sensitive functions mining the results of the three software are shown in 

Tab. 2. As is evident, our method identified more security-sensitive functions than 

AntMiner because it considered the implicit check on arguments, which is ignored in 

AntMiner. 

Table 2: The numbers of argument-sensitive functions (𝝀 = 𝟎. 𝟕) 

Project AntMiner Proposed Numbers of functions 

OpenSSL 2063 2401 6226 

Libtiff 575 633 1239 

SQLite 1804 2081 4926 

The functions mined in the above results were mostly project-specific functions that were 

unique to the relevant projects, and thus can be only manually confirmed to be argument-

sensitive functions. As the number of mined functions was large, it was difficult to 

accurately evaluate the performance of the proposed method. 

To better evaluate the performance of the proposed method, 28 argument-sensitive 

functions and 32 normal functions of glibc were chosen as benchmark functions for 

experiments. glibc is a C runtime library released by GUN that is widely used in many 

software. As the selected functions were commonly used and their security specifications 

were well known, it was easy to identify the argument-sensitive functions. 

The source code of the three open-source software was combined, and AntMiner and the 

proposed method were used to identify 60 glibc functions. The receiver operating 
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characteristics (ROC) curves of the results are shown in Fig. 3, where the curve of our 

method is above that of AntMiner. This indicates that our method yielded better 

performance. 

 

Figure 3: ROC curves of AntMiner and the proposed method 

5 Conclusion 

The automatic mining of security-sensitive functions is important for improving the 

efficiency of manual and automated vulnerability detection. This paper analyzed two 

forms of argument checking and introduced corresponding methods of identification to 

propose a method to mine argument-sensitive functions. Experiments involving the 

mining of security-sensitive functions were implemented on large, well-known open-

source projects. The experimental results showed that it can outperform AntMiner. 

However, owing to the different ways of implementing program semantics, the implicit 

check identification algorithm proposed in this paper failed at times, such as when using 

a constant instead of a calculation. In future research, we intend to further improve the 

identification of implicit check to enhance the efficiency of the proposed method to mine 

security-sensitive functions. 
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