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Abstract: The state-of-the-art universal steganalysis method, spatial rich model (SRM), 

and the steganalysis method using image quality metrics (IQM) are both based on image 

residuals, while they use 34671 and 10 features respectively. This paper proposes a novel 

steganalysis scheme that combines their advantages in two ways. First, filters used in the 

IQM are designed according to the models of the SRM owning to their strong abilities for 

detecting the content adaptive steganographic methods. In addition, a total variant (TV) 

filter is also used due to its good performance of preserving image edge properties during 

filtering. Second, due to each type of these filters having own advantages, the multiple 

filters are used simultaneously and the features extracted from their outputs are combined 

together. The whole steganalysis procedure is removing steganographic noise using those 

filters, then measuring the distances between images and their filtered version with the 

image quality metrics, and last feeding these metrics as features to build a steganalyzer 

using either an ensemble classifier or a support vector machine. The scheme can work in 

two modes, the single filter mode using 9 features, and the multi-filter mode using 639 

features. We compared the performance of the proposed method, the SRM and the 

maxSRMd2. The maxSRMd2 is the improved version of the SRM. The simulated results 

show that the proposed method that worked in the multi-filter mode was about 10% more 

accurate than the SRM and maxSRMd2 when the data were globally normalized, and had 

similar performance with the SRM and maxSRMd2 when the data were locally normalized.  
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1 Introduction 

Methods that can discover steganographic images are called steganalysis algorithms [Ker 

(2007a, 2007b); Li, Zeng and Yang (2008); Peony (2007); Ker and Lubenko (2009); Xia, 

Wang, Sun et al. (2016, 2014)]. The steganalysis methods that are not limited to detect 

the particular information hiding tools are universal steganalysis algorithms, or blind 

steganalysis algorithms [Tan and Li (2014); Chen and Shi (2008); Broda, Levicky, 

Banoci et al. (2014)]. Here, the term universal means that the methods are effective for 
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many different steganography algorithms and the term blind emphasizes that the analysis 

is carried out without the knowledge of the used hiding methods. 

Considering the rapid speed at which the variant or new hiding methods have spawned, 

the universal steganalysis methods are very important to identify potential threats from 

messages covered by huge amount of images on the internet. A universal steganalysis 

method should detect as many steganography methods and should have as low dimension 

of a feature vector as it can. However, current blind steganalysis methods are not yet 

good enough in these regards. 

The state-of-the-art blind steganalysis technique is the spatial rich model (SRM) [Fridrich 

and Kodovsky (2012)] designed by Fridrich. This method evolved from the subtractive 

pixel adjacency matrix (SPAM) algorithm [Pevný, Bas and Fridrich (2010)], which 

focused on relationships between neighboring pixels. The SPAM method utilizes a high-

order Markov chain and a transition probability matrix to discover distortions due to 

steganographic embedding. The SRM replaces these simple multi-directional differences 

with various types of residuals obtained by linear and nonlinear filters. The SRM can 

accurately detect most challenging steganographic algorithms such as least significant bit 

matching (LSBM), edge-adaptive (EA) [Luo, Huang and Huang (2010)], and highly 

undetectable steganography (HUGO) [Pevný, Filler and Bas (2010)]. However, the SRM 

uses 34671 features, which means that its procedures of feature extraction and machine 

learning are time-consuming. Although there are many improved algorithms based on the 

SRM, the essential problem remains. For example, depending on embedding possibilities 

of pixels, Tang et al. [Tang, Li, Luo et al. (2015)] assigned different weights to these 

pixels during feature extraction. Yu et al. [Yu, Li, Cheng et al. (2016)] proposed another 

feature called contrast feature, which consists of the residual angle and norm. These 

methods improve SRM’s detection accuracy for the low embedding rate adaptive 

steganography methods, such as WOW [Holub and Fridrich (2012)] and UNIWARD 

[Holub, Fridrich and Denemark (2014)], but the feature dimensionalities of these 

methods are still high. 

Based on two considerations, another kind of prevailing steganalysis methods [Ye, Ni 

and Yi (2017); Xu, Wu, Shi et al. (2016); Zeng, Tan and Huang (2018)] uses deep 

learning approaches. The first is that the abilities of feature auto-extraction of the deep 

learning networks can easy the design of the steganalysis feature. The second is that the deep 

learning architectures are similar to the mechanism of the SRM so they have the potential to 

replace the SRM with better performance. However the deep learning based steganalysis 

method are still being explored, and the complexity of these methods remain high. 

The steganalysis method using image quality metrics [Avcbas, Memon and Sankur 

(2003)], called IQM, also focuses on residuals and uses much fewer features. However, 

the IQM-based approaches [Xu, Wang and Liu (2007); Geetha, Sindhu and Kamaraj 

(2008, 2007)] are only valid for some steganographic tools because the filter is only 

applicable to some types of steganographic noise. This paper presents a novel universal 

blind algorithm based on the IQM and the SRM, which uses at most 639 features to 

achieve similar or better detection performance than the SRM using 34671 features. 

Novel zero-watermarking scheme based on DWT-DCT [Yang, Lei, Liu et al. (2016)] and 

discrete cosine transform (DCT) is discussed. An overview of general theory of security 
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[Lei, Yang, Niu et al. (2017)] which is devoted to constructing a comprehensive model of 

network security is discussed. 

This paper is organized as follows. Section 2 describes the proposed method and details 

the design of the filters, distance measures, classifying method, and etc. Section 3 

presents the results of simulation and analyzes the performance of the proposed method. 

Finally, a brief conclusion is given in Section 4. 

2 The proposed algorithm 

The proposed method is based on the IQM, and the main idea of which is that the 

distribution of distances between a natural image and its filtered version is different from 

the distribution of distances between a steganographic image and its denoised version. As 

shown in Fig. 1, in order to detect whether an image 𝑿 ∈ ℛ𝑀 × ℛ𝑁 contains a secret 

message, the method first filters 𝑿 using the function  ℎ(𝑿), then uses a set of functions 

𝑚𝑘(𝑿,  �̂�) to evaluate the distances 𝑑𝑘 between the image 𝑿 and its filtered version �̂�, 

and finally provides a vector 𝒅  composed of 𝑑𝑘  to the classifier 𝑐 . Similar to most 

common universal steganalysis methods, the classifier is trained using machine learning 

methods. The main points of this approach are the design of filters, distance measures, 

and classifiers. We will discuss them one by one in the following.  

 

Figure 1: The mechanism of the proposed method. An estimated image �̂� is got by 

filtering the image 𝑿  to be detected. The image quality metrics  𝒅𝒌  between them are 

used as the feature vector 𝒅 that feed to the classifier 𝒄(. ) 

2.1 The filters 

The choice of filters is important to the performance of the method. A good filter preserves 

natural image characteristics as much as possible while removing steganographic noise, 

which helps the algorithm achieve higher accuracy. In addition to the basic filters, such as 

the Gaussian and Wiener filter, two more types of filters are used. One of them is a total 

variation (TV) [Wahid and Lee (2017)] filter called the TV filter. The total variation 

denoising technique is based on the fact that the noise image has a higher TV value. 

Therefore, image denoising can be achieved by minimizing the TV value of the image.  

The TV filter is chosen because it is not only valid for removing noise, but also good at 
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preserving image edge properties. 

The other type is SRM-based filter. The SRM [Fridrich and Kodovsky (2012)] uses the 

high pass filters to get residuals. Since these residuals are very useful for capturing 

discontinuities introduced by steganography methods, the first- and second-order filters 

are also used in this proposed approach. For example, according to the SRM second-

order residual, which is defined as 𝑅(𝑖, 𝑗) = (𝑿(𝑖, 𝑗 + 1) + 𝑿(𝑖, 𝑗 − 1)) − 2𝑿(𝑖, 𝑗), this 

method designs and uses the filter defined as ℎ(𝑿(𝑖, 𝑗)) = (𝑿(𝑖, 𝑗 + 1) + 𝑿(𝑖, 𝑗 − 1)) 2⁄ . 

The nonlinear filters that taking the minimum (or maximum) of the linear filters’ outputs, 

such as 

ℎ(𝑿(𝑖, 𝑗)) = 𝑚𝑖𝑛 (ℎ1(𝑿(𝑖, 𝑗)), ℎ2(𝑿(𝑖, 𝑗))) = 𝑚𝑖𝑛((𝑿(𝑖, 𝑗 + 1) + 𝑿(𝑖, 𝑗 − 1)) 2⁄ ,

(𝑿(𝑖 + 1, 𝑗) + 𝑿(𝑖 − 1, 𝑗)) 2⁄ ), are utilized too. Some filters have four direction forms that 

they start from the initial forms and rotate counterclockwise in step of 90 degrees until back 

to the beginning position. For example, the four direction forms of  ℎ(𝑿(𝑖, 𝑗)) =

𝑿(𝑖 + 1, 𝑗)areℎ(𝑿(𝑖, 𝑗)) = 𝑿(𝑖, 𝑗 + 1),  ℎ(𝑿(𝑖, 𝑗)) = 𝑿(𝑖 − 1, 𝑗), ℎ(𝑿(𝑖, 𝑗)) = 𝑿(𝑖, 𝑗 − 1), 

and ℎ(𝑿(𝑖, 𝑗)) = 𝑿(𝑖 + 1, 𝑗). As a result, this approach uses 71 SRM-based filters in total.  

2.2 The distance measures 

Embedding messages in the carrier images increases their degree of discontinuity, which 

means the distances between a steganographic image and its filtered one are greater than 

the distances between a natural and its filtered version. Let �̂� = ℎ(𝑿) be the filtered 

image of an image X, the distances are evaluated using the image quality metrics [Tang, 

Li, Luo et al. (2016)] 𝑑𝑘 = 𝑚𝑘(𝑿,  �̂�) listed in Tab. 1. These quality metrics are selected 

according to their accuracies, consistencies and monotonicity. 

Table 1: Image quality measures 

𝑀1 = {
1

𝑀𝑁
∑ ∑ |𝑋(𝑖, 𝑗) − �̂�(𝑖, 𝑗)|𝑁−1

𝑗=0
𝑀−1
𝑖=0 }, 

𝑀2 = {
1

𝑀𝑁
∑ ∑ |𝑋(𝑖, 𝑗) − �̂�(𝑖, 𝑗)|

2𝑁−1
𝑗=0

𝑀−1
𝑖=0 }

1
2⁄

, 

𝑀3 =
1

𝑀𝑁
∑ ∑ (1 −

2𝑚𝑖𝑛(𝑋(𝑖,𝑗),�̂�(𝑖,𝑗))

𝑋(𝑖,𝑗)+�̂�(𝑖,𝑗)
)𝑁−1

𝑗=0
𝑀−1
𝑖=0 , 

𝑀4 = 1 −
∑ ∑ (𝑋(𝑖,𝑗)−�̂�(𝑖,𝑗))

2𝑁−1
𝑗=0

𝑀−1
𝑖=0

∑ ∑ (𝑋(𝑖,𝑗))
2𝑁−1

𝑗=0
𝑀−1
𝑖=0

,k 

𝑀5 =
∑ ∑ (𝑋(𝑖,𝑗)�̂�(𝑖,𝑗))𝑁−1

𝑗=0
𝑀−1
𝑖=0

∑ ∑ (𝑋(𝑖,𝑗))
2𝑁−1

𝑗=0
𝑀−1
𝑖=0

, 

𝑀6 =
1

𝑀𝑁
∑ ∑ (|Γ(𝑝, 𝑞)| − |Γ̂(𝑝, 𝑞)|)

2𝑁−1
𝑞=0

𝑀−1
𝑝=0 , 

Γ(𝑝, 𝑞) is the discrete Fourier transform (DCT) of 𝑋(𝑖, 𝑗). 

𝑀7 = median
𝑙=0⋯−1

Jφ
𝑙 , 𝑀8 = median

𝑙=0⋯𝐿−1
𝐽𝑙, 

J𝑀
𝑙 = (∑ ∑ (|Γ𝑙(𝑝, 𝑞)| − |Γ̂𝑙(𝑝, 𝑞)|)

2𝑁𝑏−1
𝑞=0

𝑀𝑏−1
𝑝=0 )

1
2⁄

, Jφ
𝑙 =

(∑ ∑ (|φ𝑙(𝑝, 𝑞)| − |φ𝑙(𝑝, 𝑞)|)2𝑁𝑏−1
𝑞=0

𝑀𝑏−1
𝑝=0 )

1
2⁄

,  𝐽𝑙 = λJM
𝑙 + (1 − λ)Jφ

𝑙 , where 

Γ𝑙(𝑝, 𝑞)is the DCT of the l-th 32-by-32 image block 𝑋𝑙(𝑖, 𝑗), |Γ𝑙(𝑝, 𝑞)| and 
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φ𝑙(𝑝, 𝑞)are the phase and magnitude spectra. 

𝑀9 =
∑ ∑ (𝑋𝑓(𝑖, 𝑗) − �̂�𝑓(𝑖, 𝑗))

2
𝑁−1
𝑗=0

𝑀−1
𝑖=0

∑ ∑ (𝑋𝑓(𝑖, 𝑗))
2

𝑁−1
𝑗=0

𝑀−1
𝑖=0

 

Where  𝐷(𝑝, 𝑞)  denotes the discrete cosine transform (DCT) of the 

signal  𝑋(𝑖, 𝑗) ,  𝐷𝑓(𝑝, 𝑞) = 𝐷(𝑝, 𝑞)ℎ(𝜌), 𝜌 = (𝑝2 + 𝑞2)0.5  is its band-pass 

filtered version, and H(𝜌) = {
0.05𝑒𝜌0.554

                  𝜌 < 7

𝑒−9|log10 𝜌−log10 𝜌9|2.3
𝜌 ≥ 7

,  𝑋𝑓(𝑖, 𝑗) is the 

inverse DCT of 𝐷𝑓(𝑝, 𝑞). 

2.3 The Classifying method 

The support vector machine (SVM) is an effective classification method for small data 

sets. The main idea is to transform the original input data set into a high-dimensional 

feature space by using a kernel function and then to optimize the classification in this new 

feature space under the assumption of linear separability. Because of the small number of 

features that the proposed algorithm uses, a SVM classifier is a suitable classifier.  

The optimal parameters of the SVM is obtained by grid searching, which is time-

consuming when the searching range is large. Therefore, the method also examines the 

ensemble classifier. We use the same ensemble classifier as the SRM does, which is a 

random forest. It consists of many fisher linear discriminants (FLDs) that work as base 

learners, and each of them is trained on a randomly chosen different-dimensional 

subspace of the feature space. The final decision of the classifier is made using majority 

voting according to the decisions of all base learners. Both of the two classifiers can work 

well and should be chosen according to the application environment. 

2.4 The working modes 

The proposed method works in two modes, a single filter mode and multi-filter mode. 

Among all of the aforementioned filters, the single filter mode selects the TV filter 

because of its ability of removing steganographic noise and preserving the image edge 

properties at the same time. As using only one filter, this mode uses a 9-dimensinal 

feature vector. In contrast to the single filter mode, the multi-filter mode uses all these 

filters because they each have their own advantages. This mode combines all the measures 

corresponding to each filter. As there are 71 filters, each of which corresponding to 9 

measures, therefore the multi-filter mode uses a 639-dimensional feature vector. Both 

modes can use either the ensemble classifier or the SVM classifier. 

3 Simulation results and analysis 

In order to study the performance of all the candidate filters, four typical space domain 

steganography methods and one transform domain steganography method were used. 

They were LSB, EA [Luo, Huang and Huang (2010)], syndrome-trellis codes (STC) 

[Filler, Judas and Fridrich (2011)], HUGO [Pevný, Filler and Bas (2010)], and QIM 

[Chen and Wornell (2001)]. EA may be the first steganography method that introduce 
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content adaptive design idea. HUGO improves EA and fully utilizes the knowledge about 

the steganalysis methods. STC goes further and becomes as the foundation of the current 

most secure steganography methods, which are content adaptive methods including 

WOW [Holub and Fridrich (2012)], S-UNIWARD [Holub, Fridrich and Denemark 

(2014)] and etc. Therefore, we chose HUGO, WOW and S-UNIWARD to verify the 

performance of the proposed method. 

The carrier images were chosen from the BOSSbase version 1.01 database [Filler, Pevný 

and Bas (2010)]. For each embedding rate and steganography method, 500 natural images 

and their corresponding steganographic images were prepared, which yielded a total of 

1000 samples per steganography method per payload. These samples were divided into 

two equal groups, one for training and the other one for testing.  

We used a SVM and ensemble classifier. The SVM classifier used a RBF kernel, and the 

RBF scaling factor γ  and the box constraint C were optimized by grid search. The 

searching range for γ was e−10 to e10 with a step of e0.1, and for C, it was e0 to e10 with 

a step of e0.1. 

The steganographic images were generated with a series of different embedding rates. 

The embedding rate is defined as 𝑙𝑚 𝑙𝑠⁄  in units of bits per pixel (bpp), here, 𝑙𝑚 is the 

length of hidden message, and 𝑙𝑠  is the total number of the cover image pixels. In 

addition, the images produced by different steganography methods have different 

transparencies even at the same embedding rates, and therefore the pitch signal-to-noise 

ratio (PSNR) was also used to analyze the capability of our method. We also used the 

accuracy rate (AR) for evaluation. AR is defined as (𝑛𝑐 + n𝑠) 𝑛⁄ , where 𝑛 is the total 

number of the samples, and, 𝑛𝑐 and 𝑛𝑠 are the number of the natural and steganographic 

images, respectively, correctly classified. 

3.1 Performance analysis of the filters 

Different filters are sensitive to different types of steganographic noise. To compare their 

performance, we used one filter at a time to construct detectors in turn. We studied the 

accuracy rates of the detectors using the Gaussian, Wiener, TV, first-order, and second-

order filter, respectively. In order to further examine the performance of these filters, we 

analyzed the simulation result from two perspectives, that is, the relationship between 

transparency and detection accuracy, and the relationship between a steganography 

method and detection accuracy. 

We sorted the detection accuracy in the ascending order of the PSNRs. Fig. 2 clearly 

shows the relationship between transparency and detection accuracy. The results of the 

detectors using the Gaussian, Wiener and TV filters are shown in Fig. 2(a), and those of 

the detectors using the first-order, second-order, and TV filters are shown in Fig. 2(b). In 

general, a small PSNR means a high embedding ratio, so the smaller the PSNR, the 

higher the detection accuracy. In particular, the detector using the TV filter had high 

detection accuracy even at low embedding rates. This good detection performance mainly 

benefited from the fact that TV filters introduce very little secondary noise when 

removing steganographic noise. The detectors that use the first- or second-order filters 

were less accurate than that using the TV filter but were more accurate than those that use 

the Gaussian or the Wiener filter. 
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Figure 2: The relationship between the transparency and accuracy. The higher the peak 

signal-to-noise ratio between the nature and steganographic images were, the less the 

effect on the nature images were casted by the steganography methods, and therefore the 

more difficult the detection was. Among all detectors, the detector using the TV filter 

achieved the best detection accuracy 

To examine the relationship between a steganography algorithm and detection accuracy, 

we compared the detection performance of these detectors, as shown in Fig. 3. The 

steganography methods using special techniques such as the matrix coding generated 

images with higher PSNRs than those generated by the other methods, and therefore were 

more difficult to detect. For the LSB, EA, HUGO, and STC algorithms, the first three 

most accurate detectors were the ones using the TV, first-, and second-order filters. 

In conclusion, the detector using a TV filter was capable to discover all these 

steganography methods, and using multiple types of filters could improve the performance. 
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Figure 3: The relationships between the accuracy and steganography methods. The 

detection accuracy was related with the embedding payload and methods. The higher the 

embedding payload was, the easier the detection was. The most challenging steganography 

method was the HUGO. On most conditions, the first three most accurate methods 

separately used the TV, 1st- and 2nd-filter 

3.2 Performance comparison of the steganalysis methods 

We compared the proposed method with the SRM and maxSRMd2. The single filter 

mode and multi-filter mode of this method use 9 and 639 features respectively. For 

convenience, in Tab. 2, we denoted the single filter mode, the multi-filter mode, the SRM 

and the maxSRMd2 as A1, A2, A3, and A4 respectively. Here, the SVM classifier was 

used for the single filter mode, and the ensemble classifier [Kodovsky, Fridrich and 

Holub (2012)] was used in the multi-filter mode. In addition, the performance data for the 

SRM and maxSRMd2 is quoted from the literature [Tang, Li, Luo et al. (2015)]. 
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Table 2: The accuracy comparison 

bpp WOW S-UNIWARD HUGO 

 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 

0.1 0.50 0.79 0.59 0.69 0.92 0.94 0.59 0.63 0.54 0.90 0.64 0.69 

0.2 0.50 0.90 0.68 0.76 0.95 0.95 0.68 0.71 0.56 0.94 0.72 0.76 

0.3 0.54 0.94 0.74 0.80 0.68 0.96 0.74 0.75 0.94 0.95 0.78 0.80 

0.4 0.85 0.95 0.79 0.83 0.93 0.96 0.79 0.80 0.95 0.97 0.82 0.84 

According to the content adaptive steganalysis techniques, the maxSRMd2 assigns higher 

weights to those complex texture areas. As a result, the maxSRMd2 was more accurate 

than the SRM especially at the low embedding rate. Owning to the combining the 

advantages of the SRM and the IQM, for the HUGO, WOW, and S-UNIWARD 

algorithms, the multi-filter mode was more accurate than the SRM and maxSRMd2. As 

only one filter is used, the single filter mode poorly performed at 0.3 bpp or lower 

embedding rate. 

At the embedding rate of 0.1 bpp, the multi-filter mode detected all the steganography 

methods with the accuracy of at least 79%. The single filter mode could accurately detect 

the HUGO algorithm with a capacity above 0.3 bpp, and the WOW algorithm with a 

capacity above 0.4 bpp. The result shows the single filter mode is suitable for computing 

resource-limited environments, while the multi-filter mode is suitable for applications 

that require higher detection accuracy. 

3.3 Effects analysis of data normalization 

Data normalization is necessary and important. In the case of a large variation in the 

dynamic ranges of the different features, normalization makes each feature work instead 

of being masked due to its smaller dynamic range. Second, normalization can improve 

the convergence rate of the gradient descent algorithm. When normalizing, we adjusted a 

variable  𝑥 ∈ [𝑎, 𝑏]  into the new range [𝑐, 𝑑]  using the linear function g(𝑥) = c +
b−a

𝑐−𝑑
(𝑥 − a), where the new dynamic range [𝑐, 𝑑] was [0, 1]. 

According the range of data normalization, three methods were used. The first method 

normalized the each feature among the whole data set and then randomly segmented the 

normalized features into the training and testing set. The first method is actually a global 

normalization method, so the result obtained by this method is denoted as GN in Tab. 3. 

The second method normalized the each feature among the training set, and recorded 

their maximum and minimum values. These values were then used to normalize the 

features among the testing set. The third method normalized the each feature among the 

training set and testing set respectively. These two methods are both local normalization 

methods, and the second method has a more stable and superior performance. Therefore, 

only the result under the second method is listed in Tab. 3 and denoted as LN. 

It is shown in Tab. 3 that normalizing features could improve the accuracy a lot and global 

normalization performs better than local normalization. However, the second normalization 

method still performs better than the SRM, and it is easier to implement in actual operation. 
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Table 3: The effect of the normalization methods 

bpp WOW S-UNIWARD HUGO 

 GN LN SRM GN LN SRM GN LN SRM 

0.1 0.79 0.83 0.59 0.94 0.82 0.59 0.90 0.82 0.64 

0.2 0.90 0.77 0.68 0.95 0.83 0.68 0.94 0.76 0.72 

0.3 0.94 0.78 0.74 0.96 0.79 0.74 0.95 0.76 0.78 

0.4 0.95 0.80 0.79 0.96 0.80 0.79 0.97 0.70 0.82 

4 Conclusion 

This paper presented a novel steganalysis method based on the IQM and the SRM. 

Compared with the SRM, the IQM uses the distances between the image and its filtered 

version as the features, which are actually various weighted multi-domain accumulative 

sum of the residuals and are more conducive to reflecting the steganographic noise. 

Because of the fact that the total variation technique introduces less secondary noise 

when removing steganographic noise, the single filter mode only uses the TV filter. This 

mode therefore uses only 9 features but achieved similar performance to the SRM. This 

characteristic helps to extend the application of steganalysis to the computing resource-

limited environments. 

Inspired by the SRM, the multi-filter mode uses multiple types of filters including the 

first- and second-order filters used by the SRM, and combines respective outputting 

measure as the feature vector. Although the number of the features thus increases to 639, 

a higher detection accuracy is achieved, resulting in an average accuracy of higher than 

79% even at embedding rates as low as 0.1 bpp. 

The data normalization method heavily influents the performance of the proposed method 

especially for the content adaptive steganography method at low embedding rate. Future 

study will focus on improving data normalization method and optimizing the proposed 

method with content adaptive steganalysis techniques. 
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