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Abstract: Content caching is a core component in Named Data Networking (NDN), 
where content is cached in routers and served for future requests. However, the adversary 
can launch verification attack by placing poisoned data into the network with a legitimate 
name and allow the routers in the delivery path to frequently identify the content. Since 
NDN employs digital signature on each piece of content, verifying all content will 
exhaust routers’ computational resources due to the massive data in the network. In this 
paper, we propose a selective verification scheme upon the contents that are hit in the 
content store and allow the contents that are not actually served to be unverified. We also 
consider the redundant verification of popular content and incorporated in our design to 
lessen the re-accessing overhead. Analysis and performance results show that the 
proposed scheme can greatly mitigate the risk of content verification attacks and save the 
computational resources of relay nodes. 
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1 Introduction 
Named Data Networking (NDN) is a network architecture for the future Internet, and can 
cooperate with the Internet of Things (IoT) to handle problems existing in the current 
TCP/IP network architecture [Zhang, Claffy, Crowley et al. (2014)]. In particular, content 
in NDN has hierarchical name, the request/interest packet is routed by the name and can 
be served either by the intermediate nodes or content source that have a copy of the 
content. The whole communication procedure is driven by the consumer and supported 
by a Content Store (CS), a Pending Interest Table (PIT), and a Forwarding Information 
Base (FIB) structure in nodes (i.e. NDN routers).  
Since routers in NDN hold copies of the content that they relay, popular content can be 
distributed over the network and users can easily access to the content via content name. 
According to Cisco visual networking index in 2016 [VN Index (2016)], the global traffic 
will increase about threefold in the next five years, reaching 194 EB per month by 2020. 
Under such circumstances, in network caching and accessing based on named data can 
provide efficient content retrieval and enable NDN successfully minimize the amount of 
traffic over the link [Yuan, Crowley and Song (2017); Song, Yuan, Crowley et al. (2015)]. 
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Despite these great benefits, NDN has potential problem in terms of security. Specifically, 
in-network caching regards each node as a possible content provider, malicious users can 
inject poisoned content into the network by any legitimate name. Once the polluted content 
is saved on the CS of a node, it is possible to spread to the entire system. As a result, caches 
are polluted by bad data. To solve this problem, NDN appends a digital signature on the 
content and can be verified either by end-hosts or any routers. Users may reject the content 
because of signature mismatch, while the network is nearly unaware of the problem due to 
the computational burden of content verification. Thus, subsequent requests may continue 
to be answered by bogus content and constitute a denial of service (DoS) attack [Gasti, 
Tsudik, Uzun et al. (2013)]. Furthermore, routers cannot afford to verify all content, due to 
hundreds of Gbps content in the network and verifying of them will introduce huge 
overhead [Xie, Widjaja and Wang (2012)].  
In this paper, we present a light-weight solution to detect verification attack at routers and 
identify the vulnerable request. The proposed solution exploits the relationship between 
the number of cache-hit events and the amount of serving content. If verification attack 
happens, network nodes may monitor more serving content than usual as much more 
unverified content is being accessed by the adversaries’ requests. Thus, if the number of 
serving content increases above a certain threshold, the routers judge that they are under 
verification attack and start the attack alarms. Vulnerable requests are identified simply 
by counting the number of forwarded pieces of serving content per node. Our simulation 
study verifies that the proposed scheme can effectively detect verification attack and the 
malicious requests. 
The contributions of this paper are summarized as follows. 
1) Firstly, we propose the concept of selective verification at routers for stored/forwarded 
content and efficiently mitigate the risk of content poisoning attacks; the proposed 
scheme can work with most of the existing security mechanisms and align with the basic 
architecture of NDN. 
2) Secondly, we present a simple mechanism for monitoring the amount of serving 
content and the cache-hit ratio, which helps to detect the verification attack and block the 
routers serving for the vulnerable fetches that directly connected to them. Furthermore, 
we treat the path to poisoned content as a bad forwarding choice and guide the selection 
of a better forwarding path using NDN’s forwarding strategy. 
3) Finally, we design an efficient algorithm for content poisoning attack and demonstrate 
that the proposed algorithm can mitigate such attack without degrading the QoS (i.e. 
latency). According to the simulation results, the verification overhead can be reduced 
over 30% and the verification efficiency can be improved by up to 50% under the cache 
replacement policy. 
The reminder of this paper is arranged as follows. Section 2 surveys the state of the art in 
mitigation mechanisms on poisoned content. Section 3 gives the problem formulation. 
Section 4 illustrates the design detail of the proposed scheme followed by the analysis in 
Section 5. Section 6 shows the performance evaluation and Section 7 concludes the paper. 
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2 Related work 
Recently, content poisoning mitigation mechanisms have become an active research topic. 
Dibenedetto and Papadopoulos [Dibenedetto and Papadopoulos (2016)] used the 
exclusion filter in interest packet to determine content that cannot satisfy the interest. 
However, there are several drawbacks remain to be solved. First, each consumer has to 
request/exclude separately to identify the desired data, as exclusion knowledge is limited 
to each consumer. Second, attackers can produce bogus data to an un-scalable exclude 
filter. Third, since exclusion is unable to declare any finer granularity, it cannot help 
consumers to retrieve data by a less name prefix. 
Another poisoning mitigation approach is for interests to declare the content’s expected 
publisher. NDN packet specification supports a KeyLocator field and the NDN name or 
digest (i.e. location) of its publisher’s certificate is included in interest packet [Compagno, 
Conti, Ghali et al. (2015)]. Since a certificate is a sort of label that carries a set of keys, it 
could be requested in the same way when other content is retrieved. The legitimacy of the 
signer can be determined by encoding the identity of a key into a certificate name. Yu 
[Yu (2015)] constructed a hierarchical trust model, where a chain of keys or authorities 
form a hierarchy that is rooted at trust anchors, which are trusted by all verifiers. 
Hamdane et al. [Hamdane, Boussada, Elhdhili et al. (2017)] introduced hierarchical 
identity based cryptography for security and trust in named data networking. Research 
shows that developed a verifiable diversity ranking search method over encrypted 
outsourced data. However, neither of them is effective because an attacker can simply use 
the correct key information in malicious packets. 
Kim et al. [Kim, Uzun and Wood (2015)] advocated authenticating data packets until 
they are served from a node’s CS. However, the underlying forwarding problem is not 
addressed and would result in the poisoned content being re-requested. Ghali et al. [Ghali, 
Tsudik and Uzun (2014a, 2014b)] suggested that all interests specify the publisher via 
key digest and include the associated public key to each data packet. Later, routers verify 
each data packet with the attached key and ensure the key matches what is specified by 
the requesting Interest. However, since each router has to verify all data packet on the fly, 
which limits the application in reality. 
Some researchers represent the content by a unique hash digest, and specify interests with 
digests that connected to the requested content by their exact names, such that the content 
poisoning attacks can be restricted in a small range. Gasti et al. [Gasti, Tsudik, Uzun et al. 
(2013)] linked every content to its predecessor by placing its digest in the predecessor’s 
payload, which significantly reduced the verification overhead. However, it incurs other 
problems of trust management and overcoming inter-packet dependency. Research shows 
that an abnormal content feature sequence prediction approach for DDoS attacks in future 
generation internet, but it has the same problem of detecting all content sources. 
On the contrary, Baugher et al. [Baugher, Davie, Narayanan et al. (2012)] and Kurihara et 
al. [Kurihara, Uzun and Wood (2015)] classified content into multiple catalogs and 
attempt to improve the verification efficiency in the whole process of content publication 
and retrieval. They define collections for content by their name and digest, and the 
publishers are set to sign a limited number of manifests rather than individual content. 
Consequently, the users can retrieve desired data with exactly name, avoiding content 
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poisoning attack as well as perform fewer signature verifications. Unfortunately, this 
approach is exclusively probabilistic and unable to adapt to bad content.  
Ghali et al. [Ghali, Tsudik and Uzun (2014a, 2014b)] proposed the concept of self-
certifying name and design a method that exploits users’ feedback to eject polluted 
content. However, it is risky because valid content are also excluded from the CS upon 
the fabricated feedback. Bianchi et al. [Bianchi, Detti, Caponi et al. (2013)] presented 
Lossy Caching strategy, where content is verified and cached based on a certain 
probability. Routers minimize verification overhead by lowering the probability, while 
the probability also influences the cache hit ratio and the freshness of network nodes. 
When the probability is low, verification and caching are favor to more popular content, 
while caching is probably fill with outdated content. Thus, it is difficult to find the optimal 
probability value. Moreover, Lossy Caching is strongly coupled with probabilistic caching, 
and it is prohibit from using this scheme to different types of cache replacement policies.  

3 Problem statement 
In verification attacks, forged data packet is placed in the CS of routers. To match with the 
interest, the faked content has a valid name, but its signature or payload is fabricated. When 
requests for the content pass by the target router, they are served by polluted content in the 
CS rather than forwarded to the content source, when the poisoned content relayed back to 
the user, it locates in the CS of all involved routers. As a result, the CS is filled with useless 
content. What is more, subsequent requests for desired content cannot success in a single 
attempt before cross over the attacked router. After recognizing the disproof of the received 
content, a user resubmits the request with the hash value of the polluted content in the 
exclude field, which incurs extra delays and verifying overhead at routers. 
The implement of content poisoning attack is manifold. A typical example is that the 
attackers use two end-hosts, one is the client node that issues an interest and the other is 
the server node which provides the poisoned content. When the client requests content, a 
unique interest is generated and forwarded to the valid content source by the routers. 
From then on, the server injects the poisoned content into the network at arbitrary or 
illogical step. It is not mandatory for routers to check the arriving request; however, the 
adversary may only attempt to consume the PIT entry by inserting poisoned content into 
the CS and delivered back to the user. Even if the valid content reaches to the router 
afterward, it is immediately discarded as no pending interest is matched in the PIT.  
Another case for content poisoning attack is the routers may copy interests and assign 
them via several requests to search the nearest duplicate of the content [Chiocchetti, 
Perino, Carofiglio et al. (2013)]. In this case, interests can be transmitted via randomly 
selected requests before arriving at the attacker’s server. So, poisoned content leakages 
into the network and pollutes the CS of middle routers. The first guard to these types of 
attacks may be secure routing. As for more in-depth measures, one need to provide 
effective and security mechanisms that take the benefit of in-network caching of NDN 
into account. 
Note that content poisoning is substantially different from cache poisoning; in particular, 
content poisoning is still exist no matter whether there were in-network caches, as the 
adversary can still serve bad data. While cache pollution aims to deplete local cache 
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space, the attackers can intentionally request the unpopular content and fill them into the 
cache. As a result, popular content is ejected from the cache and the benefit of in-network 
caching is discounted. Since cache pollution attack use valid content, there is no need to 
check the legality of the content itself. 

4 The proposed scheme 
We carry out the concept of examine on cache-hit, that is, all content arriving at the 
router are placed in the CS without signature verification. Only when a cache-hit appears 
in the CS, then the serving content is authenticated before flowing into the network. 
Compared to complete verification scheme (referred to as basic scheme), our approach 
saves a large amount of computational resources for by-passing content, and it nicely 
avoids the malicious effects of poisoned content. In other words, poisoned content in the 
CS is either simply removed from the CS without any negative impacts or authenticated 
before affecting the network. Hence, there is make no sense to intervene the CS by 
multiple pending interests for poisoned content spread out over the network, because data 
packet that has multiple pending interests are considered as serving content and is check 
before being forwarded. Nevertheless, this approach would increase the access delay of 
popular data. One alternative is to allow the poisoned content be spread over the network, 
although this enables the poisoned content endanger the network caches, it still can be 
detected immediately and wiped off by new requests from users. 
In general, popular content is frequently accessed in the CS. To avoid repeated 
authentication on the following cache-hits, a label or flag is set in the CS to indicate that 
the content is already passed the verification, and this flag stays in the CS with the 
content. It is possible that the remaining cache space at router is not enough to hold 
popular content, in this case, popular content may be ejected from the CS, while this 
content is re-inserted into the CS in the next data retrieval, the content has to be check 
repeatedly when a cache-hit occurs after each insertion. This shortcoming is also 
mentioned in the original NDN security architecture. To solve this problem, we employ 
the technique of Segmented Least Recently Used (SLRU) [Karedla, Love and Wherry 
(1994)] to the CS. 
SLRU divides the cache into a protected section and an unprotected section, each 
segment applies LRU policy individually. If a component on the unprotected section is 
visited, it is moved to the protected section and can stay longer than those objects in the 
unprotected section. Given preference to repeatedly access content, SLRU can greatly 
improve the cache-hit ratio. If we apply SLRU in our algorithm, verified content is 
migrated to the protected section and cannot be excluded by going through content. Even 
if the content moves out of the protected section, according to LRU cache replacement 
strategy, it is first arranged into the unprotected section and then removed from the cache. 
Therefore, authenticated content always has a higher chance of being re-visited, which 
significantly reduces the overhead of repeated verifying popular content. 
We use the metric λ  to analyze the efficiency of our scheme, and it is defined as 

vk MM /=λ                                                                                                           (1) 
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where kM  is the number of verification carried out for poisoned content, vM  is the 
number of verification implemented for all content, and k is the ratio of requests for 
poisons content out of all requests. kM  is equal to tdk∆ . Since we only perform 
validation for unauthenticated serving content, if the hit rate for unverified content in the 
CS is lh , then in the time interval t∆ , vM  can be denoted as tkhtdk l ∆−+∆ )1( , where d is 
the arriving rate of request. Note that a cache-hit happens upon poisoned content is 
reported by the re-request or the popular content is re-visited. Hence, the value of λ  in 
this work, lλ , is 

)1()1( khk
k

kdhdk
dk

ll
l −+

=
−+

=λ                                                                             (2) 

To calculate lh , we assume that the popularity of total content (M pieces) follows the 
Zipf-Mandelbrot distribution: 
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, lh  is the probability that the content in the CS that has missed 

cache-hit prepares a cache-hit for the next request. Therefore, lh  is written by 
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i
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where )(ipH  and )(ipL   are the probabilities of a cache-hit and cache-miss for the content 
i, respectively. )(ipH  can be further written by 

Sip
H

Mkip )(1)( −−=                                                                                                   (5) 
where S is the capacity size of CS and it can be calculated by 

)1( )(∑
∀

−=
i

tipMkS                                                                                                   (6) 

If SLRU is used for our scheme, given the new arrival request, lh  is corresponds to the 
conditional probability that content is moved from the unprotected section to the 
protected section in the CS. In short, lh  is equal to the hit rate in the unprotected section. 
Suppose the ratio of the protected section in the CS is β , then contents with the rank i 
( Sβ≤ ) are arranged in the steady state from the protected section. Thus, 

lh  is calculated 
by Eq. (5) and Eq. (6) under the normalized distribution of content popularity for SM β−  
pieces and a CS with a size of S)1( β− . 
In order to solve verification attack, the first step is to estimate whether the routers are 
under verification attack or not. One of the most prominent feature of verification attack 
is a large number of unverified data packet is maliciously fill into the CS to produce 
cache-hit events. In view of this, verification attack might be detected by utilizing the 
correlation between the number of cache-hit events and the amount of verifications that 
have been performed. 
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Given the distribution function of the content popularity, the number of cache-hit events 
can be represented by hdt, where t is the monitoring interval and d is the request arriving 
rate. h is the cache-hit rate of all content, which is calculated by 

∑
∀

=
i

HM ipiph )()(                                                                                                   (7) 

Algorithm 1: Detection of Pollution Attack 
Input: Number of requests r, number of cache-hits h; 
      number of verifications v, time interval t∆ , threshold 
ε  
Output: 1 (Success) or 0 (False) 
1 begin 
2   repeat 
3      r=r+1 
4      if cache-hit occurs then 
5          h=h+1; 
6          if first cache-hit for unverified content then 
7          v=v+1; 
8          endif 
9      endif 
10         calculate 

h
v  

11     if ε<
h
v  then 

12         update ε  by (8) 
13     else 
14         go to the identification stage 
15     endif 
16     reset r, h, v 
17  until 0=∆t  
18 end 

The anticipative number of validations is Hdlt, where lh  is derived from Eq. (4). 
Accordingly, the ratio of cache-hit events out of all verifications can be denoted by the 
value of hhl / , which should be stable no matter how the popularity rank of each content 
changes. However, if cache-hit events are manipulated by the attackers, the ratio of 
validations to cache-hit events grows abnormally and the observed content popularity 
distribution is untruthfulness. If the ratio reaches a certain threshold, routers know that 
they are under verification attack. 
Obviously, the content popularity distribution function is not always constant, it more or 
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less skew by a small degree, in this case, a static threshold value is not work as a false 
positive error arises in the detection of verification attack. However, consider that 
verification attack changes the value of hhl /  much more radically than the popularity 
distribution function, thus, false negative errors will appear with a very low probability. 
To avoid false positive errors, the threshold value, ε , is set as 

)
)(
)(,1min(

hF
hF lθε =                                                                                      (8) 

where θ  is a constant larger than 1 and F is an exponentially-weighted moving average 
function. The procedure of detection verification attack is illustrated in Algorithm 1. 

Algorithm 2: Identification Stage 
Input: r, k )( kr ≤  
Output: 1 (Success) or 0 (False) 
1 begin 
2   typedef struct {int count; char* content;} 
object 
3   foreach i in r do 
4       create object O 
5       O.count=0 
6       O.content=content 
7       O is put into the CS 
8   endfor 
9   if cache-hit occurs then 
10      O.count=O.count+1 
11      r=lookup the PIT 
12      i = index of r 
13       if O.count==1 then 
14            r[i]=r[i]+1 
15       endif 
16  endif 
17 end 

If the routers detect verification attack, they should disable the attack immediately. For 
our scheme, verification attack is first discovered at the node that is directly connected to 
the attacking router. After sensing the attack, the router switches to the identification 
mode to judge the vulnerable fetches (since the normal data requests are issued from the 
consumer side, we hereafter refer to these interests as fetches to distinguish them from 
reports). In the identification stage, the target router (victim) records the number of 
verified content to be forwarded per fetch. As mentioned earlier, to avoid redundant 
verification, a symbol or flag can be used to mark verified content. Therefore, routers 
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compute the amount of content that has been marked. If a specific request for verified 
content is forwarded excessive a given threshold, it is considered to be a vulnerable fetch. 
The detailed process is outlined in Algorithm 2. 
The router can simply block the vulnerable fetches if the attacking nodes are end-hosts. If 
the attack is initiated from a captured router, blocking legitimate requests may cause 
users served by other content sources that are detoured farther away. From this point of 
view, unpopular yet legitimate content is filled up the CS, and verification attack has no 
different from cache pollution attack. The difference is cache pollution attack only issues 
a single request to ruin cache locality, while content poisoned attack must send out at 
least two same requests to impose verification overhead. Hence, verification attack can be 
effectively mitigated if the feasible solutions for cache pollution are used to the 
compromised router after the identification stage. 

5 Analysis and discussion 
5.1 Access delay 
It is worth noting that the proposed scheme only performs one-time verification on the 
content upon cache hit in the CS, the subsequent accesses to the content do not need to 
check any more. To estimate the delay of the first access and the benefit of one-time 
verification, we use the access delay D and delay gain G to denote the retrieving time and 
the amount of time saved during content request and report. 
Let iω  and iω′  be round-trip times of content i from a customer to the source and from 
the customer to a router, respectively. There are two cases: 1) If the content is not stored 
at the router, the average access delay, D, can be calculated by 

∑∑
∀

∀ ==
i iM

i iM wip
d

dwjp
D )(

)(                                                                           (9) 

Otherwise, 2) If the content is stored at the router, the average access latency, D′ , is 

q

HiLi iM

GD

ipipwipD

−=

′+=′ ∑∀

     

))()()(( ω                                                                            (10) 

where Gq is the delay gain, which is calculated by 
))(()( iiHi Mq ipipG ωω ′−=∑∀
                                                                                  (11) 

Here, )( ii ωω ′−  is a constant value, i.e. αω , then 

αωψαω == ∑∀
)()( ipipG Hi Mq                                                                              (12) 

where  )()( ipip Hi M∑∀
=ψ  

If content is first hit and verified in the CS, the additional access delay, Vq, is given by 

l
l

q h
d

dhV δδ
==                                                                                                                (13) 

where δ  is the authentication delay. Clearly, δ≤lh , as 1)( <ipL  for all i in Eq. (4). 
According to the measurement results in Gasti et al. [Gasti, Tsudik, Uzun et al. (2013)], a 
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signature verification using 1024-bits RSA on 1500 byte piece of content by Intel dual 
Core 2.6 GHz CPU takes about 80 μs. Since αωψδ <<lh , it has qq GV << . For a particular 
user, the access delay is only increased by δ , while it is much less than ii ωω ′−  and 
usually on the order of millisecond, while δ  is on the order of microsecond. Therefore, 
the access delay is negligible under the proposed solution. 

5.2 Asynchronous verification 
A salient feature of the proposed scheme is that signature verification is decoupled with 
the caching operation, which means that routers can check the cached content anytime as 
long as they have extra computational capabilities. While the traditional NDN schemes 
are synchronous with the content caching process, that is, once the content is decided to 
cache on the router, it must be verified. Thus, our method can minimize the authentication 
time and reduce the unnecessary computation resources of the routers. 
In fact, the proposed scheme is also favors to popular content. Assume that the content is 
managed in the form of queue in a router, for unverified content, the longer access 
interval between two requests indicates the less popular of the content. In other words, 
the access interval of popular content is much shorter than unpopular content. As a result, 
popular content can be arranged on the top of the queue. Thus, the proposed scheme 
improves the efficiency of verification. 

6 Simulations 
We evaluate the performance of the proposed scheme by using the ns-3 ndnSIM 
simulator [Mastorakis, Afanasyev and Zhang (2017)]. In the simulation, 100000 pieces of 
content are served by the server node, and their popularity follows the Zipf distribution 
with the parameter value, z. We assume that 1000 clients request content at a rate of one 
piece per second. The link bandwidth is set such that it is large enough to exclude the 
congestion effect. The CS size is varied from 500 to 5000.  
Unless otherwise declared, all schemes are implemented using the naive LRU cache. 
Poisoned content at the server are simply generated with a given error probability. The 
clients immediately re-request the content (by generating a new interest) when they 
receive poisoned content. Simulation is performed for 24 h with each interval lasts for 10 
min. We compare the proposed scheme with basic approach and Lossy caching [Bianchi, 
Detti, Caponi et al. (2013)]. In basic scheme, all unverified content are check before 
being inserted into the CS. 

6.1 Verification cost 
Fig. 1 investigates the impact of poisoned content on the performance of all methods, 
where we set z=0.8 in the Zipf distribution and fix CS size with 500, we record the values 
of verification overhead and λ  by varying the percentage of poisoned content in the 
network. The verification overhead is calculated by rv MM / , where rM  is the number of 
arriving requests. The caching probability (l) in Lossy Caching is set to 0.1.  
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As we can see, even with different amounts of poisoned content, the verification 
overhead does not change in either the basic scheme or Lossy Caching (Fig. 1(a)). This is 
caused by the fact that verification is performed regardless of the content’s state. The 
largest overhead is shown in the basic scheme and the verification overhead in Lossy 
Caching is determined by the caching probability. In the proposed scheme, however, the 
verification overhead increases in proportion to the amount of poisoned content. This is 
because more cache-hits occur in the CS due to re-request messages from clients that 
received poison content. Here, we emphasize that despite the increased overhead, the 
proposed scheme maintains a high level of λ , indicating that unnecessary verifications 
are effectively minimized, as shown in Fig. 1(b). 
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Figure 1: Performance of poisoned content 
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(c) Cache hit rate 

Figure 2: Comparisons under dynamic content popularity 
Fig. 2 compares the verification overhead, cache hit rate, and λ  value with dynamic 
content popularity under our scheme and Lossy Caching. We adjust the ranks of content 
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popularity every 5 min via a random number ς . For content i, the rank is ς+i  in the next 
5 min. If Mi >+ ς , modular arithmetic is used, i.e. Mi mod)( ς+ . In the figure, z=0.2/0.8 
is the content popularity in Zipf distribution, and l=0.1/0.9 is caching probability in Lossy 
Caching. As wee can see that the overhead of our scheme slightly grows as the increases 
of poisoned content, while the overhead of Lossy Caching is dependent on the value of l, 
which is similar to previous results in Fig. 1. However, our scheme has a larger value of 
λ , indicating that we can detect more poisoned content than alternatives. Note that the 
caching probability l is irrespective of the value of λ  as content state does not rely on 
probabilistic caching. For the cache hit rate, when we fix z, a larger l results in a lower hit 
rate, and our scheme has a higher hit rate than Lossy Caching, this is because, with the 
increasing deviation of content popularity, the advantage of probabilistic caching is 
gradually disappeared. 

6.2 Access delay 
Fig. 3 investigates the average access delay of the users under poisoned content by 
different schemes. As we can see that the access delay of all methods, expect for the basic 
scheme, are grow in proportion to the ratio of poisoned content, and our scheme incurs 
lowest delay for the user, which can reduce at least 30% and 50% of latency compared to 
the basic method and Lossy Caching, respectively. The reason for the basic scheme is 
straight, as all the cached content should be verified before transmitting to the next hop 
regardless of the content’s state on the routers. For Lossy Caching, the conclusion is 
similar to the previous simulations, the verification time is depends on the value of l, 
while the access time in the proposed scheme increases slightly with the amount of 
poisoned content. 
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Figure 3: Average access delay under poisoned content 

6.3 Impact of system parameters 
Fig. 4 plots the values of hhl /  every 20 min with different sizes of the CS. As can be 
observed that without verification attack, the values of hhl /  is about 0.6 (Fig. 4(a)) and 
0.2 (Fig. 4(b)). It is noted that the values in Fig. 4(b) are smaller than those in Fig. 4(a) 
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because popular content is more frequently accessed when z=1.0. After 6 h, the value of 
hhl /  becomes distinctively larger for a period of 360 min. As previously explained, the 

traffic that is manipulated by the attacker changes the original popularity distribution of 
the content; this is successfully sensed by the value of hhl / . If the value of hhl /  
increases above the threshold, as presented in Eq. (8) where the value of θ  is set as 1.5, 
the routers move into the identification stage to find the vulnerable fetches. 
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(b) z=1.0 

Figure 4: The ratio of verification under pollution attack 
Fig. 5 shows how much serving content is delivered via each request every 20 min. 
Before verification attack, an average of 8~12 pieces and 10~15 pieces of content are 
forwarded per request, when z=0.7 and z=1.0, respectively. After the attack is launched, 
however, 120 pieces and 150 pieces of content are served via vulnerable fetches, while 
the other requests still forward a similar amount of serving content. Therefore, the 
attacker is effectively blocked when the vulnerable fetches are disabled. It is noted that 
operations in the identifying stage are triggered after verification attack is sensed in order 
to minimize the overhead. 
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Figure 5: Identifying of malicious requests 
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Figure 6: Impact of SLRU on the proposed scheme  
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Fig. 6 examines the effect of SLRU in three schemes. We set the proportion of poisoned 
content to 0.1. The overall size of the CS is fixed as 5000, and the proportion of the 
protected segment in the CS is varied from 0 to 0.9. As we can see, with the size of the 
protected segment increases, the time during which content stay in the unprotected 
segment before eviction becomes shorter. As a result, the cache hit rate decreases. 
However, the verification efficiency, λ , grows in proportion to the size of the protected 
segment, indicating that verified content is re-used more frequently. 

7 Conclusions 
This paper addresses the problem of content pollution attack in NDN and proposes a 
light-weigh solution to mitigate it. We propose the concept of selective verification on the 
cached content, and avoid meaningless verification for by-passing content and by 
favoring already verified content, which saves a large amount of computational resources. 
Performance results show that malicious effects from poisoned content in the CS are 
perfectly prevented. In the future, we will investigate the application of verification attack 
in a real system. In future works, we will explore the implementation of the proposed 
scheme in coupling with the interest/data forwarding system. 
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