
 

 

 

Copyright © 2018 Tech Science Press                     CMC, vol.56, no.2, pp.185-198, 2018 

CMC. doi:10.3970/cmc.2018.03694                                                                          www.techscience.com/cmc 

 

 

An Empirical Comparison on Multi-Target Regression Learning 
 

Xuefeng Xi1, Victor S. Sheng1, 2, *, Binqi Sun2, Lei Wang1 and Fuyuan Hu1 

 

 

Abstract: Multi-target regression is concerned with the simultaneous prediction of 

multiple continuous target variables based on the same set of input variables. It has 

received relatively small attention from the Machine Learning community. However, 

multi-target regression exists in many real-world applications. In this paper we conduct 

extensive experiments to investigate the performance of three representative multi-target 

regression learning algorithms (i.e. Multi-Target Stacking (MTS), Random Linear Target 

Combination (RLTC), and Multi-Objective Random Forest (MORF)), comparing the 

baseline single-target learning. Our experimental results show that all three multi-target 

regression learning algorithms do improve the performance of the single-target learning. 

Among them, MTS performs the best, followed by RLTC, followed by MORF. However, 

the single-target learning sometimes still performs very well, even the best. This analysis 

sheds the light on multi-target regression learning and indicates that the single-target 

learning is a competitive baseline for multi-target regression learning on multi-target 

domains. 
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1 Introduction 

Multi-target regression, also known as multivariate or multi-output regression, is another 

instance of the more general learning task of multi-target prediction. Here the prediction 

targets are real-valued, as opposed to the closely related task of multi-label classification 

where the target variables are binary. Multi-output regression has recently emerged and 

extensively studied for many computer vision tasks, e.g., head pose estimation [Hara and 

Chellappa (2014)], human body pose estimation [Toshev and Szegedy (2014)] and 

viewpoint estimation [Torki and Elgammal (2011)]. Moreover, many researchers have 

found their applications, e.g. camera re-localization [Shotton, Glocker, Zach et al. (2013)] 

and cardiac volume estimation [Zhen, Wang, Islam et al. (2014)], can be elaborately solved 

by transferring the corresponding original problem into a multi-output regression task, which 

not only substantially outperforms conventional approaches but also offers a more compact 

and exquisite mathematical formulation to circumvent the difficulty in conventional 

approaches, e.g. the inverse problems [Guzman-Rivera, Kohli, Glocker et al. (2014)]. 
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Multi-target regression and multi-label classification are supervised machine learning 

algorithms. They make predictions based on a set of examples. For example, historical 

stock prices can be used to predict the future prices. Each example used for training can 

be labeled with the value of interest, for example, the stock price. Both Multi-target 

regression and multi-label classification algorithms look for patterns in those values, but 

each algorithm looks for different types of patterns. After an algorithm has found the best 

pattern, it can use the pattern to make predictions for unlabeled testing data the future price 

[Microsoft (2017)]. Multi-target regression and multi-label classification are closely related 

to each other. Despite that multi-target regression is a little more general. Multi-label 

learning is often treated as a special case of multi-target regression in statistics. However, 

we could more precisely state that both are instances of learning for predicting multiple 

targets, which could be real-valued, binary, ordinal, categorical or even of mixed type. 

Current existing multi-target regression learning algorithms are developed based on two 

basic approaches: Algorithm adaptation and problem transformation. Problem 

transformation is easy to understand. It is to transfer a multi-target regression problem 

into multiple traditional single-target regression problems. After a multi-target regression 

problem is transferred into multiple single-target regression ones. All the traditional 

regression learning algorithms can be applied directly to build a regressor for each single-

target dataset and make prediction for its correlated test instances. The prediction for a 

multi-target instance is made by aggregating outputs from autonomous regressors. Multi-

Target Stacking (MTS) [Spyromitros-Xioufis, Tsoumakas, Groves et al. (2016)] is 

chosen as the representative of this group. 

The second method used in multi-target regression is algorithm adaptation. It extends 

existing traditional regression algorithms to perform multi-target regression directly, for 

example, Random Linear Target Combination (RLTC) and multi-objective random forest 

(MORF) [Kocev, Vens, Struyf et al. (2007)]. Algorithm adaption completely differs from 

problem transformation. Instead, the algorithm learns the structure and correlations that 

exist among multi-targets directly. Thus, it is very useful to investigate the performance 

of multi-target regression learning algorithms, which are developed based on the two 

approaches. The investigating results will guide data mining researchers in their future 

research on developing better multi-target regression learning algorithms. 

The rest of the paper is organized as follows. Section 2 introduces the three representative 

multi-target regression learning algorithms which we will make comparison empirically. 

Section 3, we describe the experiments we have conducted. They consist of the setting of 

the experiments, the experimental results, and the analysis of the experimental results. 

Section 4 concludes with a summary of our work and a discussion of future work. 

2 Multi-target regression algorithms  

In this section, we first provide a brief description of multi-target regression learning, and 

then we briefly review three representative multi-target learning algorithms (i.e. Multi-

Target Stacking (MTS), random linear target combination (RLTC), and Multi-Objective 

Random Forest (MORF)) in this section, which are used in our experiments in Section 3. 
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2.1 Multi-target regression 

Multi-target regression is a statistical process for estimating the relationships among 

variables. Let us consider a training dataset D with N instances containing a value 

assignment for each variable X1,...,Xm, Y1,...,Yd, i.e. D= 1 1{( , ),..., ( , )}N Nx y x y . Each 

instance is characterized by an input vector of m descriptive or predictive variables 

1( ,..., ,..., )l

j mx X X X=  and an output vector of d target variables 
1( ,..., ,..., )l

i dy Y Y Y=  with 

i∈{1,...,d}, j∈{1,...,m}, and l∈{1,...,N}. The task is to learn a multi-target regression model 

from D consisting of finding a function h that assigns to each instance, given by the 

vector x, a vector y of d target values:  

h: ΩX1×,...,×ΩXm →ΩY1×,...,×ΩYd 

x=(x1,...,xm)→y=(y1,...,yd), 

Where ΩXj and ΩYi denote the sample spaces of each predictive variable Xj, for all 

j∈{1,...,m}, and each target variable Yi, for all i∈{1,...,d}, respectively. Note that, all target 

variables are considered to be continuous here. The learned multi-target model will be 

used afterwards to simultaneously predict the values
( 1) ( ')ˆ ˆ{ ,..., }N Ny y+

of all target 

variables of the new incoming unlabeled instances ( 1) ( '){ ,..., }N Nx x+  [Hanen, Gherardo, 

Concha et al. (2015)]. 

In this way, the dependencies of the target attributes are implicitly modeled as well, 

producing better predictive performance. The other advantage of described multi-target 

model is that the size and complexity of the produced model is smaller than the combined 

size of the single-target models. 

2.2 Multi-Target Stacking (MTS) 

Multi-Target Stacking (MTS) is a representative multi-target regression learning 

algorithm developed via problem transformation. Its brief introduction is as follows. 

Stacking (also called meta ensembling) is a model ensembling technique used to combine 

information from multiple predictive models to generate a new model [Gorman (2016)]. 

The multi-target stacking algorithm is inspired by where stacked generalization was used 

to deal with multi-label classification [Godbole and Sarawagi (2004)]. Multi-target 

stacking training is a two-stage process. First, d single-target models are learned 

respectively in a single-target learning mode. However, instead of directly using these 

models for prediction, multi-target stacking includes an additional training stage where a 

second set of d meta-models are learned, one for each target Yi, i∈{1,...,d}.  

Each meta-model is learned on a transformed training set  

* *(1) (1) *( ) ( ) *( ) ( ){( , ),..., ( , ),..., ( , )}l l N N

i i i iD x y x y x y= , where 
*( ) ( ) ( ) ( ) ( )

1 1
ˆ ˆ( ,..., , ,..., )l l l l l

m dx x x y y=  is a 

transformed input vector consisting of the original input vector of the training set 

augmented by predictions (or estimates) of their target variables yielded by the first-stage 

models. In fact, MTS is based on the idea that a second-stage model is able to correct the 

prediction of the first-stage models by using the predictions of other variables obtained in 

the first-stage models.  
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The predictions for a new instance x(N+1) are obtained by generating the first-stage models 

inducing the estimated output vector 
( 1) ( 1) ( 1)

1
ˆ ˆ ˆ( ,..., )N N N

dy y y+ + += , and then MTS applies 

the second-stage models on the transformed input vector   

*( 1) ( 1) ( 1) ( 1) ( 1)

1 1
ˆ ˆ( ,..., , ,..., )N N N N N

m dx x x y y+ + + + +=  to produce the final estimated multi-output 

targets 
( 1) ( 1) ( 1)

1
ˆ ˆ ˆˆ ˆ ˆ( ,..., )N N N

dy y y+ + += . 

2.3 Random Linear Target Combinations (RLTC) 

Random Linear Target Combinations (RLTC) is a representative multi-target regression 

learning algorithm [Tsoumakas, Spyromitros-Xioufis, Vrekou et al. (2014)] developed 

via algorithm adaption. Its brief introduction is as follows. 

Consider a set of m input variables x∈Rm and a set of d target variables y∈Rd. There are a 

set of N training examples: 
( ) ( )

1( , ) {( , )}i i N

iD X Y x y == = , where X and Y are matrices of 

size N×m and N×d, respectively. RLTC constructs r>>d new target variables via 

corresponding random linear combinations of y. To achieve this, this approach defines a 

coefficient matrix C of size d×r filled with random values uniformly chosen from [0..1]. 

Each column of this matrix contains the coefficients of a linear combination of the target 

variables. Multiplying Y with C leads to a transformed multi-target training set D’=(X, Z), 

where Z=YC is a matrix of size N×r with the values of the new target variables. A user-

specified multi-target regression learning algorithm is then applied to D’ in order to build 

a corresponding model.  

Note that RLTC expects that the original target variables take values from the same 

domain, as otherwise their linear combinations could be dominated by the values of 

targets with a much wider domain than the others. To ensure this, it applies 0-1 

normalization in order to bring the values of all targets into the range [0…1]. 

This algorithm considers an additional parameter k∈{2,...,d} for specifying the number of 

original target variables involved in each random linear combination, by setting the 

coefficients for the rest of the target variables to zero. A higher k means that potential 

correlations among more targets are being considered. However, at the same time, it 

means that the new targets are more difficult to predict, especially in the absence of 

actual correlations among the targets. Therefore, RLTC hypothesizes that low k values 

will lead to the best results. In practice, when k<d, for each linear combination RLTC 

selects k targets at random, but with priority to targets with the lowest frequency of 

participation to previously considered linear combinations. This ensures that all targets 

will participate in C as equivalently (i.e. with similar frequency) as possible.  

Given a new test instance, x’, the multi-target regression model is first invoked to obtain 

a vector z’ with r predictions. The estimates ˆ 'y  for the original target variables are then 

obtained by solving the following overdetermined (as r>>d) system of linear equations: 

ˆ ' 'TC y z= . 
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2.4 Multi-Objective Random Forest (MORF) 

Multi-Objective Random Forest (MORF) is a direct multi-output learning approach 

[Kocev, Vens, Struyf et al. (2007)]. Again, it is another representative multi-target 

regression learning algorithm developed via algorithm adaption. It integrates one of the 

most popular ensemble meta-learning approach Bagging with Random Forest. For multi-

target learning, instead of building single-target random forests, MORF builds multi-

target random forests. Specifically, it builds multi-target random forests based on multi-

objective decision trees (MODTs) from different random selected feature sets.  

Multi-objective decision trees (MODTs) [Blockeel, De Raedt and Ramon (1998)] are 

decision trees capable of predicting multiple target attributes at once. The main difference 

between MODTs with single-target standard decision trees is that MODTs treats the 

variance function and the prototype function that computes a label for each leaf as 

parameters. For multi-label classification, the variance function is computed as the sum 

of the entropies of target variables, i.e. 
1

( ) ( , )
d

i

i

Var E Entropy E y
=

= , and the prototype 

function returns a vector containing the majority class for each target of the 

corresponding training examples E. For multi-objective regression trees, the sum of the 

variances of the targets is used, i.e. 
1

( ) ( )
d

i

i

Var E Var y
=

= , and the prototype of each leaf 

is the vector mean of the target vectors of the corresponding training examples E. 

3 Experiments 

We conducted an extensive experiments to investigate the performance of three popular 

and representative multi-target learning algorithms (i.e. MTS, RLTC, and MORF), 

comparing with the baseline (a single-target learning). Before presenting our 

experimental results, we first discuss the implementations and parameter settings of these 

algorithms, and then provide a brief description of each dataset used in our experiments.   

3.1 Algorithm implementation and experimental settings 

MTS first transforms a multi-target prediction problem into d single-target problems, and 

then learns meta-models from augmented training data (details can be found in Section 2). 

Since MORF integrates bagging inside and is based on decision trees, to make a fair 

comparison and to simplify the analysis, we used bagging [Breiman (1996)] to construct 

100 regression trees in MTS. To evaluate the performance of MTS, 10-fold cross-

validation is applied.  

RLTC is to solve the overdetermined system of linear equations during prediction. It is to 

learn a single independent regression model for each target. Each regression model is 

built using gradient boosting [Friedman (2001)] with a 4-terminal node regression tree as 

the base learner, a learning rate of 0.1 and 100 boosting iterations. The system of linear 

equations is solved by the un-regularized least squares approach. In our experiments, we 

generate r=100 new target variables by combining k=2 the original target variables. 
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Concerning the parameter settings of MTS and RLTC, in MORF we use an ensemble size 

of 100 trees and the values suggested by Kocev et al. [Kocev, Vens, Struyf et al. (2007)] 

for the rest of its parameters.  

All of the algorithms are implemented within Mulan. Mulan is an open-source Java 

library for learning from multi-label datasets, which is built on top of Weka, including 

implementations of bagging, gradient boosting, and regression tree. MTS and RLTC are 

already integrated in Mulan [Mulan (2010)]. 

Root Mean Square Error (RMSE) is the standard deviation of the residuals (prediction 

errors), which is the measure we used to compare the performance of the multi-target 

learning algorithms. Besides, we chose RMSE because it is commonly used in 

climatology, forecasting, and regression analysis to verify experimental results. 

3.2 Datasets 

Although multi-target regression has many interesting applications, quite of a few multi-

target regression datasets are publicly available. We conduct experiments on 10 multi-

target regression datasets, which can be downloaded from the website of MULAN 

[Tsoumakas, Katakis and Vlahavas (2010)]. A brief description of each dataset used in 

our experiments is provided as follows.  

Table 1: The characteristics of the 10 datasets used in our experiments 

Dataset name abbreviation Source #Instances p d 

Electrical 

Discharge 

Machining 

edm 
Karalic and Bratko 

(1997) 
154 16 2 

Solar Flare 1 sf1 Lichman (2013) 323 10 3 

Solar Flare 2 sf2 Lichman (2013) 1066 10 3 

Water Quality wq 
Dzeroski, Demsar and 

Grbovic et al. (2000) 
16 16 14 

Energy building enb 
Tsanas and Xifara 

(2012) 
768 8 2 

Concrete Slump slump Yeh (2007) 103 7 3 

Andromeda andro 
Hatzikos, Tsoumakas, 

Tzanis et al. (2008) 
49 30 6 

JURA jura Goovaerts (1997) 359 15 3 

Online Product 

Sales 
osales Kaggle (2012) 639 413 12 

See Click Predict 

Fix 
scpf Kaggle (2013) 1137 23 3 

http://www.statisticshowto.com/residual/
http://www.statisticshowto.com/probability-and-statistics/regression-analysis/
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The characteristics of each dataset are shown in Tab. 1, where the 1st column shows the 

name of each dataset, the abbreviation of each dataset is shown in the 2nd column, the 

number of instances of each dataset is shown in the 3rd column, the number of input 

variables p is shown in the 4th column, and the number of output variables d is shown in 

the 5th column. 

The electrical discharge machining dataset (EDM) [Karalic and Bratko (1997)] was used 

to study shortening the machining time by reproducing the behavior of a human operator 

to control the values of two target variables (i.e. gap control and flow control). Each of 

the target variables takes three distinct numeric values (1, 0, 1). There are 16 continuous 

input variables, representing mean values and deviations of the observed quantities of 

considered machining parameters.  

The solar flare dataset was used for predicting how often three potential types of solar 

flare (i.e. common, moderate, and severe) occur in a 24 h period [Lichman (2013)]. That 

is, each target variable counts the number of solar flares of the corresponding type. There 

are ten input feature variables, which describe active regions on the sun. There are two 

versions of this dataset (i.e. sf1 and sf2 in Tab. 1). Sf1 contains the data from year 1969, 

and sf2 contains the dataset from year 1978.  

The water quality dataset (wq) was obtained from the Hydrometeorological Institute of 

Slovenia. It was used to monitor water quality of Slovenian rivers and maintained a 

database of water quality samples covering the six year period from 1990 to 1995 

[Dzeroski, Demsar and Grbovic (2000)]. There are 16 different measured chemical 

parameters and 14 target variables representing bioindicator taxa. 

The energy building dataset (enb) [Tsanas and Xifara (2012)] was used to study the effect 

of eight input variables (relative compactness, surface area, wall area, roof area, overall 

height, orientation, glazing area, glazing area distribution) on two output variables, 

namely heating load (HL) and cooling load (CL), of residential buildings. 

The Concrete Slump dataset (slump) [Yeh (2007)] was used to make predictions on three 

properties (i.e. slump, flow and compressive strength) of concrete as a function of the 

content of seven concrete ingredients (i.e. cement, fly ash, blast furnace slag, water, 

superplasticizer, coarse aggregate, and fine aggregate). 

The Andromeda dataset (andro) [Hatzikos, Tsoumakas, Tzanis et al. (2008)] was used to 

predict the future values of six water quality variables (temperature, pH, conductivity, 

salinity, oxygen, turbidity) in Thermaikos Gulf of Thessaloniki, Greece. Measurements of 

the target variables are taken from under-water sensors with a sampling interval of nine 

seconds and then averaged to get a single measurement for each variable over each day.  

The Jura dataset [Goovaerts (1997)] contains the measurements of concentrations of 

seven heavy metals (cadmium, cobalt, chromium, copper, nickel, lead, and zinc), 

recorded at 359 locations in the topsoil of a region of the Swiss Jura. The type of land use 

(Forest, Pasture, Meadow, and Tillage) and rock type (Argovian, Kimmeridgian, 

Sequanian, Portlandian, and Quaternary) were also recorded for each location. 

Specifically, the concentration of three metals (i.e. cadmium, copper and lead) is more 

expensive to measure than other metals. Therefore, the concentration of three metals (i.e. 

cadmium, copper and lead) are treated as target variables while the remaining metals 
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along with land use type, rock type and the coordinates of each location (15 features in 

total) are used as input features. 

The online product sale dataset (osales) [Kaggle (2012)] was used to predict monthly 

online sales of consumer products. Each row in this dataset represents a different 

consumer product that is described by various product features as well as features of an 

advertising campaign (413 input features in total). There are 12 target variables 

corresponding to the monthly sales for the first 12 months after the product launches.  

The “See Click Predict Fix” dataset (scpf) [Kaggle (2013)] is to quantify and predict the 

number of views, votes, and comments that a specific issue has received to date, in terms 

of 23 input features, such as the number of days that an issues stayed online, the source 

from which the issue was created (e.g. android, iphone, remote api, etc.), the type of the 

issue (e.g. graffiti, pothole, trash, etc.), and the geographical co-ordinates of the issue. 

The issues have been collected from four cities (Oakland, Richmond, New Haven, 

Chicago) in the U.S. and span a period of 12 months (01/2012-12/2012).   

3.3 Experimental results 

We have conducted the experiments on ten datasets, comparing the performance of three 

multi-target learning methods (i.e. MORF, MTS, and RLTC) with a single-target learning, 

in terms of the relative root mean squared error (RMSE). Our experimental results of four 

learning algorithms on ten datasets are shown in Tab. 2.  

We further conducted analysis on our experimental results in Tab. 2. We first ranked the 

performance of the four algorithms on each dataset and have their number of rank #1, 

rank #2, rank #3, and rank #4 shown in Tab. 3. 

Table 2: Comparisons among the four algorithms in terms of RMSE on the ten datasets. 

The lowest RMSE is in bold, and the second lowest is in italic 

Rank Single-

Target 

MORF MTS RLTC 

edm 0.7421 0.7338 0.7430 0.7352 

sf1 1.1353 1.2825 0.1127 1.1631 

sf2 1.1494 1.4248 0.9448 1.2282 

wq 0.9083 0.8994 0.9110 0.9014 

enb 0.1167 0.1210 0.1185 0.1203 

slump 0.6878 0.6939 0.6758 0.6904 

andro 0.6016 0.5098 0.5109 0.5701 

jura 0.5891 0.5968 0.5861 0.5964 

osales 0.7479 0.7533 0.7376 0.7406 

scpf 0.8371 0.8335 0.8260 0.8348 

average 0.7515 0.7849 0.6166 0.7581 
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From the above Tab. 2 and the following Tab. 3, we can see that MTS performs the best 

on six out the ten datasets, MORF performs the best on three out of the ten datasets, and 

Single-Target performs the best on one of the ten datasets. According to the average 

performance in terms of RMSE (shown in the last row of Tab. 2) and the average ranking 

(shown in the last row of Tab. 3), which supports each other, we can see that MTS 

performs the best in general, followed by Single-Target. Although Single-Target only 

performs the best on one of the ten datasets, it is in the second on four out of the ten 

dataset, which makes the second best among the four learning algorithms. MORF 

performs the worst, followed by RLTC. 

The results shown in Tabs. 2 and 3 are not consistent with our thoughts on multi-target 

learning. Especially, the Single-Target learning performs the second, which is better than 

MORF and RLTC. We usually think that multi-target learning can improve the 

performance of the single-target learning in multi-target domains. Therefore, we further 

investigate the detailed performance of each learning algorithm on each target of each 

dataset, instead of investigating the performance of the four algorithms on each dataset. 

Our detailed experimental results are shown in Tab. 4. 

Table 3: Comparisons among the four algorithms in terms of the ranks of RMSE on the 

ten datasets 

Rank Single-

Target 

MORF MTS RLTC 

1st 1 3 6 0 

2nd 4 1 2 3 

3rd 3 0 0 7 

4th 2 6 2 0 

average 2.6 2.9 1.8 2.7 

We further conducted analysis on our detailed experimental results in Tab. 4. We first 

ranked the performance of the four algorithms on each target of each dataset and have 

their number of rank #1, rank #2, rank #3, and rank #4 shown in Tab. 5. 

From Tabs. 4 and 5, we can see that Single-Target takes the first rank seven times out of 

51 targets of the ten datasets, MORF takes the first rank 13 times out of 51 targets of the 

ten datasets, MTS takes the first rank 17 times out of 51 targets of the ten datasets, and 

RLTC takes the first rank 15 times out of 51 targets of the ten datasets. Note that there 

exist 51 targets from the ten dataset, which is the summation of the last column in Tab. 1. 

This analysis can make us understand that the Single-Target learning can perform better 

than all three multi-target learning algorithms (i.e. MORF, MTS, and RLTC) for some 

targets of some domains. However, in general, MTS performs the best, followed by 

RLTC, followed by MORF. Single-Target performs the worst. This analysis sheds the 

light on multi-target learning and also indicates that the single-target learning is a 

competitive baseline for multi-target learning on multi-target domains. 
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Table 4: Our detailed experimental results of the four comparison algorithms in terms of 

RMSE on each target of each dataset. Again, the lowest RMSE is in bold, and the second 

is in italic 

Dataset Target Single-Target MORF MTS RLTC 

edm DFlow 0.8153 0.7754 0.8168 0.8009 

edm DGap 0.6689 0.6922 0.6692 0.6695 

sf1 c-class 1.0168 1.0346 0.1037 1.0186 

sf1 m-class 1.0963 1.2116 0.1137 1.1296 

sf1 x-class 1.2929 1.6012 0.1207 1.3412 

sf2 c-class 0.9801 0.9959 0.9745 0.9849 

sf2 m-class 1.0754 1.1595 0.9935 1.0798 

sf2 x-class 1.3928 2.1189 0.8664 1.6198 

wq 25400 0.9245 0.9238 0.9305 0.9224 

wq 29600 0.9865 0.9763 0.9862 0.9794 

wq 30400 0.9452 0.9420 0.9449 0.9367 

wq 33400 0.9120 0.8932 0.9037 0.9040 

wq 17300 0.9021 0.8953 0.9210 0.9027 

wq 19400 0.8342 0.8279 0.8293 0.8321 

wq 34500 0.9695 0.9595 0.9614 0.9570 

wq 38100 0.9120 0.9070 0.9077 0.9042 

wq 49700 0.7948 0.7931 0.8149 0.7933 

wq 50390 0.8916 0.8915 0.9011 0.8840 

wq 55800 0.9236 0.9032 0.9311 0.9155 

wq 57500 0.9176 0.8963 0.9173 0.9070 

wq 59300 0.9467 0.9310 0.9566 0.9310 

wq 37880 0.8557 0.8508 0.8482 0.8508 

enb Y1 0.0534 0.0600 0.0532 0.0530 

enb Y2 0.1799 0.1820 0.1837 0.1875 

slump SLUMP_cm 0.7950 0.7754 0.7636 0.7922 

slump FLOW_cm 0.7424 0.7331 0.7311 0.7397 

slump 
Compressive_S

trength_Mpa 
0.5260 0.5732 0.5327 0.5393 

andro Target_1 0.5150 0.4359 0.4835 0.4519 

andro Target_2 0.3404 0.4027 0.3181 0.2958 

andro Target_3 0.5884 0.4988 0.3910 0.5935 

andro Target_4 0.5302 0.4669 0.4588 0.5874 
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andro Target_5 0.8088 0.6320 0.6271 0.7454 

andro Target_6 0.8268 0.6222 0.7867 0.7466 

jura Cd 0.7108 0.6943 0.6862 0.7017 

jura Co 0.5428 0.5661 0.5503 0.5579 

jura Cu 0.5137 0.5301 0.5217 0.5296 

osales Outcome_M1 0.6528 0.6759 0.6547 0.6567 

osales Outcome_M2 0.7539 0.7195 0.7517 0.7496 

osales Outcome_M3 0.7856 0.7782 0.7787 0.7719 

osales Outcome_M4 0.6889 0.7361 0.6825 0.6761 

osales Outcome_M5 0.7363 0.7380 0.7199 0.7035 

osales Outcome_M6 0.6964 0.7528 0.7032 0.7100 

osales Outcome_M7 0.7427 0.7682 0.7403 0.7378 

osales Outcome_M8 0.7641 0.7887 0.7614 0.7587 

osales Outcome_M9 0.8119 0.7461 0.7325 0.7931 

osales Outcome_M10 0.7725 0.7697 0.7643 0.7760 

osales Outcome_M11 0.7490 0.7604 0.7423 0.7356 

osales Outcome_M12 0.8205 0.8063 0.8193 0.8181 

scpf num_views 0.8153 0.8085 0.8048 0.8144 

scpf num_votes 0.7200 0.7036 0.7021 0.7242 

scpf num_comments 0.9760 0.9883 0.9710 0.9659 

average  0.7885 0.8018 0.7025 0.7878 

Table 5: Comparisons among the four algorithms in terms of the ranks of RMSE 

Rank Single-

Target 

MORF MTS RLTC 

1st 7 13 17 15 

2nd 7 18 16 10 

3rd 18 0 11 21 

4th 19 20 7 5 

average 2.9608 2.5294 2.1569 2.3137 

We further analyzed why we have different comparison conclusions shown in Tabs. 3 

and 5. This is because the granularity of comparisons is different. Tabs. 2 and 3 are based 

on datasets. Each dataset is the basic unit in comparisons. However, Tabs. 4 and 5 are 

based on targets. Each target is the basic unit in comparisons. Since different datasets 

have a different number of targets. Tab. 5 is a weighted comparison summarization, 

where the number of targets in each dataset works as the corresponding weight. When the 

number of targets is great, multi-target learning is preferred. This is reasonable because 
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when there exist a great number of targets in a multi-target domain, there exist some 

targets that could improve the learning performance of others.  

4 Conclusions and future work 

In this paper, we conducted extensive experiments to investigate the performance of four 

multi-target regression learning algorithms (i.e. Single-Target, MTS, RLTC, and MORF). 

Our experimental results in terms of RMSE showed that in general MTS performs the 

best, followed by RLTC, followed by MORF. Single-Target performs the worst. 

However, Single-Target performs the best on one of the ten datasets, and the second best 

on four out of the ten datasets. This analysis sheds the light on multi-target learning and 

also indicates that the single-target learning is a competitive baseline for multi-target 

learning on multi-target domains. 

All of the algorithms that used above, including Single-Target, MTS, RLTC, and MORF, 

are categorized as problem transformation methods in multi-target learning. All of them 

first transform a multi-output regression problem into multiple single-target regression 

problems, then build a model for each target, and finally concatenate all predictions. The 

main drawback of the Single-Target learning is that the relationships among the targets 

are ignored, and the targets are predicted independently, which may affect the overall 

quality of the predictions [Hanen, Gherardo, Concha et al. (2015)]. However, the Single-

Target learning is the simplest approach to learn from multi-output regression domains. 

Both MTS and RLTC employ the correlations between targets to improve performance of 

multi-target regression learning. 

Considering potential real-world applications of multi-target regression, we will continue 

to evaluate the performance of existing multi-target regression learning algorithms. In the 

same time, we are going to design novel algorithms for multi-target regression with the 

insights found in the experiments. 
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