

Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

CMC. doi:10.3970/cmc.2018. 03687 ww.techscience.com/cmc

Mitigating Content Caching Attack in NDN

Zhiqiang Ruan1, *, Haibo Luo1, Wenzhong Lin1 and Jie Wang2

Abstract: Content caching is a core component in Named Data Networking (NDN),
where content is cached in routers and served for future requests. However, the adversary
can launch verification attack by placing poisoned data into the network with a legitimate
name and allow the routers in the delivery path to frequently identify the content. Since
NDN employs digital signature on each piece of content, verifying all content will
exhaust routers’ computational resources due to the massive data in the network. In this
paper, we propose a selective verification scheme upon the contents that are hit in the
content store and allow the contents that are not actually served to be unverified. We also
consider the redundant verification of popular content and incorporated in our design to
lessen the re-accessing overhead. Analysis and performance results show that the
proposed scheme can greatly mitigate the risk of content verification attacks and save the
computational resources of relay nodes.

Keywords: NDN, content cache, security, verification attack.

1 Introduction
Named Data Networking (NDN) is a network architecture for the future Internet, and can
cooperate with the Internet of Things (IoT) to handle problems existing in the current
TCP/IP network architecture [Zhang, Claffy, Crowley et al. (2014)]. In particular, content
in NDN has hierarchical name, the request/interest packet is routed by the name and can
be served either by the intermediate nodes or content source that have a copy of the
content. The whole communication procedure is driven by the consumer and supported
by a Content Store (CS), a Pending Interest Table (PIT), and a Forwarding Information
Base (FIB) structure in nodes (i.e. NDN routers).
Since routers in NDN hold copies of the content that they relay, popular content can be
distributed over the network and users can easily access to the content via content name.
According to Cisco visual networking index in 2016 [VN Index (2016)], the global traffic
will increase about threefold in the next five years, reaching 194 EB per month by 2020.
Under such circumstances, in network caching and accessing based on named data can
provide efficient content retrieval and enable NDN successfully minimize the amount of
traffic over the link [Yuan, Crowley and Song (2017); Song, Yuan, Crowley et al. (2015)].

1 Department of Computer Science, Minjiang University, Wenxian Road No.1, Fuzhou, Fujian, 350108,

China.
2 Department of Computer Science, University of Massachusetts Lowell, One University Avenue, Lowell, M.

A., 01854, USA.
* Corresponding Author: Zhiqiang Ruan. Email: rzq_911@163.com.

RE
TR
AC
TE
D

484 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

Despite these great benefits, NDN has potential problem in terms of security. Specifically,
in-network caching regards each node as a possible content provider, malicious users can
inject poisoned content into the network by any legitimate name. Once the polluted content
is saved on the CS of a node, it is possible to spread to the entire system. As a result, caches
are polluted by bad data. To solve this problem, NDN appends a digital signature on the
content and can be verified either by end-hosts or any routers. Users may reject the content
because of signature mismatch, while the network is nearly unaware of the problem due to
the computational burden of content verification. Thus, subsequent requests may continue
to be answered by bogus content and constitute a denial of service (DoS) attack [Gasti,
Tsudik, Uzun et al. (2013)]. Furthermore, routers cannot afford to verify all content, due to
hundreds of Gbps content in the network and verifying of them will introduce huge
overhead [Xie, Widjaja and Wang (2012)].
In this paper, we present a light-weight solution to detect verification attack at routers and
identify the vulnerable request. The proposed solution exploits the relationship between
the number of cache-hit events and the amount of serving content. If verification attack
happens, network nodes may monitor more serving content than usual as much more
unverified content is being accessed by the adversaries’ requests. Thus, if the number of
serving content increases above a certain threshold, the routers judge that they are under
verification attack and start the attack alarms. Vulnerable requests are identified simply
by counting the number of forwarded pieces of serving content per node. Our simulation
study verifies that the proposed scheme can effectively detect verification attack and the
malicious requests.
The contributions of this paper are summarized as follows.
1) Firstly, we propose the concept of selective verification at routers for stored/forwarded
content and efficiently mitigate the risk of content poisoning attacks; the proposed
scheme can work with most of the existing security mechanisms and align with the basic
architecture of NDN.
2) Secondly, we present a simple mechanism for monitoring the amount of serving
content and the cache-hit ratio, which helps to detect the verification attack and block the
routers serving for the vulnerable fetches that directly connected to them. Furthermore,
we treat the path to poisoned content as a bad forwarding choice and guide the selection
of a better forwarding path using NDN’s forwarding strategy.
3) Finally, we design an efficient algorithm for content poisoning attack and demonstrate
that the proposed algorithm can mitigate such attack without degrading the QoS (i.e.
latency). According to the simulation results, the verification overhead can be reduced
over 30% and the verification efficiency can be improved by up to 50% under the cache
replacement policy.
The reminder of this paper is arranged as follows. Section 2 surveys the state of the art in
mitigation mechanisms on poisoned content. Section 3 gives the problem formulation.
Section 4 illustrates the design detail of the proposed scheme followed by the analysis in
Section 5. Section 6 shows the performance evaluation and Section 7 concludes the paper.

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 485

2 Related work
Recently, content poisoning mitigation mechanisms have become an active research topic.
Dibenedetto and Papadopoulos [Dibenedetto and Papadopoulos (2016)] used the
exclusion filter in interest packet to determine content that cannot satisfy the interest.
However, there are several drawbacks remain to be solved. First, each consumer has to
request/exclude separately to identify the desired data, as exclusion knowledge is limited
to each consumer. Second, attackers can produce bogus data to an un-scalable exclude
filter. Third, since exclusion is unable to declare any finer granularity, it cannot help
consumers to retrieve data by a less name prefix.
Another poisoning mitigation approach is for interests to declare the content’s expected
publisher. NDN packet specification supports a KeyLocator field and the NDN name or
digest (i.e. location) of its publisher’s certificate is included in interest packet [Compagno,
Conti, Ghali et al. (2015)]. Since a certificate is a sort of label that carries a set of keys, it
could be requested in the same way when other content is retrieved. The legitimacy of the
signer can be determined by encoding the identity of a key into a certificate name. Yu
[Yu (2015)] constructed a hierarchical trust model, where a chain of keys or authorities
form a hierarchy that is rooted at trust anchors, which are trusted by all verifiers.
Hamdane et al. [Hamdane, Boussada, Elhdhili et al. (2017)] introduced hierarchical
identity based cryptography for security and trust in named data networking. Research
shows that developed a verifiable diversity ranking search method over encrypted
outsourced data. However, neither of them is effective because an attacker can simply use
the correct key information in malicious packets.
Kim et al. [Kim, Uzun and Wood (2015)] advocated authenticating data packets until
they are served from a node’s CS. However, the underlying forwarding problem is not
addressed and would result in the poisoned content being re-requested. Ghali et al. [Ghali,
Tsudik and Uzun (2014a, 2014b)] suggested that all interests specify the publisher via
key digest and include the associated public key to each data packet. Later, routers verify
each data packet with the attached key and ensure the key matches what is specified by
the requesting Interest. However, since each router has to verify all data packet on the fly,
which limits the application in reality.
Some researchers represent the content by a unique hash digest, and specify interests with
digests that connected to the requested content by their exact names, such that the content
poisoning attacks can be restricted in a small range. Gasti et al. [Gasti, Tsudik, Uzun et al.
(2013)] linked every content to its predecessor by placing its digest in the predecessor’s
payload, which significantly reduced the verification overhead. However, it incurs other
problems of trust management and overcoming inter-packet dependency. Research shows
that an abnormal content feature sequence prediction approach for DDoS attacks in future
generation internet, but it has the same problem of detecting all content sources.
On the contrary, Baugher et al. [Baugher, Davie, Narayanan et al. (2012)] and Kurihara et
al. [Kurihara, Uzun and Wood (2015)] classified content into multiple catalogs and
attempt to improve the verification efficiency in the whole process of content publication
and retrieval. They define collections for content by their name and digest, and the
publishers are set to sign a limited number of manifests rather than individual content.
Consequently, the users can retrieve desired data with exactly name, avoiding content

RE
TR
AC
TE
D

486 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

poisoning attack as well as perform fewer signature verifications. Unfortunately, this
approach is exclusively probabilistic and unable to adapt to bad content.
Ghali et al. [Ghali, Tsudik and Uzun (2014a, 2014b)] proposed the concept of self-
certifying name and design a method that exploits users’ feedback to eject polluted
content. However, it is risky because valid content are also excluded from the CS upon
the fabricated feedback. Bianchi et al. [Bianchi, Detti, Caponi et al. (2013)] presented
Lossy Caching strategy, where content is verified and cached based on a certain
probability. Routers minimize verification overhead by lowering the probability, while
the probability also influences the cache hit ratio and the freshness of network nodes.
When the probability is low, verification and caching are favor to more popular content,
while caching is probably fill with outdated content. Thus, it is difficult to find the optimal
probability value. Moreover, Lossy Caching is strongly coupled with probabilistic caching,
and it is prohibit from using this scheme to different types of cache replacement policies.

3 Problem statement
In verification attacks, forged data packet is placed in the CS of routers. To match with the
interest, the faked content has a valid name, but its signature or payload is fabricated. When
requests for the content pass by the target router, they are served by polluted content in the
CS rather than forwarded to the content source, when the poisoned content relayed back to
the user, it locates in the CS of all involved routers. As a result, the CS is filled with useless
content. What is more, subsequent requests for desired content cannot success in a single
attempt before cross over the attacked router. After recognizing the disproof of the received
content, a user resubmits the request with the hash value of the polluted content in the
exclude field, which incurs extra delays and verifying overhead at routers.
The implement of content poisoning attack is manifold. A typical example is that the
attackers use two end-hosts, one is the client node that issues an interest and the other is
the server node which provides the poisoned content. When the client requests content, a
unique interest is generated and forwarded to the valid content source by the routers.
From then on, the server injects the poisoned content into the network at arbitrary or
illogical step. It is not mandatory for routers to check the arriving request; however, the
adversary may only attempt to consume the PIT entry by inserting poisoned content into
the CS and delivered back to the user. Even if the valid content reaches to the router
afterward, it is immediately discarded as no pending interest is matched in the PIT.
Another case for content poisoning attack is the routers may copy interests and assign
them via several requests to search the nearest duplicate of the content [Chiocchetti,
Perino, Carofiglio et al. (2013)]. In this case, interests can be transmitted via randomly
selected requests before arriving at the attacker’s server. So, poisoned content leakages
into the network and pollutes the CS of middle routers. The first guard to these types of
attacks may be secure routing. As for more in-depth measures, one need to provide
effective and security mechanisms that take the benefit of in-network caching of NDN
into account.
Note that content poisoning is substantially different from cache poisoning; in particular,
content poisoning is still exist no matter whether there were in-network caches, as the
adversary can still serve bad data. While cache pollution aims to deplete local cache

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 487

space, the attackers can intentionally request the unpopular content and fill them into the
cache. As a result, popular content is ejected from the cache and the benefit of in-network
caching is discounted. Since cache pollution attack use valid content, there is no need to
check the legality of the content itself.

4 The proposed scheme
We carry out the concept of examine on cache-hit, that is, all content arriving at the
router are placed in the CS without signature verification. Only when a cache-hit appears
in the CS, then the serving content is authenticated before flowing into the network.
Compared to complete verification scheme (referred to as basic scheme), our approach
saves a large amount of computational resources for by-passing content, and it nicely
avoids the malicious effects of poisoned content. In other words, poisoned content in the
CS is either simply removed from the CS without any negative impacts or authenticated
before affecting the network. Hence, there is make no sense to intervene the CS by
multiple pending interests for poisoned content spread out over the network, because data
packet that has multiple pending interests are considered as serving content and is check
before being forwarded. Nevertheless, this approach would increase the access delay of
popular data. One alternative is to allow the poisoned content be spread over the network,
although this enables the poisoned content endanger the network caches, it still can be
detected immediately and wiped off by new requests from users.
In general, popular content is frequently accessed in the CS. To avoid repeated
authentication on the following cache-hits, a label or flag is set in the CS to indicate that
the content is already passed the verification, and this flag stays in the CS with the
content. It is possible that the remaining cache space at router is not enough to hold
popular content, in this case, popular content may be ejected from the CS, while this
content is re-inserted into the CS in the next data retrieval, the content has to be check
repeatedly when a cache-hit occurs after each insertion. This shortcoming is also
mentioned in the original NDN security architecture. To solve this problem, we employ
the technique of Segmented Least Recently Used (SLRU) [Karedla, Love and Wherry
(1994)] to the CS.
SLRU divides the cache into a protected section and an unprotected section, each
segment applies LRU policy individually. If a component on the unprotected section is
visited, it is moved to the protected section and can stay longer than those objects in the
unprotected section. Given preference to repeatedly access content, SLRU can greatly
improve the cache-hit ratio. If we apply SLRU in our algorithm, verified content is
migrated to the protected section and cannot be excluded by going through content. Even
if the content moves out of the protected section, according to LRU cache replacement
strategy, it is first arranged into the unprotected section and then removed from the cache.
Therefore, authenticated content always has a higher chance of being re-visited, which
significantly reduces the overhead of repeated verifying popular content.
We use the metric λ to analyze the efficiency of our scheme, and it is defined as

vk MM /=λ (1)

RE
TR
AC
TE
D

488 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

where kM is the number of verification carried out for poisoned content, vM is the
number of verification implemented for all content, and k is the ratio of requests for
poisons content out of all requests. kM is equal to tdk∆ . Since we only perform
validation for unauthenticated serving content, if the hit rate for unverified content in the
CS is lh , then in the time interval t∆ , vM can be denoted as tkhtdk l ∆−+∆)1(, where d is
the arriving rate of request. Note that a cache-hit happens upon poisoned content is
reported by the re-request or the popular content is re-visited. Hence, the value of λ in
this work, lλ , is

)1()1(khk
k

kdhdk
dk

ll
l −+

=
−+

=λ (2)

To calculate lh , we assume that the popularity of total content (M pieces) follows the
Zipf-Mandelbrot distribution:

zM mi
ip

)(
)(

+
Β

= (3)

where 1

1
)

)(
1(−

=
∑ +

=Β
M

i
zmi

, lh is the probability that the content in the CS that has missed

cache-hit prepares a cache-hit for the next request. Therefore, lh is written by

)()()(ipipiph LH
i

Ml ∑
∀

= (4)

where)(ipH and)(ipL are the probabilities of a cache-hit and cache-miss for the content
i, respectively.)(ipH can be further written by

Sip
H

Mkip)(1)(−−= (5)
where S is the capacity size of CS and it can be calculated by

)1()(∑
∀

−=
i

tipMkS (6)

If SLRU is used for our scheme, given the new arrival request, lh is corresponds to the
conditional probability that content is moved from the unprotected section to the
protected section in the CS. In short, lh is equal to the hit rate in the unprotected section.
Suppose the ratio of the protected section in the CS is β , then contents with the rank i
(Sβ≤) are arranged in the steady state from the protected section. Thus,

lh is calculated
by Eq. (5) and Eq. (6) under the normalized distribution of content popularity for SM β−
pieces and a CS with a size of S)1(β− .
In order to solve verification attack, the first step is to estimate whether the routers are
under verification attack or not. One of the most prominent feature of verification attack
is a large number of unverified data packet is maliciously fill into the CS to produce
cache-hit events. In view of this, verification attack might be detected by utilizing the
correlation between the number of cache-hit events and the amount of verifications that
have been performed.

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 489

Given the distribution function of the content popularity, the number of cache-hit events
can be represented by hdt, where t is the monitoring interval and d is the request arriving
rate. h is the cache-hit rate of all content, which is calculated by

∑
∀

=
i

HM ipiph)()((7)

Algorithm 1: Detection of Pollution Attack
Input: Number of requests r, number of cache-hits h;
 number of verifications v, time interval t∆ , threshold
ε
Output: 1 (Success) or 0 (False)
1 begin
2 repeat
3 r=r+1
4 if cache-hit occurs then
5 h=h+1;
6 if first cache-hit for unverified content then
7 v=v+1;
8 endif
9 endif
10 calculate

h
v

11 if ε<
h
v then

12 update ε by (8)
13 else
14 go to the identification stage
15 endif
16 reset r, h, v
17 until 0=∆t
18 end

The anticipative number of validations is Hdlt, where lh is derived from Eq. (4).
Accordingly, the ratio of cache-hit events out of all verifications can be denoted by the
value of hhl / , which should be stable no matter how the popularity rank of each content
changes. However, if cache-hit events are manipulated by the attackers, the ratio of
validations to cache-hit events grows abnormally and the observed content popularity
distribution is untruthfulness. If the ratio reaches a certain threshold, routers know that
they are under verification attack.
Obviously, the content popularity distribution function is not always constant, it more or

RE
TR
AC
TE
D

490 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

less skew by a small degree, in this case, a static threshold value is not work as a false
positive error arises in the detection of verification attack. However, consider that
verification attack changes the value of hhl / much more radically than the popularity
distribution function, thus, false negative errors will appear with a very low probability.
To avoid false positive errors, the threshold value, ε , is set as

)
)(
)(,1min(

hF
hF lθε = (8)

where θ is a constant larger than 1 and F is an exponentially-weighted moving average
function. The procedure of detection verification attack is illustrated in Algorithm 1.

Algorithm 2: Identification Stage
Input: r, k)(kr ≤
Output: 1 (Success) or 0 (False)
1 begin
2 typedef struct {int count; char* content;}
object
3 foreach i in r do
4 create object O
5 O.count=0
6 O.content=content
7 O is put into the CS
8 endfor
9 if cache-hit occurs then
10 O.count=O.count+1
11 r=lookup the PIT
12 i = index of r
13 if O.count==1 then
14 r[i]=r[i]+1
15 endif
16 endif
17 end

If the routers detect verification attack, they should disable the attack immediately. For
our scheme, verification attack is first discovered at the node that is directly connected to
the attacking router. After sensing the attack, the router switches to the identification
mode to judge the vulnerable fetches (since the normal data requests are issued from the
consumer side, we hereafter refer to these interests as fetches to distinguish them from
reports). In the identification stage, the target router (victim) records the number of
verified content to be forwarded per fetch. As mentioned earlier, to avoid redundant
verification, a symbol or flag can be used to mark verified content. Therefore, routers

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 491

compute the amount of content that has been marked. If a specific request for verified
content is forwarded excessive a given threshold, it is considered to be a vulnerable fetch.
The detailed process is outlined in Algorithm 2.
The router can simply block the vulnerable fetches if the attacking nodes are end-hosts. If
the attack is initiated from a captured router, blocking legitimate requests may cause
users served by other content sources that are detoured farther away. From this point of
view, unpopular yet legitimate content is filled up the CS, and verification attack has no
different from cache pollution attack. The difference is cache pollution attack only issues
a single request to ruin cache locality, while content poisoned attack must send out at
least two same requests to impose verification overhead. Hence, verification attack can be
effectively mitigated if the feasible solutions for cache pollution are used to the
compromised router after the identification stage.

5 Analysis and discussion
5.1 Access delay
It is worth noting that the proposed scheme only performs one-time verification on the
content upon cache hit in the CS, the subsequent accesses to the content do not need to
check any more. To estimate the delay of the first access and the benefit of one-time
verification, we use the access delay D and delay gain G to denote the retrieving time and
the amount of time saved during content request and report.
Let iω and iω′ be round-trip times of content i from a customer to the source and from
the customer to a router, respectively. There are two cases: 1) If the content is not stored
at the router, the average access delay, D, can be calculated by

∑∑
∀

∀ ==
i iM

i iM wip
d

dwjp
D)(

)((9)

Otherwise, 2) If the content is stored at the router, the average access latency, D′ , is

q

HiLi iM

GD

ipipwipD

−=

′+=′ ∑∀

))()()((ω (10)

where Gq is the delay gain, which is calculated by
))(()(iiHi Mq ipipG ωω ′−=∑∀
 (11)

Here,)(ii ωω ′− is a constant value, i.e. αω , then

αωψαω == ∑∀
)()(ipipG Hi Mq (12)

where)()(ipip Hi M∑∀
=ψ

If content is first hit and verified in the CS, the additional access delay, Vq, is given by

l
l

q h
d

dhV δδ
== (13)

where δ is the authentication delay. Clearly, δ≤lh , as 1)(<ipL for all i in Eq. (4).
According to the measurement results in Gasti et al. [Gasti, Tsudik, Uzun et al. (2013)], a

RE
TR
AC
TE
D

492 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

signature verification using 1024-bits RSA on 1500 byte piece of content by Intel dual
Core 2.6 GHz CPU takes about 80 μs. Since αωψδ <<lh , it has qq GV << . For a particular
user, the access delay is only increased by δ , while it is much less than ii ωω ′− and
usually on the order of millisecond, while δ is on the order of microsecond. Therefore,
the access delay is negligible under the proposed solution.

5.2 Asynchronous verification
A salient feature of the proposed scheme is that signature verification is decoupled with
the caching operation, which means that routers can check the cached content anytime as
long as they have extra computational capabilities. While the traditional NDN schemes
are synchronous with the content caching process, that is, once the content is decided to
cache on the router, it must be verified. Thus, our method can minimize the authentication
time and reduce the unnecessary computation resources of the routers.
In fact, the proposed scheme is also favors to popular content. Assume that the content is
managed in the form of queue in a router, for unverified content, the longer access
interval between two requests indicates the less popular of the content. In other words,
the access interval of popular content is much shorter than unpopular content. As a result,
popular content can be arranged on the top of the queue. Thus, the proposed scheme
improves the efficiency of verification.

6 Simulations
We evaluate the performance of the proposed scheme by using the ns-3 ndnSIM
simulator [Mastorakis, Afanasyev and Zhang (2017)]. In the simulation, 100000 pieces of
content are served by the server node, and their popularity follows the Zipf distribution
with the parameter value, z. We assume that 1000 clients request content at a rate of one
piece per second. The link bandwidth is set such that it is large enough to exclude the
congestion effect. The CS size is varied from 500 to 5000.
Unless otherwise declared, all schemes are implemented using the naive LRU cache.
Poisoned content at the server are simply generated with a given error probability. The
clients immediately re-request the content (by generating a new interest) when they
receive poisoned content. Simulation is performed for 24 h with each interval lasts for 10
min. We compare the proposed scheme with basic approach and Lossy caching [Bianchi,
Detti, Caponi et al. (2013)]. In basic scheme, all unverified content are check before
being inserted into the CS.

6.1 Verification cost
Fig. 1 investigates the impact of poisoned content on the performance of all methods,
where we set z=0.8 in the Zipf distribution and fix CS size with 500, we record the values
of verification overhead and λ by varying the percentage of poisoned content in the
network. The verification overhead is calculated by rv MM / , where rM is the number of
arriving requests. The caching probability (l) in Lossy Caching is set to 0.1.

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 493

As we can see, even with different amounts of poisoned content, the verification
overhead does not change in either the basic scheme or Lossy Caching (Fig. 1(a)). This is
caused by the fact that verification is performed regardless of the content’s state. The
largest overhead is shown in the basic scheme and the verification overhead in Lossy
Caching is determined by the caching probability. In the proposed scheme, however, the
verification overhead increases in proportion to the amount of poisoned content. This is
because more cache-hits occur in the CS due to re-request messages from clients that
received poison content. Here, we emphasize that despite the increased overhead, the
proposed scheme maintains a high level of λ , indicating that unnecessary verifications
are effectively minimized, as shown in Fig. 1(b).

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Poison contents (%)

 Basic
 Lossy Caching
 Ours

Ov
er

he
ad

 (M
V/,

M
r)

(a) Verification overhead

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

Poison contents (%)

 Basic
 Lossy Caching
 Ours

λ

(b) λ

Figure 1: Performance of poisoned content

RE
TR
AC
TE
D

494 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.1

0.2

0.3

0.4

0.5

Ov
er

he
ad

 (M
V/,

M
r)

Poison contents (%)

 Lossy z=0.2 l=0.1
 Lossy, z=0.2 l=0.9
 Lossy, z=0.8 l=0.1
 Lossy, z=0.8 l=0.9
 Our, z=0.2
 Our, z=0.8

(a) Verification overhead

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

λ

Poison contents (%)

 Lossy z=0.2 l=0.1
 Lossy, z=0.2 l=0.9
 Lossy, z=0.8 l=0.1
 Lossy, z=0.8 l=0.9
 Our, z=0.2
 Our, z=0.8

(b) λ

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.0

0.1

0.2

0.3

0.4

Poison contents (%)

 Lossy z=0.2 l=0.1
 Lossy, z=0.2 l=0.9
 Lossy, z=0.8 l=0.1
 Lossy, z=0.8 l=0.9
 Our, z=0.2
 Our, z=0.8Ca
ch

e h
it

ra
te

(c) Cache hit rate

Figure 2: Comparisons under dynamic content popularity
Fig. 2 compares the verification overhead, cache hit rate, and λ value with dynamic
content popularity under our scheme and Lossy Caching. We adjust the ranks of content

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 495

popularity every 5 min via a random number ς . For content i, the rank is ς+i in the next
5 min. If Mi >+ ς , modular arithmetic is used, i.e. Mi mod)(ς+ . In the figure, z=0.2/0.8
is the content popularity in Zipf distribution, and l=0.1/0.9 is caching probability in Lossy
Caching. As wee can see that the overhead of our scheme slightly grows as the increases
of poisoned content, while the overhead of Lossy Caching is dependent on the value of l,
which is similar to previous results in Fig. 1. However, our scheme has a larger value of
λ , indicating that we can detect more poisoned content than alternatives. Note that the
caching probability l is irrespective of the value of λ as content state does not rely on
probabilistic caching. For the cache hit rate, when we fix z, a larger l results in a lower hit
rate, and our scheme has a higher hit rate than Lossy Caching, this is because, with the
increasing deviation of content popularity, the advantage of probabilistic caching is
gradually disappeared.

6.2 Access delay
Fig. 3 investigates the average access delay of the users under poisoned content by
different schemes. As we can see that the access delay of all methods, expect for the basic
scheme, are grow in proportion to the ratio of poisoned content, and our scheme incurs
lowest delay for the user, which can reduce at least 30% and 50% of latency compared to
the basic method and Lossy Caching, respectively. The reason for the basic scheme is
straight, as all the cached content should be verified before transmitting to the next hop
regardless of the content’s state on the routers. For Lossy Caching, the conclusion is
similar to the previous simulations, the verification time is depends on the value of l,
while the access time in the proposed scheme increases slightly with the amount of
poisoned content.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
100

200

300

400

500

600

Av
er

ag
e a

cc
es

s d
ela

y
(m

s)

Poison contents (%)

 Basic, z=0.2 Basic, z=0.8
 Lossy z=0.2 l=0.1 Lossy, z=0.2 l=0.9
 Lossy, z=0.8 l=0.1 Lossy, z=0.8 l=0.9
 Our, z=0.2 Our, z=0.8

Figure 3: Average access delay under poisoned content

6.3 Impact of system parameters
Fig. 4 plots the values of hhl / every 20 min with different sizes of the CS. As can be
observed that without verification attack, the values of hhl / is about 0.6 (Fig. 4(a)) and
0.2 (Fig. 4(b)). It is noted that the values in Fig. 4(b) are smaller than those in Fig. 4(a)

RE
TR
AC
TE
D

496 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

because popular content is more frequently accessed when z=1.0. After 6 h, the value of
hhl / becomes distinctively larger for a period of 360 min. As previously explained, the

traffic that is manipulated by the attacker changes the original popularity distribution of
the content; this is successfully sensed by the value of hhl / . If the value of hhl /
increases above the threshold, as presented in Eq. (8) where the value of θ is set as 1.5,
the routers move into the identification stage to find the vulnerable fetches.

0 360 720 1080 1440
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

 500
 2500
 5000

h l /
h

(a) z=0.7

0 360 720 1080 1440
0.0

0.2

0.4

0.6

0.8

1.0

Time (minutes)

 500
 2500
 5000

h l /
h

(b) z=1.0

Figure 4: The ratio of verification under pollution attack
Fig. 5 shows how much serving content is delivered via each request every 20 min.
Before verification attack, an average of 8~12 pieces and 10~15 pieces of content are
forwarded per request, when z=0.7 and z=1.0, respectively. After the attack is launched,
however, 120 pieces and 150 pieces of content are served via vulnerable fetches, while
the other requests still forward a similar amount of serving content. Therefore, the
attacker is effectively blocked when the vulnerable fetches are disabled. It is noted that
operations in the identifying stage are triggered after verification attack is sensed in order
to minimize the overhead.

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 497

180 360 540 720
0

50

100

150

200

No
.o

f s
er

vi
ng

 co
nt

en
ts

Time (minutes)

 attack (z=0.7)
 normal (z=0.7)
 attack (z=1.0)
 normal (z=1.0)

Figure 5: Identifying of malicious requests

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.0

0.1

0.2

0.3

0.4

0.5

Ca
ch

e h
it

ra
te

Percentage of protected segment

 z=0.7
 z=1.0

(a) Cache hit rate

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Percentage of protected segment

 z=0.7
 z=1.0

λ

(b) λ
Figure 6: Impact of SLRU on the proposed scheme

RE
TR
AC
TE
D

498 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.483-499, 2018

Fig. 6 examines the effect of SLRU in three schemes. We set the proportion of poisoned
content to 0.1. The overall size of the CS is fixed as 5000, and the proportion of the
protected segment in the CS is varied from 0 to 0.9. As we can see, with the size of the
protected segment increases, the time during which content stay in the unprotected
segment before eviction becomes shorter. As a result, the cache hit rate decreases.
However, the verification efficiency, λ , grows in proportion to the size of the protected
segment, indicating that verified content is re-used more frequently.

7 Conclusions
This paper addresses the problem of content pollution attack in NDN and proposes a
light-weigh solution to mitigate it. We propose the concept of selective verification on the
cached content, and avoid meaningless verification for by-passing content and by
favoring already verified content, which saves a large amount of computational resources.
Performance results show that malicious effects from poisoned content in the CS are
perfectly prevented. In the future, we will investigate the application of verification attack
in a real system. In future works, we will explore the implementation of the proposed
scheme in coupling with the interest/data forwarding system.

Acknowledgement: This work was supported by the Natural Science Foundation of
Fujian Province (Grant number: 2018J01544); the Key Project of Natural Foundation for
Young in Colleges of Fujian Province (Grant number: JZ160466); the Scientific Research
Program of Outstanding Young Talents in Universities of Fujian Province; the Scientific
Research Project from Minjiang University (Grant numbers: MYK16001 and MYK17025),
and Fujian provincial leading project (Grant number: 2017H0029).

References
Baugher, M.; Davie, B.; Narayanan, A.; Oran, D. (2012): Self-verifying names for
read-only named data. IEEE International Conference on Computer Communication
Workshops, pp. 121-126.
Bianchi, G.; Detti, A.; Caponi, A.; Blefari-Melazzi, N. (2013): Check before storing:
what is the performance price of content integrity verification in LRU caching? ACM
Sigcomm Computer Communication Review, vol. 43, no. 3, pp. 59-67.
Chiocchetti, R.; Perino, D.; Carofiglio, G.; Rossi, D.; Rossini, G. (2013): Inform: A
dynamic interest forwarding mechanism for information centric networking. ACM
Sigcomm Workshop on Information Centric Networking, pp. 9-14.
Compagno, A.; Conti, M.; Ghali, C.; Tsudik, G. (2015): To nack or not to nack?
Negative acknowledgments in information-centric networking. IEEE International
Conference on Computer Communication and Networks, pp. 1-10.
Dibenedetto, S.; Papadopoulos, C. (2016): Mitigating poisoned content with forwarding
strategy. IEEE International Conference on Named-Oriented Mobility, pp. 701-706.
Gasti, P.; Tsudik, G.; Uzun, E.; Zhang, L. (2013): Dos and ddos in named data
networking. ACM Sigcomm Computer Communication Review, vol. 44, no. 3, pp. 66-73.

RE
TR
AC
TE
D

Mitigating Content Caching Attack in NDN 499

Ghali, C.; Tsudik, G.; Uzun, E. (2014a): Network-layer trust in named-data networking.
ACM Sigcomm Computer Communication Review, vol. 44, no.5, pp. 12-19.
Ghali, C.; Tsudik, G.; Uzun, E. (2014b): Needle in a haystack: mitigating content
poisoning in named-data networking. NDSS Workshop on Security of Emerging
Networking Technologies, vol. 34, no. 1, pp. 68-73.
Hamdane, B.; Boussada, R.; Elhdhili, M. E.; Fatmi, S. (2017): Hierarchical identity based
cryptography for security and trust in named data networking. IEEE International Conference
on Enabling Technologies: Infrastructure for Collaborative Enterprises, pp. 226-231.
Karedla, R.; Love, J. S.; Wherry, B. G. (1994): Caching strategies to improve disk
system performance. Computer, vol. 27, no. 3, pp. 38-46.
Kim, D.; Nam, S.; Bi, J.; Yeom, I. (2015): Efficient content verification in named data
networking. ACM International Conference on Information-Centric Networking, pp. 109-116.
Kurihara, J.; Uzun, E.; Wood, C. (2015): An encryption based access control framework
for content-centric networking. IFIP Networking Conference, pp. 1-9.
Mastorakis, S.; Afanasyev, A.; Zhang, L. (2017): On the evolution of ndnSIM: An open-
source simulator for NDN experimentation. ACM Sigcomm Computer Communication
Review, vol. 47, no. 3, pp. 19-33.
Song, T.; Yuan, H.; Crowley, P.; Zhang, B. (2015): Scalable name-based packet
forwarding: From millions to billions. ACM Conference on Information-Centric
Networking, pp. 19-28.
VN Index (2016): Cisco visual networking index: Forecast and methodology, 2015-2020.
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking
index-vni/complete-white-paper-c11-481360.html.
Xie, M.; Widjaja, I.; Wang, H. (2012): Enhancing cache robustness for content-centric
networking. IEEE International Conference on Computer Communications, pp. 2426-2434.
Yu, Y. (2015): Public key management in named data networking. Technical Report,
NDN-0029. University of California, Los Angeles, CA, USA.
Yuan, H.; Crowley, P.; Song, T. (2017): Enhancing scalable name-based forwarding.
ACM/IEEE Symposium on Architectures for Networking & Communications Systems, pp.
60-69.
Zhang, L.; Claffy, K.; Crowley, P.; Papadopoulos, C.; Wang, L. et al. (2014): Named
data networking. ACM Sigcomm Computer Communication Review, vol. 44, no. 3, pp.
66-73. RE

TR
AC
TE
D

	Mitigating Content Caching Attack in NDN
	Zhiqiang Ruan0F , *, Haibo Luo1, Wenzhong Lin1 and Jie Wang2

	References

