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Abstract: Perceptual image quality assessment (IQA) is one of the most indispensable 
yet challenging problems in image processing and computer vision. It is quite necessary 
to develop automatic and efficient approaches that can accurately predict perceptual 
image quality consistently with human subjective evaluation. To further improve the 
prediction accuracy for the distortion of color images, in this paper, we propose a novel 
effective and efficient IQA model, called perceptual gradient similarity deviation (PGSD). 
Based on the gradient magnitude similarity, we proposed a gradient direction selection 
method to automatically determine the pixel-wise perceptual gradient. The luminance and 
chrominance channels are both took into account to characterize the quality degradation 
caused by intensity and color distortions. Finally, a multi-scale strategy is utilized and 
pooled with different weights to incorporate image details at different resolutions. 
Experimental results on LIVE, CSIQ and TID2013 databases demonstrate the superior 
performances of the proposed algorithm. 
 
Keywords: Image quality assessment, full reference, perceptual gradient similarity, 
multi-scale, standard deviation pooling. 

1 Introduction 
Objective image quality assessment (IQA) is a significant basis to measure the 
performance of image acquisition, image transmission and image processing algorithms. 
Most existing methods focus on extracting image features related to human visual system 
(HVS) to establish evaluation models. Based on whether there is a reference image, IQA 
techniques are generally classified into three categories, named full reference (FR), 
reduced reference (RR) and no reference (NR). FR-IQA considers that the reference 
image is undistorted, and measures the quality by calculating the differences between a 
reference image and a distorted image. By the in-depth study of imaging theory, image 
processing techniques such as Hermite spectral collocation, extended Hamiltonian 
algorithm, seeded region growing, collaborative representation [Zhang, Sun, Ji et al. 
(2016)] and Hidden Markov model [Zheng, Jeon, Sun et al. (2017)] have been widely 
used in computer vision. However, the critical problem of IQA is the extraction of 
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quality-related features consistent with human eye perception. The most classical 
objective IQA algorithms are Peak Signal-to-Noise Ratio (PSNR) [Avcibas, Sankur and 
Sayood (2002)] and Mean-Squared Error (MSE). However, both methods are not well 
associated with the perceptual quality without considering the structural characteristics. 
To overcome this limitation, structural similarity index (SSIM) [Wang, Bovik, Sheikh et 
al (2004)] utilizes correlations between pixels and the concept of structure information to 
measure the quality score. Inspired by SSIM, a variety of improved algorithms have been 
proposed, including gradient based structural similarity (GSSIM) [Chen, Yang and Xie 
(2006)], multi-scale structural similarity Index (MS-SSIM) [Wang, Simoncelli and Bovik 
(2004)], and information content weighted SSIM (IW-SSIM) [Wang and Li (2011)]. 
These approaches are consistent with human subjective perception to a certain degree. 
Moreover, many models are also developed based on the properties of human vision. 
Based on the perspective of information theory, Sheikh et al. [Sheikh, Bovik and De 
(2005)] pointed out that the natural images have statistical characteristics, and proposed 
information fidelity criterion (IFC) and visual information fidelity (VIF) [Sheikh and 
Bovik (2006)]. Both methods utilize the mutual information between the original image 
and the distorted image. Chandler et al. [Chandler and Hemami (2007)] proposed the 
visual signal-to-noise ratio (VSNR) metric to quantify the visual fidelity of natural 
images based on near-threshold and supra-threshold properties of human vision. Most 
apparent distortion (MAD) [Larson and Chandler (2010)] assumed that the HVS uses two 
distinct strategies when evaluating high-quality images and low-quality images. Based on 
the hypothesis that the visual saliency map is closely related to image quality, Zhang et al. 
[Zhang and Li (2013)] proposed spectral residual based similarity (SR-SIM) method. 
Then they further proposed visual saliency induced index (VSI) method [Zhang, Shen 
and Li (2014)]. VSI utilizes the visual saliency map as both feature and weighting 
function to reflect the importance of local regions. 
Neuropsychological studies have shown that the human visual system is sensitive to the 
structural distortions of edge details in the image. Most distortions have a tendency to 
change the gradient values. The image gradient reflects the most significant part of the 
image brightness changes, which is often used to extract the edge and other structures. 
Gradient information has been employed for FR-IQA in many different ways. GSSIM 
improves SSIM by replacing the contrast comparison with the gradient based contrast 
comparison. Gradient magnitude similarity (GSM) [Liu, Lin and Narwaria (2012)] also 
uses such information to capture structural and contrast changes. Zhang et al. [Zhang, 
Zhang, Mou et al. (2011)] constructed feature similarity (FSIM/FSIMc for color images) 
to further improve the performance. FSIM calculates gradient similarity and phase 
similarity respectively, regarding the gradient as an independent feature and pooling with 
a phase congruency weighted average. Because of high computational complexity of 
phase congruency features, Xue et al. [Xue, Zhang, Mou et al. (2014)] proposed an 
effective metric called gradient magnitude similarity deviation (GMSD), which first 
calculates the gradient magnitude similarity and then uses a standard deviation pooling 
strategy to get the evaluation score. GMSD proves that utilization of image gradient 
magnitude can yield highly accurate quality prediction. 
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Most related methods model the FR-IQA strategy in gray space. However, color is the 
essential element to describe the content of images, where RGB model is the most 
common color model in computer vision. However, RGB model cannot separate the 
luminance and chrominance, which is not consistent with human subjective perception of 
color similarity. The other well-known color spaces include HSV, YIQ, Lab and so on. 
HSV (hue, saturation, value) model is a pyramid color space which is more closely 
associated with the way human vision perceives color-making attributes. YIQ model 
contains three components: luminance value Y and two chrominance values I and Q. The 
relationship between YIQ and RGB color space is a linear transformation, and YIQ can 
be adapted for the change of lightness intensity. Like the YIQ, the Lab model is 
comprised of one luminance and two chrominance channels. Extends from FSIM, FSIMc 
uses YIQ color space to achieve color image quality assessment. It computes phase 
congruency and gradient similarity in luminance component combined with the 
chromatic similarities in I and Q channels. CSV [Temel and Alregib (2016)] uses the 
CIEDE2000 color difference formulation to quantify low-level color degradation and 
calculates the Earth mover’s distance between color name probability vectors to measure 
significant color degradation.  
Generally, the perceptual quality is influenced by numerous factors, including display 
resolution, chrominance information and viewing distance. A natural image might have 
objects and structures that are relevant at different scales, and the human eye is readily 
able to identify and process the information presented by it. MS-SSIM proposes a multi-
scale structural similarity method, which is more stable than the single-scale SSIM model. 
Multi-scale contrast similarity deviation (MCSD) [Wang, Zhang, Jia et al. (2016)] 
explores the contrast features by resorting to the multi-scale representation. 
As the above discussions, the gradient only computed on the luminance channel of image, 
would make GMSD not work quite well for the color distortion. In this paper, we propose 
perceptual gradient similarity deviation (PGSD) to further improve the prediction 
accuracy for the distortion of color images. Inspired by GMSD, we propose a gradient 
direction selection method to automatically determine the pixel-wise perceptual gradient. 
Both the luminance and chrominance channels are taken into consideration when 
characterize the quality degradation caused by intensity and color distortions. Finally, a 
multi-scale strategy is utilized and pooled with distinct weights to incorporate image 
details at different resolutions and obtain the final score. 

2 Perceptual gradient similarity deviation 
2.1 Selection of gradient direction 
Research has shown that the human visual system is sensitive to the edge of image. The 
gradient of the image can reflect the detail contrast and texture change, and is closely 
related to the perceptual quality. In this paper, we improve the existing gradient 
calculation method by automatically selecting the gradient directions. 
Similar with GMSD, we first adapt the Prewitt filters as gradient operators to get the 
gradient magnitude. The operators of horizontal (x) and vertical (y) are defined as follows: 
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ℎ𝑥 = 1
3
�
1 0 −1
1 0 −1
1 0 −1

� ℎ𝑦 = 1
3
�

1 1 1
0 0 0
−1 −1 −1

�  (1) 

These operators constitute an orthogonal coordinate system. The gradient magnitude 
(GM) is defined as the root mean square of direction gradients along these two 
orthogonal directions. GM maps of the reference (r) and the distorted (d) image are 
computed as follows: 

𝑚𝑟1(𝑖) = �(𝑟⨂ℎ𝑥)2(𝑖) + �𝑟⨂ℎ𝑦�
2(𝑖)  (2) 

𝑚𝑑1(𝑖) = �(𝑑⨂ℎ𝑥)2(𝑖) + �𝑑⨂ℎ𝑦�
2(𝑖)  (3) 

where symbol ⨂  denotes the convolution operation, 𝑚𝑟1  and 𝑚𝑑1  are the gradient 
magnitude images extracted from the reference and distorted images respectively, and 
𝑖 = (𝑖1, 𝑖2) represents the pixel coordinates.  
In order to find the direction of maximum gradient change more accurately, we introduce 
another set of filters, which are defined as follows: 

ℎ𝑐 = 1
3
�
1 1 0
1 0 −1
0 −1 −1

� ℎ𝑚 = 1
3
�

0 1 1
−1 0 1
−1 −1 0

�  (4) 

These two operators are also orthogonal. But different from the traditional ones, they are 
more efficient in capturing the sloped edges. The horizontal and vertical operators can 
only capture one component of the sloped edges, which can be, however, captured by one 
of the diagonal operators. Then the corresponding GM maps can be calculated with 
convolution operation like Eqs. (2) and (3): 

𝑚𝑟2(𝑖) = �(𝑟⨂ℎ𝑐)2(𝑖) + (𝑟⨂ℎ𝑚)2(𝑖)  (5) 

𝑚𝑑2(𝑖) = �(𝑑⨂ℎ𝑐)2(𝑖) + (𝑑⨂ℎ𝑚)2(𝑖)  (6) 
For each image, we can obtain two GM images (𝑚𝑟1 , 𝑚𝑟2  or 𝑚𝑑1 , 𝑚𝑑2 ). For the 
reference image, two GM images are compared pixel-by-pixel and the larger values are 
selected to construct the final GM map: 
𝐺𝑟(𝑖) = 𝑚𝑎𝑥 (𝑚𝑟1(𝑖),𝑚𝑟2(𝑖))  (7) 
The purpose of this is to determine the gradient direction that is closer to the maximum 
rate of change. To ensure that the gradient values being compared come from the same 
coordinate system, for the distorted image, GM map is constructed based on the reference 
one, which can be defined as 

𝐺𝑑(𝑖) = �𝑚𝑑1(𝑖), 𝑚𝑟1(𝑖) ≥ 𝑚𝑟2(𝑖)
𝑚𝑑2(𝑖), 𝑚𝑟1(𝑖) < 𝑚𝑟2(𝑖)  (8) 

Therefore, we can obtain the final GM maps for both reference and distorted images. We 
select the gradient direction of each pixel on the maximum changing rate based on the 
reference image, which makes the comparison of gradient more accurately.  
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2.2 Pooling luminance and chrominance channels 
Many researches and experiments show that the visual information enters the visual 
cortex through different neural channels and is then processed by different neurons. The 
color feature is another type of information which reflects the image content except the 
brightness features. Calculating the gradient similarity only on gray scale cannot 
guarantee an accurate evaluation for color distortions, such as change of color saturation 
and chromatic aberrations. Therefore, the utilization of multiple channels including 
luminance and chrominance channels for IQA model can extract more perceptual features 
that are more consistent with human perception. Hence, we transform the RGB color 
images into an opponent color space [Geusebroek, Boomgaard, Smeulders et al. (2001)]: 

�
𝐿
𝑀
𝑁
� = �

0.06 0.63 0.27
0.30 0.04 −0.35
0.34 −0.6 0.17

� �
𝑅
𝐺
𝐵
�  (9) 

where L represents the luminance information and M and N contain the chrominance 
information. The conversion weights are optimized for the HVS.  

 
Figure 1: Illustration of the computational process of the proposed PGS map 
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Then the gradient magnitude maps are respectively calculated on these three channels by 
using the direction selection method mentioned in Section 2.1. For each image, we get 
three GM maps: 𝐺𝐿, 𝐺𝑀 and 𝐺𝑁. The similarities calculated between two GM maps of 
each channel are defined as: 

𝑆𝐿(𝑖) = 2𝐺𝐿𝑟(𝑖)𝐺𝐿𝑑(𝑖)+𝑐1
𝐺𝐿𝑟
2 (𝑖)+𝐺𝐿𝑑

2 (𝑖)+𝑐1
  (10) 

𝑆𝑀(𝑖) = 2𝐺𝑀𝑟(𝑖)𝐺𝑀𝑑(𝑖)+𝑐2
𝐺𝑀𝑟
2 (𝑖)+𝐺𝑀𝑑

2 (𝑖)+𝑐2
  (11) 

𝑆𝑁(𝑖) = 2𝐺𝑁𝑟(𝑖)𝐺𝑁𝑑(𝑖)+𝑐2
𝐺𝑁𝑟
2 (𝑖)+𝐺𝑁𝑑

2 (𝑖)+𝑐2
  (12) 

where 𝑐1 and 𝑐2 are the positive constants. Then, we combine 𝑆𝑀  and 𝑆𝑁  to obtain the 
chrominance similarity measure, which is denoted by 𝑆𝐶: 

𝑆𝐶(𝑖) = 𝑆𝑀(𝑖)+𝑆𝑁(𝑖)
2

  (13) 

The similarities with respect to luminance and chrominance are described as follows: 
𝑃𝐺𝑆(𝑖) = [𝑆𝐿(𝑖)]𝛼 ∙ [𝑆𝐶(𝑖)]𝛽   (14) 
where 𝛼 and 𝛽 are two positive parameters to adjust the relative importance of luminance 
and chrominance. The procedures to calculate the PGS map are illustrated in Fig. 1. 
Finally, we apply with standard deviation pooling and take the result as the IQA index 
called perceptual gradient similarity deviation (PGSD): 

𝑃𝐺𝑆𝐷 = �1
𝑁
∑ (𝑃𝐺𝑆(𝑖) − 𝑃𝐺𝑆𝑀)2𝑁
𝑖=1   (15) 

where N is the total number of pixels in the image. And the perceptual gradient similarity 
means (PGSM) is the average of the PGS map and is defined as: 

𝑃𝐺𝑆𝑀 = 1
𝑁
∑ 𝑃𝐺𝑆(𝑖)𝑁
𝑖=1   (16) 

The value of PGSD reflects the range of distortion severities in an image, where a higher 
score means a larger distortion range and a lower image perceptual quality, and vice 
versa. 
Fig. 2 shows two examples by comparing PGSD with GMSD. GMSD computes the 
gradient magnitude only on the gray scale. Both testing images contain declines of color 
saturation but with different levels. The subject scores (MOS) are 4.31707 and 3.60978, 
respectively. A higher MOS means better image quality. Corresponding PGSD scores are 
0.0131 and 0.0499 which are consistent with the trend of MOS. However, there is no 
obvious change between GMSD scores, which means that GMSD method can hardly 
detect the change of perceptual quality. The proposed PGSD is able to consider the 
variation of local quality and evaluate the color distortion. Consequently, it can obtain 
highly relevant results to subjective image quality. 
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Figure 2: Examples of GMSD and PGSD for change of color saturation evaluation. (a) 
and (d) are two distorted images with different levels in TID2013 database. (b) and (e) 
are the PGS maps calculated by proposed PGSD. (c) and (f) are the GMS map calculated 
by GMSD model. The subjective quality scores (MOS), the PGSD indexes and GMSD 
indexes are listed under the corresponding images 

2.3 Multi-scale pooling strategy 
Typical multi-scale methods include wavelet transform, curvelet transform, and pyramid 
decomposition. In image quality assessment, the perceptual characteristics of the image 
are closely related to the observed distance and the sampling density. Therefore, scale 
information also has an effect on the perceptual quality.  

 

Figure 3: Multi-scale framework 

In this paper, we combine multi-scale strategy by utilizing low-pass filter and down-
sampling in three channels of a color image. The flow chart is presented in Fig. 3. In 
image preprocessing, the color image is transformed into the opponent color space as 
mentioned in Section 2.2. 
On the basis of the previous scale level, the luminance and two chrominance images are 
first filtered by a low-pass filter, and then down-sampled by a factor of 2. The original 
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image is indexed as Scale 1 in this paper, and the largest scale is indexed as Scale M. The 
overall evaluation score PGSD is obtained by multiplying different weights for different 
scales, which are expressed as: 
𝑃𝐺𝑆𝐷 = ∑ 𝜔𝑖 ∗ 𝑃𝐺𝑆𝐷𝑖𝑀

𝑖=1   (17) 
where PGSD𝑖 and 𝜔𝑖 respectively represent the single-scale IQA score and the weight at 
the i-th scale and ∑ 𝜔𝑖

𝑀
𝑖=1 = 1.  

3 Experimental results 
In this section, we tested the performances of the proposed PGSD on three databases: 
LIVE database [Sheikh, Moorthy, Wang et al. (2004)], CSIQ database [Larson and 
Chandler (2009)], and TID 2013 database [Ponomarenko, Ieremeiev, Lukin et al. (2013)]. 
Tab. 1 shows the main information of these three databases. 

Table 1: Description of testing databases 

Database Reference 
images 

Distorted 
images 

Distorted 
types 

MOS 
range Observers 

LIVE 29 779 5 0-120 161 
CSIQ 30 866 6 0-1 35 
TID2013 25 3000 24 0-8 971 

Four common indices were used to evaluate the prediction accuracy and consistency, 
including the Spearman Rank-Order Correlation Coefficient (SROCC), Kendall Rank-
Order Correlation Coefficient (KROCC), Pearson Linear Correlation Coefficient (PLCC) 
and Root Mean Squared Error (RMSE). The values of SROCC, KROCC and PLCC all 
range from 0 to 1, with a higher value representing a more accurate evaluation. For 
RMSE, a lower value indicates that the corresponding algorithm can produce more 
accurate estimation. Generally, a logistic regression function is utilized to provide a 
nonlinear mapping between the objective scores and the subjective mean opinion scores 
(MOS), which is defined as: 

𝑓(𝑥) = 𝛽1 �
1
2
− 1

𝑒𝑥𝑝�𝛽2(𝑥−𝛽3)�
� + 𝛽4𝑥 + 𝛽5  (18) 

where 𝛽𝑖 , i=1,2,…,5 are regression model parameters, and x is the predicted image 
quality. After the regression, the above four indices can be calculated for the performance 
evaluations.  
Unless otherwise specified, parameters involved in the proposed PGSD were set as 
follows. We set the constants 𝑐1=170 and 𝑐2=180 in Eqs. (10) and (11), respectively. The 
factors 𝛼 and 𝛽 in Eq. (14) were set as 𝛼 = 0.6 and 𝛽 = 0.4, respectively. The multi-
scale weights in Eq. (17) were set as 𝜔=[0.1333, 0.3448, 0.2856, 0.2363]. 
The proposed PGSD was compared with eight state-of-the-art FR-IQA techniques, 
including SSIM, MS-SSIM, IW-SSIM, GMS, FSIMc, GMSD, CSV and MCSD. Both 
FSIMc and CSV can evaluate color images. It should be noted that the parameters for all 
the comparison algorithms were set as the suggestion values from the corresponding 
references. 
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Table 2: Performance evaluation results in LIVE, CSIQ and TID2013 databases 
Database Method SROCC KROCC PLCC RMSE 

LIVE 

SSIM 0.9479 0.7963 0.9449 8.9455 
IFC 0.9259 0.7579 0.9268 10.264 
MS-SSIM 0.9513 0.8045 0.9489 8.6188 
IW-SSIM 0.9567 0.8175 0.9522 8.3473 
GSM 0.9561 0.8150 0.9512 8.4327 
FSIMc 0.9645 0.8363 0.9613 7.5296 
GMSD 0.9603 0.8268 0.9603 7.6214 
CSV 0.9610 0.8380 0.9492 7.2762 
PGSD 0.9575 0.8318 0.9572 6.6872 

CSIQ 

SSIM 0.8755 0.6900 0.8612 0.1334 
IFC 0.7671 0.5897 0.8384 0.1434 
MS-SSIM 0.9133 0.7393 0.8991 0.1149 
IW-SSIM 0.9213 0.7529 0.9144 0.1063 
GSM 0.9108 0.7374 0.8964 0.1164 
FSIMc 0.9310 0.7690 0.9192 0.1034 
GMSD 0.9570 0.8122 0.9541 0.0786 
CSV 0.9328 0.7661 0.9398 0.0897 
PGSD 0.9572 0.8122 0.9564 0.0767 

TID2013 

SSIM 0.7417 0.5588 0.7895 0.7608 
IFC 0.5389 0.3939 0.5538 1.0322 
MS-SSIM 0.7859 0.6047 0.8329 0.6861 
IW-SSIM 0.7779 0.5977 0.8319 0.6880 
GSM 0.7946 0.6255 0.8464 0.6603 
FSIMc 0.8510 0.6665 0.8769 0.5959 
GMSD 0.8038 0.6334 0.8594 0.6339 
CSV 0.8456 0.6544 0.8623 0.6279 
PGSD 0.8565 0.6685 0.8611 0.6303 

In the first experiment, all the four performance indices were examined in three testing 
databases. The results are presented in Tab. 2, in which the top three performances of 
each indicator are highlighted in boldface. The best ranking models are PGSD (10 times), 
CSV (7 times), FSIMc (7 times), MCSD (7 times) and GMSD (6 times). For the CSIQ 
and TID2013 datasets, all PGSD's indicators reach the top three. FSIMc, GMSD, MCSD 
and CSV can only obtain satisfactory results on one specific database. We also showed 
the weighted average of the four indices over the three databases in Tab. 3. We can 
observe that PGSD has the best performance in SROCC, KROCC and RMSE. The 
overall performance comparison shows that our improvements are effective.  
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Table 3: Weighted average results of LIVE, CSIQ and TID2013 databases 

 SSIM 
MS- 

SSIM 
IW- 

SSIM 
GSM FSIMc GMSD CSV MCSD PGSD 

SROCC 0.8019 0.8379 0.8351 0.8438 0.8853 0.8590 0.8816 0.8627 0.8926 
KROCC 0.6238 0.6639 0.6642 0.6787 0.7146 0.6997 0.7066 0.7053 0.7234 
PLCC 0.8294 0.8651 0.8678 0.8736 0.8992 0.8943 0.8916 0.8917 0.8952 
RMSE 2.0462 1.9387 1.8919 1.8906 1.6920 1.7276 1.6667 1.6132 1.5654 

Generally, a good IQA model should also have the ability to accurately predict image 
quality for each specific type of distortions. Tab. 4 lists the SROCC scores of each type in 
three databases in which the top three performances are highlighted in boldface. For the 
TID2013 database, the proposed PGSD has better performance for color distortion than 
the conventional GMSD, which means that the color channel decomposition is effective. 
We can observe that the proposed PGSD obtain 27 times ranking in top three models for 
all 35 distortion types, followed by MCSD and GMSD with 24 times and 18 times, 
respectively.  
For the color distortions of contrast change and change of color saturation, the SROCC 
values of GMSD are 0.3235 and 0.2948, respectively. The corresponding indexes of 
PGSD are 0.6343 and 0.7785, both of which are ranked in the top three. All the SROCC 
values of PGSD are above 0.6, which indicates that PGSD is almost valid for all 
distortion types. 
Fig. 4 shows the scatter plots of predicted quality scores against subjective DMOS scores for 
all the comparison IQA models on TID2013 database. The curves were obtained by a 
nonlinear fitting mentioned in Eq. (18). The scatter distribution of MS-SSIM is more 
centralized than SSIM, which means that the multi-scale strategy is effective. In the scatter 
distributions of GMSD and MCSD, some points concentrated in the straight line with zero 
predicted scores, which indicates that the corresponding distortions are accurately evaluated. 
Comparatively, the scatter distributions of PGSD are more concentrated than others, which 
mean that the subjective and objective are more consistent. 
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Table 4: SROCC performance comparison on each individual distortion 

 Type SSIM 
MS- 

SSIM 
IW- 

SSIM 
GSM FSIMc GMSD CSV MCSD PGSD 

LIV
E 

JP2K 0.9614 0.9627 0.9649 0.9700 0.9724 0.9711 0.9819 0.9825 0.9820 
JPEG 0.9764 0.9815 0.9808 0.9778 0.9840 0.9782 0.9625 0.9613 0.9619 
AGWN 0.9694 0.9733 0.9667 0.9774 0.9716 0.9737 0.9798 0.9889 0.9894 
GB 0.9517 0.9542 0.9720 0.9518 0.9708 0.9567 0.9832 0.9728 0.9752 
FF 0.9556 0.9471 0.9442 0.9402 0.9499 0.9416 0.9707 0.9723 0.9681 

C
SIQ

 

AGWN 0.8974 0.9471 0.9380 0.9440 0.9359 0.9676 0.9556 0.9674 0.9673 
JPEG 0.9546 0.9634 0.9662 0.9632 0.9664 0.9651 0.9646 0.9670 0.9695 
JP2K 0.9606 0.9683 0.9683 0.9648 0.9704 0.9717 0.9794 0.9746 0.9790 
AGPN 0.8922 0.9331 0.9059 0.9387 0.9370 0.9502 0.9629 0.9479 0.9513 
GB 0.9609 0.9711 0.9782 0.9589 0.9729 0.9712 0.9753 0.9747 0.9772 
GCD 0.7922 0.9526 0.9539 0.9354 0.9438 0.9037 0.9462 0.9509 0.9488 

TID
2013 

AGWN 0.8671 0.8646 0.8438 0.9064 0.9101 0.9462 0.9223 0.9451 0.9521 
ACN 0.7726 0.7730 0.7515 0.8175 0.8537 0.8684 0.8525 0.8671 0.8688 
SCN 0.8515 0.8544 0.8167 0.9158 0.8900 0.9350 0.9297 0.9404 0.9463 
MN 0.7767 0.8073 0.8020 0.7293 0.8094 0.7075 0.7977 0.7234 0.7561 
HFN 0.8634 0.8604 0.8553 0.8869 0.9040 0.9162 0.9168 0.9166 0.9184 
IN 0.7503 0.7629 0.7281 0.7965 0.8251 0.7637 0.8426 0.7769 0.8124 
QN 0.8657 0.8706 0.8468 0.8841 0.8807 0.9049 0.8791 0.9103 0.8958 
GB 0.9668 0.9673 0.9701 0.9689 0.8551 0.9113 0.9374 0.9095 0.9054 
ID 0.9254 0.9268 0.9152 0.9432 0.9330 0.9525 0.9430 0.9537 0.9566 
JPEG 0.9200 0.9265 0.9187 0.9284 0.9339 0.9507 0.9416 0.9431 0.9468 
JP2K 0.9468 0.9504 0.9506 0.9602 0.9589 0.9657 0.9670 0.9626 0.9650 
JGTE 0.8493 0.8475 0.8388 0.8512 0.8610 0.8403 0.8079 0.7466 0.8694 
J2TE 0.8828 0.8889 0.8656 0.9182 0.8919 0.9136 0.8927 0.9230 0.9092 
NEPN 0.7821 0.7968 0.8011 0.8130 0.7937 0.8140 0.8073 0.8309 0.8306 
LBWD 0.5720 0.4801 0.3717 0.6418 0.5532 0.6625 0.1829 0.6718 0.6164 
MS 0.7752 0.7906 0.7833 0.7875 0.7487 0.7351 0.6614 0.5961 0.6442 
CTC 0.3775 0.4634 0.4593 0.4857 0.4679 0.3235 0.2214 0.6889 0.6320 
CCS 0.4141 0.4099 0.4196 0.3578 0.8359 0.2948 0.8076 0.2715 0.7772 
MGN 0.7803 0.7786 0.7728 0.8348 0.8569 0.8886 0.8649 0.8857 0.8968 
CN 0.8566 0.8528 0.8762 0.9124 0.9135 0.9298 0.9138 0.9333 0.9385 
LCNI 0.9057 0.9068 0.9037 0.9563 0.9485 0.9629 0.9559 0.9697 0.9721 
ICQD 0.8542 0.8555 0.8401 0.8973 0.8815 0.9102 0.9087 0.9172 0.9144 
CA 0.8775 0.8784 0.8682 0.8823 0.8925 0.8530 0.8449 0.8390 0.8589 
SSR 0.9461 0.9483 0.9474 0.9668 0.9576 0.9638 0.9697 0.9678 0.9676 
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Figure 4: Scatter plots of subjective DMOS against predicted quality scores by IQA 
models on the TID2013 database. (a) SSIM, (b) MS-SSIM, (c) IW-SSIM, (d) GSM, (e) 
FSIMc, (f) GMSD, (g) CSV, (h) MCSD and (i) PGSD 

In addition, we evaluated the performances using statistical significance tests to make 
statistically meaningful conclusions. After nonlinear regression, we compared the 
prediction residuals of each two models by applying the left-tailed F-test at a significance 
level of 0.05. A value of H=1 indicates the first model (represented by the row in Fig. 5) 
is superior to the second one (represented by the column of Fig. 5) in IQA performance. 
A value of H=0 means that the first model is not significantly better than the second one. 
Fig. 5(a)-5(c) show the significance test results on the LIVE, CSIQ and TID2013 
databases, respectively. We can find that the PGSD is significantly better than most 
models on the CSIQ database. For the LIVE database, PGSD is significantly better than 
all the others except for CSV. In general, considering 0.05 as the level of significance, 
this evaluation apparently shows that PGSD performs steadily better than most 
comparison methods.  
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Except for accuracy, a good IQA model should also have high efficiency. To analyze the 
complexities of all the comparison IQA models, Tab. 5 lists the running time on the 
image with size 512×512, where the order is the length of execution time. All algorithms 
were implemented using the Matlab R2016a platform and were tested on a PC (Intel Core 
i3-2120 CPU, 3.30 GHz, 6 GB RAM, and 64-bit Windows 8). The execution time is the 
average value of 30 repetitions for each model. From Tab. 5 we can observe that the 
proposed PGSD is the fastest among the models that can process color image, which is 
1.7 times faster than FSIMc, and 4.6 times faster than CSV. Therefore, we can conclude 
that the proposed method outperforms state-of-the-art methods in both terms of 
prediction accuracy and efficiency. 

   
                    (a)                                                (b)                                          (c) 
Figure 5: The results of statistical significance tests for all the comparison IQA models 
on (a) LIVE, (b) CSIQ and (c) TID2013 databases. The value 1 indicates that the model 
in the row is significantly better than the model in the column, while the value 0 indicates 
that two comparison methods have no significant difference 

Table 5: Average execution time of all comparison IQA models 

models Running time (s) 
GMSD 0.0061 
MCSD 0.0124 
GSM 0.0189 
SSIM 0.0437 
MS-SSIM 0.0519 
PGSD 0.1906 
FSIMc 0.3493 
IW-SSIM 0.4309 
CSV 0.8722 

4 Conclusion 
In this paper, we have proposed a FR-IQA model called perceptual gradient similarity 
deviation (PGSD) which considers the perceptual quality related to HVS, including the 
texture edge, chrominance information and viewing distance. To fully take all the 
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direction changes into account, a gradient direction selection method has been proposed 
to automatically determine the pixel-wise perceptual gradient. Then both the luminance 
and chrominance channels have been taken into account to characterize the quality 
degradation caused by intensity and color distortions. Finally, we have presented multi-
scale pooling strategy which is more accurate and stable than single-scale assessment. 
The experimental results demonstrate that the proposed PGSD outperforms state-of-the-
art methods in terms of prediction accuracy and efficiency. Future work will be devoted 
to further reduce the complexity of the proposed algorithm and consider more visual 
features, such as saliency induced index in Zhang et al. [Zhang, Shen and Li (2014)] to 
further improve the prediction accuracy for the distortion of color images. 
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