
Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

CMC. doi:10.3970/cmc.2018.03692 www.techscience.com/cmc

Provably Secure APK Redevelopment Authorization Scheme in
the Standard Model

Daofeng Li 1, 3, *, Mingxing Luo 2, Bowen Zhao1, 3 and Xiangdong Che 4

Abstract: The secure issues of APK are very important in Android applications. In order
to solve potential secure problems and copyrights issues in redevelopment of APK files,
in this paper we propose a new APK redevelopment mechanism (APK-SAN). By
exploring sanitizable signature technology, APK-SAN allows the original developer to
authorize specified modifier who can redevelop the designated source code of APK files.
Our scheme does not require interactions between the developer and modifiers. It can
reduce the communication overhead and computational overhead for developers.
Especially, the signature of redeveloped APK files is valid and maintains the copyrights.
The proposed APK-SAN signature can effectively protect the security of the redeveloped
APK files and copyrights of the developer and modifier.

Keywords: Sanitizable signature, APK signature mechanism, redevelopment, ID-based
signature scheme.

1 Introduction
Due to the popularity and open source characteristics of Android system, various Android
applications require to be redeveloped in different institutions, regional, and groups, such
as alipay, health monitoring, weather forecast [Qin (2016); Enck, Damien and McDaniel
(2011); Chen, Ying, Jiao et al. (2014); Qu, Keeney, Robitzsch et al. (2016)]. In these
applications, one company Bob can require one developer Alice to redevelop his APP for
special requirements. Alice authorizes Bob to redevelop specified part of APK files (one
of Android files) [Park and Choi (2015); Jeon, Micinski and Vaughan (2012); Neidhardt
(2011); Kim, Yoon, Yi et al. (2012); Karim, Kagdi and Penta (2016)]. In procedure of
redeveloping, Bob should finish tasks accord to the authorization. If Alice’s authorization
is not satisfied, the unspecified files of Bob are over-privileges [Toorani and Beheshti
(2008); Silva, Amcrim and Ribeiro (2015); Pearce, Nunez and Wagner (2012); Choi,
Sung, Choi et al. (2015); Barrera, Kayacik, van Oorschot et al. (2010); Blasing, Batyuk,

1 School of Computer, Electrical and information, Guang Xi University, Nanning, 530004, China.
2 Information Security and National Computing Grid Laboratory, Southwest Jiaotong University, Chengdu,

610031, China.
3 Guangxi Colleges and Universities Key Laboratory of Multimedia Communications and Information

Processing, Guangxi University, Nanning, 530004, China.
4 School of Information Security & Applied Computing, College of Technology, Eastern Michigan University,

Michigan, 48197, USA.
* Corresponding Author: Daofeng Li. Email: ldf_0123@163.com.

mailto:ldf_0123@163.com

448 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

Schmidt et al. (2010); Felt, Wang, Moshchuk et al. (2011); Egele, Brumley, Fratantonio
et al. (2013)]. This problem is very important and relates to copyrights protection.
The over-privilege is a serious problem in various mobile applications. It can be caused
by malicious code embedding or data manipulating. It is an unavoidable problem derived
from interactions in applications. In order to protect the legitimacy, copyrights and
permission of Android APKs, there are various mechanisms deployed in Android system,
such as signature [Toorani and Beheshti (2008); Egele, Brumley, Fratantonio et al. (2013);
Shao (2014); Ma, Li and Deng (2016)], sandbox [Blasing, Batyuk, Schmidt et al. (2010)]
and permission management [Karim, Kagdi and Penta (2016); Barrera, Kayacik, van
Oorschot et al. (2010); Felt, Wang, Moshchuk et al. (2011)]. Signature is required by the
APK developer to protect the integrity of APK before publishing APK application in
APP store. Specifically, the developer uses the self-signed digital certificate for the
compilation of packaging APK. The signature ensures the integrity, authenticity, non-
repudiation of APK, and the uniqueness of APK providers, further to protect the
developer’s copyrights. Sandbox requires that all applications have to run on the Dalvik
virtual machine. Sandbox and POSIX realize automatic management of Android
applications that can ensure secure operations of APK. Copyrights management mainly
protects commercial applications and Android system.
Authorization permissions of Android applications are divided into four levels: normal,
dangerous, signature, and signature or system. These permissions are defined and
declared in Android manifest file by the developer. However, it is coarse-grained and
cannot protect users’ sensitive information for some Android applications [Silva, Amcrim
and Ribeiro (2015); Choi, Sung, Choi et al. (2015)]. AdDroid is proposed [Pearce, Nunez
and Wagner (2012)]. It is an Android advertising privilege separation mechanism, and
used to protect the users’ privacy information. Meanwhile, a practical and efficient
permission certification technique is explored [Dimitriadis, Efraimidis and Katos (2016)]
by using the runtime information and static analysis to solve the problems of
unauthorized APK.
In order to prevent embedded malicious code and copyrights issues, the third party needs
to be authorized for modifying APK file. In this paper, we focus on licensing source
codes for modifying. We propose a provably secure APK authorization scheme that is
named as APK-SAN authorization mechanism in a standard model [Ateniese, Chou,
DeMedeiros et al. (2005); Brzuska, Fischlin, Freudenreich et al. (2009)]. Our
authorization has unique attribute, i.e. identity-based sanitizable signature. It allows APK
developer to authorize the third party (the modifier) who can redevelop and modify APK
licensing area or position. Moreover, the signature of new APK is still valid. The new
mechanism is useful for protecting the copyrights of the modified APK, and can prevent
from flooding malicious APK files. It does not require interacting with each other after
authorizing the third party. This feature provides a fine-grained authorization. To sum up,
APK-SAN authorization mechanism has the following improvements:

(1) Fine-grained authorization. When the third party applies for redeveloping a native
APK, the developer authorizes he/she to modify files and position. The developer
takes use of the identity-based sanitizable signature. If the third party complies with
the permission license and redevelops the designated file or position, and the

Provably Secure APK Redevelopment Authorization Scheme 449

modified APK is legal and valid. Otherwise, the signature verification of the
modified APK can detect an unauthorized redevelopment.

(2) Provable security. APK-SAN authorization mechanism mainly adopts the identity-
based sanitizable signature to implement the access authorization. In this paper, we
prove our scheme under a standard model.

The rest of the paper is organized as follows. In Section 2, we provide an overview of the
An-droid signature mechanism, identity-based sanitizable signature scheme, and secure
model. We present a protection mechanism using the identity-based sanitizable signature
scheme and over-privileged applications in Section 3. In Section 4, we evaluate the
security and performance of the proposed scheme while we conclude the paper in the last
section.

2 Preliminaries
2.1 Android native signature mechanism
Unsigned APK usually makes up of res folder, lib folder, resources, files (rousouces.arsc,
classes.dex and AndroidManifest.XML), as shown in Fig. 1.

Figure 1: Unsigned APK file format

When the third party redevelops APK, these files (folders) need to be modified. The
developer of the original APK has to specify which files can be modified when he
authorizes the redeveloper. The resources of each file (folders) are as follows:

(1) res folder: Deposits resource files, such as pictures, layout files, etc.;
(2) lib folder: Deposits.so dynamic link library, and .so dynamic link library are ex-

ecutable files, which are generated by the native code of JNI layer compiling and
linking and performed by the Linux kernel. If there are no native codes in the
source codes, no lib folder is included in APK;

(3) resources.arsc file. Compiled binary resource file;
(4) classes.dex file. Dalvik executable file, performed by Dalvik virtual machine. An-

droid compiler compiles the project source codes;
(5) .class files. DX tool converts all .class files to executable classes.dex file;

AndroidManifest.xml file: Global configuration file.
Android system specifies that all published APK files have to be signed by developers
prior to install. By signing the compiled and packaged APK files, one can ensure the
integrity of APK, authenticity and non-repudiation, while the rights and interests of
developers.

450 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

APK signature is as follows:
(1) Generate MANIFEST.MF file. Traverse all files in APK file. Use SHA-1 hash

algorithm to generate hash value of files, and encode each hash value with Base64
encoding. All of them are saved in MANIFEST.MF file.

(2) Generate CERT.SF file. Compute MANIFEST.MF file and its content hash value
with SHA-1 hash algorithm. Encode each hash value with Base64 encoding, and
then store them in CERT.SF file.

(3) Generate CERT.RSA file. Sign CERT.SF file and its contents with RSA signature
algorithm and the developer’s private key. Create a CERT.RSA file including
signature and self-signed public key certificate of the developer.

(4) Package all generated signature files. Package all files of MANIFEST.MF, CERT.SF
and CERT.RSA in “/META-INF” directory.

2.2 Identity-based sanitizable signature scheme
In sanitizable signature scheme, the signer allows the specified modifier to modify the
designated part without interacting with each other, where the modified signature is still
valid. In this paper, we propose a new scheme consisting of the signer, sanitizer and verifier
using the identity-based sanitizable signature scheme (IBSSS for short). New scheme is
implemented as follows:

Let user’s identity be ID = (ID1, ID2,…, IDn) ∈{0,1}λ and signature message be M =
(M1, M2, … , Mn) ∈{0, 1}λ. Signer executes the following operations:

(1) Setup system parameters. Given a security parameter k, private key generator
(PKG) generates system parameters params and master key msk. params is pub-
lished while msk is kept confidentially.

(2) Create user keys. Given a user and its identity ID, PKG calculates user’s private
key dID with master key msk. dID is sent to a user via a secure channel.

(3) Sign. System parameters params, signer’s identity ID, message M and signer’s
private key dID are input parameters of signature algorithm. Signer outputs signa-
ture σ and secret information ψ.

(4) Sanitize. System parameters params, Sanitizer’s identity ID′ , secret information ψ
and signature σ of message M are input parameters of sanitizable algorithm. The
sanitizer outputs a new signature σ ′ of message M ′ .

(5) Verify. System parameters params, signer’s identity IDi, messages/signatures
(,)i iM ′ ′σ and (,)i iM σ are input parameters of the verification algorithm. If the
verification is valid, outputs "True". Otherwise, outputs "False".

2.3 Secure model
Diffie-Hellman Problem Let G1 be an additive group of order q, and G2 be a multiplicative
groups, g be a generator of G2. The map e: G1× G1→G2, possess the following properties:

(1) Bilinearity. For ∀a, b ∈ Zq, P, Q ∈ G1, and e(P a, Qb) = e(P, Q)ab;
(2) Nondegeneracy. There exists P, Q ∈ G1, makes e(P, Q)≠1;

Provably Secure APK Redevelopment Authorization Scheme 451

(3) Computability. There exists an efficient algorithm to compute e(P, Q) for P, Q∈
G1.

Definition 1. Computational Diffie-Hellman (CDH) Problem. G1 is a finite additive group.
Given g, ga, gb∈G1, for unknown *, qa b Z∈ compute gab.

Definition 2. The (ε, t)-CDH assumption. If there is no t-time adversary who has at least ε
success probability of solving CDH problem for group G1, then the assumption of CDH
problem is correct.
Obviously, if (ε, t)-CDH hypothesis is true, CDH problem is a mathematical puzzle
[Brzuska, Fischlin, Freudenreich et al. (2009); Waters (2005)].
Combining with the secure model of sanitizable signature and secure mechanisms provided
by APK-SAN authorization mechanism, we present two secure models with the
unforgeable and immutable attributes.
Unforgeability: Signature generated by the signer and sanitizer cannot be forged in
scheme.
Immutability: Sanitizer can only modify the designated part of files by the signer.
For the unforgeability and immutability, the interactive processes of challenger C and
attacker A are as follows:

(1) Setup system parameters.
(2) Request private key. Attacker A specifies an identity ID for APK developer.

Challenger C executes the key generation algorithm to generate identity ID for
APK developer or private key dID for modifier, and sends dID to A;

(3) Request sign. Attacker A specifies an identity for the APK developer or modifier,
signatures messages M and signer’s private key dID. Challenger C executes the
extraction key and signature algorithms to generate a signature σ of (ID, M), and
sends σ to A;

(4) Forage and modify signature. Attacker A can successfully modify specifications
of an APK developer with the identity ID or signature of the modifier if the
following conditions are satisfied: (a) Attacker A does not specifies an APK
developer with the identity ID′or request to extract the modifier’s private key: (b)
Attacker A does not request sign for developed APK (Unforgeability); (c) Attacker
A can sign unspecified part of APK (allow to modify), and signature ′σ is still
valid (Immutability).

If an attacker A successfully forges or modifies an APK signature, it is an instance solving
CDH problem.

3 IBSSS based APK authorization mechanism
In order to facilitate the normal operation mechanism, we assume that the developer of a
native APK file can authorize modifier to modify APK file if there is a modifier apply to
redevelop. Meanwhile, in this paper, “redevelopment” is synonymous with “modification”,
and the user represents modifier. The fine-grained authorization in APK-SAN is defined as
follows:

452 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

Definition 3. Fine-grained authorization means that the developer of a native APK file
has permissions to authorize the redevelopment or modify the designated APK file.

Figure 2: The process of the redevelopment authorization request of APK file. There are
five steps to complete a redevelopment. (1) The original developer publishes an APP in
APP store. (2) A special user downloads APP and experiences servers. (3) The user or
modifier applies a redevelopment of APP for some special goals. (4) The developer
authorizes and specifies modifiable files or source codes of APP. (5) Modifier publishes the
modified APP
In this section, combing with the identity-based sanitizable signature, we propose a
finegrained APK redevelopment authorization mechanism (APK-SAN). APK
redevelopment process is shown in Fig. 2. Specific steps are as follows:

(1) Publish applications. The developer publishes signed APK file in APP store;
(2) Users experience. The users download APK from APP market. According to

special requirements, users can request to redevelop APK during the process of
experiencing. For example, they find some bugs which may affect users’
experience. So, it should be repaired. In another case, users need to add some
business functions in the original APK to complete the customization;

(3) Request authorization. The user sends the redevelopment request of the native
APK authorization;

(4) Authorization. The developer authorizes and specifies the user who can modify
which files. In this step, we use the identity-based sanitizable signature to complete
the authorization. Section 3.2 contributes specific implementation of this
component;

(5) Publish modified applications. The user validates the developer’s authorization
legitimacy and effectiveness. Section 3.3 explains the detailed implementation of
this component. And then, according to the modifying authorization, user modifies
the native APK file, and signs the modified APK file. Finally, user republishes it in
APP store. The contents of the specific implementation are detailed in Section 3.4.

The operations of Steps (4) and (5) are used to complete the APK-SAN authorization
mechanism that consists of four parts: key generation, APK redevelopment authorization,
redevelopment process, and modified validation.

Provably Secure APK Redevelopment Authorization Scheme 453

3.1 Key generation
Setup system parameters. Given a security parameter k, PKG chooses two cyclic
groups G1 and G2 of prime order q, a generator g and an admissible bilinear pairing e:
G1× G1→G2 , PKG chooses a random integer *

qZα∈ , computes g1=gα, and selects g2

∈G1. Furthermore, he chooses ,u m′ ′∈G1 and two vectors u = (u1,…,un), v=(v1,…, vn)
of length n, whose entries are random elements in G1. The system parameters are
params=(G1, G2, e, q, g, g1, g2, ,u m′ ′ , u, v), and the master key is 2gα .
User’s private key. Each developer use identity information IDi=Hash(Comi|| IDEi||
ti) as its public key. Here, Comi is a formal data representation of company’s name;
IDEi is unique identification number of the developer; ti is valid time of the
developer’s public key. IDi is sent to PKG. PKG randomly picks rIDi and computes
private key dIDi as follows:

(1) (2)

2
1

(,)

(() ,)

i i i

j
ID IDi i i

ID ID ID

n
r rID

j
j

d d d

 g u u gα

=

=

′= ∏
 (1)

where i = 1, 2,..., n.

3.2 APK file generation and publishing
Before publishing APK, the authorization is that the developer specifies modifiable files
(folders) and source codes.

(1) Setup APK file. After completing Android development, the developer packages
Java files, resources XML file, Class files, and Dex file into APK file. And then,
he/she computes hash values of res folder, lib folder, resources.arsc file,
classes.dex file and An- droidManifest.xml file in APK, and encodes them with
based64 encoding, which generates Manifest.MF and CERT.SF files as follows:

Manifest.MF file
H1=Base64(Hash(ddes||res||IDdes))
H2=Base64(Hash(ddes||lib||IDdes))
H3=Base64(Hash(ddes||resource.arsc||IDdes))
H4=Base64(Hash(ddes||classes.dex||IDdes))
H5=Base64(Hash(ddes||Ardroidmanisfest.xml||IDdes))

CERT.SF file
h1=Base64(Hash(ddes||H1||IDdes))
h2=Base64(Hash(ddes||H2||IDdes))
h3=Base64(Hash(ddes||H3||IDdes))
h4=Base64(Hash(ddes||H4||IDdes))
h5=Base64(Hash(ddes||H5||IDdes))

454 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

j

(2) Sign APK file. The developer randomly (uniform probability) picks
*,

des desID ID qr r Z′ ∈ , and signs APK file using Eq. (2), which generates CERT.SAN file:
5

(1)
1

1
5 5

2
1 1

()

() ()

IDi des

des

i
ID IDdes des i des

rh
ID i

i

r rID h
i i

i i

σ d v v

 g u u v v

′

=

′α

= =

′=

′ ′=

∏

∏ ∏
 (2)

(2)
2 ,IDdes

des

r
IDσ d g= = (3)

3
IDdesrσ g ′= (4)

(3) The developer packages Manifest.MF, CERT.SF and CERT.SAN files into
APKSAN.SIG files that are stored in “/META-INF” directory, and publishes in
APK file.

3.3 Redevelopment authorization
After publishing APK, if the developer receives the requirement of redevelopment from a
user, he completes authorization operations as follows:

(1) The developer specifies modifiable files (folders) and programmable source codes.
We assume that a modifiable folders’ set { },i ih h h′ ′ ′= includes the corresponding
hash codes, and { }, {1,2,...,5}ih h i K′ ⊂ ∈ = .

(2) Let { | }, { | }i i i iK i K h h K i K h h′ ′ ′′ ′= ∈ = = ∈ ≠ be an index set of the modifiable
folders. K ′′ is an index set of the unmodifiable folders. The developer
completes the authorization as follows:

1 1
autσ σ , = (5)

5

2 2 () ,IDi desrhaut
i

i?

σ σ v v ′′′

′

′= ∏ (6)

5

3 3 () ,IDi desrhaut
i

i?

σ σ v v ′

′′

′= ∏ (7)

where 64((|| ||))rev i desh Base Hash ID h d′′ = for i K ′∈ . 2

autσ is the authorization of a given
modifier with the identity IDrev for an index i K ′∈ . 3

autσ is the immutable folder.
(3) The developer sends the authorized APK file, corresponding source codes and

authorization information h′ , and 1 2 3(, ,)aut aut aut autσ σ σ σ= to the modifier.

3.4 Redevelopment process
In the process of redevelopment, the modifier firstly verifies the authorization legitimacy
and effectiveness. And then, he/she modifies files according to the authorization
information, and finally signs the modified APK file. After receiving the authorized APK
file and the corresponding source codes from the developer, the modifier retrieves secret
authorization information and signature information (,)r

jv σ from APK AUTH.Sig in APK

Provably Secure APK Redevelopment Authorization Scheme 455

file “/META-INF” directory as follows:
(1) Verifying the effectiveness of the signature σ. If the signature is efficient, the

modifier executes the Step (2). Otherwise, terminates the protocol.
(2) Combing with the authorization information h′ , the modifier modifies the

modifiable files and the corresponding source codes to generate a new APK file,
and reintegrates a new APK file according to the format of Fig. 1 into n shares as

1 2 5{ , ,..., }rev rev revh h h , where
rev
i ih h ,i K ,′′= ∈ (8)

64((|| ||)),rev rev
i rev i revh Base Hash d H ID i K ′= ∈ (9)

Here, 64((|| () ||))rev
i rev revH Base Hash d file i ID= and file(i) is the modified i-th

file (folder).
(3) After completing the redevelopment, using Eq. (4) the modifier randomly chooses

*,
des desID ID qr r Z′ ∈ and calculates the signature of the modified files as:

1 2 3(, ,)σ σ σ σ= (10)

where iσ are defined as 1 1 () ()
i rev

IDrev rev i IDrevrID h raut
i ii K i K

σ σ u u v v ′
′ ′∈ ∈

′ ′= ∏ ∏ , and 2 2
IDrevrautσ σ g ′=

and IDrevraut
3 3σ σ g= .

(4) Generating the signature file APKSAN.SIG and storing in the corresponding
“/META- INF” directory. The modifier saves the signature (,)σ σ into the file, and
repackages them to generate a new APK file.

4 Security analysis of APK-SAN
4.1 Validation
The verifier verifies the legitimacy of the signature (,)σ σ and σaut. In this section, we only
show the verification of 1σ and 2

autσ as follows:
5 5

1 2
1 1

5 5

2 2 2
1 1

5

2 2
1

e(,) e(() () ,)

e(,)e(, () e(,())

e(,)e(,)e(

i des
IDdes des i IDdes

i des
IDdes des i IDdes

i
IDdes des IDdes

rID h r
i i

i i

rID h r
i i

i i

r ID r
i

i

σ g g u u v v g

 g g g g u u g v v

 g g g u u g

′α

= =

′α α

= =

′α

=

′ ′=

′ ′=

′=

∏ ∏

∏ ∏

∏
5

1
5 5

1 2 2 3
1 1

,)

e(,)e(,)e(,)

des
i

i des
des i

h
i

i

ID h
i i

i i

v v

 g g σ u u σ v v

=

= =

′

′ ′=

∏

∏ ∏ ，

456 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

2

2

2 3

e(,) e(() ,)

e(,)e(,)

e(,)e(,)

IDi des

IDdes i

i

rhaut
2 i

i K

r h
i

i K

h
i

i K

σ g σ v v g

 σ g g v v

 σ g σ v v

′′′

′′∈

′ ′′

′′∈

′′

′′∈

′=

′=

′=

∏

∏

∏ ，

1 1

1

1

e(,) e(() () ,)

e(() () ,)

e(,)e(,)e(,

i rev
ID IDrev rev i rev

i rev
ID IDrev rev i rev

i rev
ID IDrev rev rev i

r rID haut
i i

i K i K

r rID h
i i

i K i K

r rID h
i i

i K i K

σ g σ u u v v g

 σ u u v v g

 σ g g u u g v v

′

′ ′∈ ∈

′

′ ′∈ ∈

′

′ ′∈ ∈

′ ′=

′ ′=

′ ′=

∏ ∏

∏ ∏

∏

1 2 3

)

e(,)e(,)e(,)
i rev
rev iID h

i i
i K i K

 σ g σ u u σ v v
′ ′∈ ∈

′ ′=

∏

∏ ∏

Similarly, one can verify 2 3and aut autσ,σ , σ σ . Therefore, all the signatures are valid. So, the
authorization is legitimacy. Meanwhile, the sanitizer can only modify the designated part
and position of an APK file.

4.2 Security analysis of the proposed scheme
Definition 4. An adversary A has attack ability (, , ,)e st q q ε : In APK-SAN scheme, if A
makes qe private key extraction queries and qs signature queries, the adversary with a non-
negligible advantage ε can successfully forge the original APK signature or the modifier’s
signature with time t.
Definition 5. If APK-SAN authorization can resist the attack in Definition 4, it is secure
for (, , ,)e st q q ε .

Theorem 1. If the assumption ()ε t′ ′, -CDH is true, APK-SAN authorization is secure for
(, , ,)e st q q ε .
Proof. Assume that there is an adversary A who is able to successfully attack APK-SAN
authorization. It means that A can successfully forge the authorization σ of APK-SAN au-
thorization. Namely, A makes qe private key extraction queries and qs signature queries,
according to APK-SAN, it can successfully forge validly sanitizable signature with a non-
negligible advantage ε and time t. Under these assumptions, given a group G1 and its
generator g, there is an algorithm (Algorithm 1) with advantage ε′ , which can solve an
instance of CDH problem with time t′ . It means that after receiving ga and gb, A with
Algorithm 1 can compute gab, where ()()216 1)(q q q nε =1/ +′ + and t′=t+O(5qe+(2n +4)qs)

1Gt . The length of APK file is n bits. It costs time t to execute the exponent arithmetic
of the group G1.
When the attacker A can successfully attack APK-SAN authorization and forge an au-
thorization (a signature), Algorithm 1 can solve a specific CDH problem instance
which involves five steps of attack scenario as follows:

Provably Secure APK Redevelopment Authorization Scheme 457

Algorithm 1

S1 Assigns system parameters. Denote ru and rm as two integers satisfying 0
<ru<q, 0<rm<q. Denote su and sm as integers satisfying 0<su<n, 0<sm<n,
ru(n+1)<q, and rm(n+1)<q. Let ru=2(qe+qs), rm=2qs, 1 2{ , ,..., }

u

n
n rx x x x Z′ ′ ′ ′= ∈ ,

1 2{ , ,..., }
u

n
n ry y y y Z′ ′ ′ ′= ∈ , 1 2{ , ,..., }

u

n
n rz z z z Z′ ′ ′ ′= ∈ , and 1 2{ , ,..., }

u

n
n rw w w w Z′ ′ ′ ′= ∈ . The

identities of the developers are represented as * * *
1 2* { , ,..., }nID ID ID ID= . APK

file is constructed according to the developer with its identity *ID . Its
encoding is represented as * * *

1 2* { , ,..., }nh h h h= . System parameters 1 2{ , , , ,u,v}g g u v′ ′
are constructed as follows:

1 ,ag g = (11)

2 ,bg g= (12)

2 ,u ur s x zu g g ′ ′− +′ = (13)

2 ,m mr s y wv g g′ ′− +′ = (14)

2 ,i ix z
iu g g 1 i n = ≤ ≤ (15)

2 ,i iy w
iv g g 1 i n = ≤ ≤ (16)

where * * * *
1 1 1

(*) , () , (*) ,n n n
i i u u i i i i m mi i i

F ID x x ID r s J ID z z ID K h y + y h -r s
= = =

′ ′ ′= + − = + =∑ ∑ ∑

and *
1

(*) n
i ii

L h w w h
=

′= +∑ which satisfy * (*) (*)
21

i
n ID F ID J ID

ii
u u g g

=
′ =∏ and * (*) (*)

21
i

n h K h L h
ii

v v g g
=

′ =∏ .
And then send them to the adversary A.
S2 Private key extraction query. When the adversary A submits a query that the

developer /modifier with the identity *ID extracts the private key, Algorithm 1
does the followings:
– If F (*ID) = 0 mod ru, outputs "failure";
– If (*) 0mod uF ID r≠), randomly chooses an integer *

*ID qr Z∈ , and calculates the
private key * *

(1) (2),
ID ID

d d as
*

*
(1) - (*)/ (*) (*) (*)

1 2() IDrJ ID F ID F ID J ID
ID

d g g g= (17)

*

*
(2) -1/ (*)

1
IDrF ID

ID
d g g= (18)

And then, sends the private key *IDd of the developer with its identity *ID to the
adversary A.

458 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

S3 APK file Authorization (Signature) query. When the adversary A submits a request
that the developer/modifier with its identity *ID signs an APK file, Algorithm 1 acts as
follows:

– If (*) 0mod uF ID = r , calls the private key extraction query to construct the
private key of the developer/modify with the identity *ID , and then signs the
APK file with the constructed private key;

– If (*) 0mod uF ID r≠ and (*) 0mod mK h r≠ , chooses *, qr r Z′ ′′∈ , and calculates
the signature σ = (σ1, σ2, σ3) as:

*
1* - (*)/ (*)

1 1
1 1

() () ,
n n

hID r L h K h r
i i

i i

σ u u g v v ′ ′′

= =

′ ′= ∏ ∏ (19)

2 ,rσ g ′= (20)
-1/ (*)

3 1 ,K ID r σ g g ′′= (21)

-If (*) 0mod uF ID = r and (*) 0mod mK h = r , outputs “failure”.
S4 Authorization (Signature) forgery of the APK file. If Algorithm 1 does not

terminate in solving process, the adversary A successfully outputs a signature
1 2 2{ , , }′ ′ ′ ′σ = σ σ σ of APK file (its coding is 1 2{ , ,..., }nh h h h′ ′ ′ ′=) signed by the

developer/modify with the identity *ID , which can successfully forge an
effective authorization (signature) of the APK file.

S5 Algorithm 1 solves an instance of CDH problem. If (*) 0modF ID q≠ and
() 0modK h q′ ≠ , Algorithm B terminates. Otherwise, if (*) 0modF ID = q and
() 0modK h = q′ , a solution of an instance of CDH problem solved by Algorithm 1

is given by

1
() ()

2 3() ()
ab

J ID J h
σg

σ σ′ ′

′
=

′ ′

 (22)

Note that the constructed private keys
* *

(1) (2),
ID ID

d d in Eq. (5) are valid because
*

*

*

*

*

(1) - (*)/ (*) (*) (*)
1 2

(*) (*) / (*) (*) (*)
2 2 2

/ (*)(*) (*)
2 2

*
2

1

()

() ()

()

()

ID

ID

ID

ID

rJ ID F ID F ID J ID
ID

ra F ID J ID a F ID F ID J ID

r a F IDa F ID J ID

n
ra ID

i
i

d g g g

 g g g g g

 g g g

 g u u

−

−

=

=

=

=

′= ∏
 (23)

and

Provably Secure APK Redevelopment Authorization Scheme 459

*

*

*

*

*

() - / (*)
1

- / (*)
1

- / (*)
1

1

ID

ID

ID

ID

r2 1 F ID
ID

ra F ID

r a F ID

r

d g g

 g g

 g

 g

=

=

=

=

 (24)

To complete the proof, we need the following lemma:
Lemma 1. In order to ensure that there is at least ε′ success probability to solve an
instance of CDH problem, Algorithm B needs to satisfy the following three facts at the
same time:

E1 When the adversary A requests the private key extraction, Algorithm 1 does not
terminates, namely, (*) 0mod uF ID r≠ ;

E2 The adversary A can generate authorization (signature) of the APK file generated
by the developer/modifier with the identity ID′ , which requires (*) 0mod mK h r≠ ;

E3 If the adversary A successfully forges the authorization (signature) of an APK file,
which requires that they meet at the same time () 0modF ID = q′ and () 0modK h = q′ ,
where 1 ≤ i ≤ n;

Proof of Lemma 1. Let Ui be the event of (*) 0mod uF ID r≠ , U* be the event of
(*) 0modF ID = q , and Vj be the event of (*) 0modF ID q≠ and () 0modK h = q′ . The success

probability of Algorithm 1 is given by

1 1

1 1

Pr[] Pr[* *]

Pr[*]Pr[*]

e s s

e s s

q q q
succ i i j j

q q q
i i j j

B U U V V

 U U V V

+
= =

+
= =

≥ ∩ ∧ ∩ ∧

≥ ∩ ∧ ∩ ∧
 (25)

1 1Pr[]Pr[*]Pr[]Pr[*]e s sq q q
i i j jU U V V +
= =≥ ∩ ∩

 (26)
where Eqs. (25) and (26) are obtained from the independence of , *, , *]i jU U V V . Here,
Pr[]U* and 1Pr[]e sq q

i iU+
=∩ are calculated as follows:

Pr[] Pr[() 0mod () 0mod]
Pr[() 0mod]Pr[() 0 mod | () 0 mod]
1 1

1

u

u u

u

U* = F ID q F ID r
 = F ID r F ID q F ID r

 =
r n

′ ′= ∧ =
′ ′ ′= = =

×
+

 (27)

Since
Pr[] 1 Pr[]

1

e s e sq q q q
i=1 i i=1 i

e s

U = - U
q q

n

+ +∩ ∪ ¬
+

≥ −

 So, we have

460 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

1Pr[] (1)
(1)

1
4()(1)

e sq q e s
i=1 i

u

e s

q q
U U*

r n n

q q n

+ +
∩ ∧ ≥ × −

+

≥
+ +

 (28)

1Pr[]
(1)

e sq q
i=1 i

s

V V*
4q n

+∩ ∧ ≥
+

 (29)

2

1Pr[]
()(1)succ

s s e

B
16q q q n

≥
+ +

 (30)

Hence, ε′ is given 2/ (16 ()(1))s e sε =ε q q q n′ + + .
In the redevelopment and modification of APK, modifier can only modify the designated
deposition or files of APK, as well as signs the modified APK files with the sanitizable
signature. He cannot modify the unauthorized deposition or files of APK. Specifically, if
adversary A can modify the unauthorized deposition or files of APK, namely those files
encoded with base64, they have to meet time { | }i iK i K h h′′ ′= ∈ ≠ , and generate a
sanitizable signature. It means that the propose APK-SAN authorization mechanism is not
unforgettable secure. So, we obtain that:
Theorem 2. Assume there is a polynomial bounded adversary A that is able to break the
immutability of APK-SAN authorization with an advantage ε′ with time t , and eq′ private
key extraction queries and sq′ signature queries. Then there exists an Algorithm 2 that can
generate a valid signature with time t′′ and advantage ε′′ .
Proof. The immutability of the authorized deposition of APK file means that: If
advantage A deliberately or illegally modifies those files encoded with base64 and
meets time { | }i iK i K h h′′ ′= ∈ ≠ according to the signature verification we can discover
the illegal modifications, and notice modified APK file is invalid. If adversary A is able
to break the immutability of the authorized deposition of APK file, it means that
Algorithm 2 is able to generate a valid signature. Algorithm 2 is defined as follows:
Algorithm 2
S1 Setup. Algorithm 2 interacts with the challenger C as follows:

– Algorithm 2 submits a request to the challenger C, and C returns system
parameters (G1, G2, e, q, g, g1, g2, ,u v′ ′ , u, v);

– For i K ′∈ , Algorithm 2 chooses *
i qt Z∈ , and lets it

iu g= be a system
parameter;

– For i K ′∈ , Algorithm 2 chooses *
i qs Z∈ , and lets is

iv g= be a system
parameter.

S2 Private key extraction query. When A issues a private key of the modifier with the
identity extraction query, Algorithm 2 acts as follows:

– Issues a private key query of the modifier with the identity ID’, and gets the
private key

1 1

(1) (2)(,)
i iID IDd d
− −

Provably Secure APK Redevelopment Authorization Scheme 461

– Let
1 1 1

(1) (1) ()() i ii K

i i i

ID t2
ID ID IDd =d d ′∈

− − −

∏ and
1 1

(2) (2)
i iID IDd =d
− −

, and sends
1 1

(1) (2)(,)
i iID IDd d
− −

to the
adversary A.

S3 Authorization (Signature) query. For the APK developed by the developer with
the identity *ID , when the adversary A issues a redevelopment query encoded
with 1 2{ , ,..., }nh h h h′ ′ ′ ′= , Algorithm 2 acts as follows:

– Calculates
–

* , ,i ih h i K ′ ′′= ∈ (31)
* *64((* || | *)), ,i i h Base Hash d H ID i K ′= ∈ (32)

 and represents as * * *
1 2{ , ,..., }.nh h h h′ =

– Issues the redevelopment of APK and gets 1 2 3, , ;σ σ σ

– Lets
* ** * *

1 1 2 3 2 2 3 3, , ;i i i iID t h s
i K i K

σ =σ σ σ σ σ σ σ
′′ ′′∈ ∈

= =∏ ∏

– Sends ** * *
1 2{ , , } { , }i ih s

3 3σ σ σ σ i K ′′∪ ∈ to adversary A.
S4 Modification and Forgery. Assume that A is able to output a valid modification of

the developer with the identity ID̂ and APK file encoded as ĥ = {ĥ1, ĥ2,… , ĥ
n}.

Namely, the adversary A generates a new APK file and its signature {σ̂1, σ̂2, σ̂3}.

– A sends the modified signature {σ̂1, σ̂2, σ̂3} of APK file encoded as ĥ = {ĥ1,
ĥ2,… , ĥn } to Algorithm 2;

– Algorithm 2 constructs APK file developed by the developer with the identity
ID , and encoded as 1 2{ , ,..., }.nh h h h= Namely he sets {IDi} and {hi}, where

ˆ ,i ih h i K ′= ∈ . Then outputs ,ih i K ′∈ . Algorithm 2 constructs as follows

 *
1

ˆˆ ˆ ˆ
1 2

ˆ
,

ˆ
*

i i i i
1 ID t h s

3i K i K

σσ =
σ σ σ

′′ ′′∈ ∈∏ ∏
 (33)

2ˆ ,2σ =σ (34)

ˆ3 3σ =σ , (35)

It is to verify that 1 2 3{ }σ ,σ ,σ is APK file encoded as ˆ ,i ih h i K ′′= ∈ , the signature signed
by *

iAS with the identity ID. According to definition 1, Algorithm 2 is able to solve
an instance of CDH problem.
Obviously, the premise that Algorithm 2 successfully forges a signature of the APK file is
that A is able to alter the immutability of the APK-SAN authorization. Therefore,
Algorithm 2 has the success probability ε ε′′ ≥ .
Meanwhile, the time t′′ of Algorithm 2 is summation of A’s running time t and the time
which is used to respond to eq′′ private key extraction queries and sq′′ signature queries.
Each private key extraction query requires Algorithm 2 to perform n exponentiation

462 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

operations in G1. Each signature query requires Algorithm 2 to perform 2n
exponentiation operations in G1. We assume that the exponentiation operation in G1
takes time te, Hence, the total time is (2)e s et t nq nq t′′ ′ ′= + + .

5 Performances of the proposed scheme
In this section, we discuss the efficiency and security of the proposed scheme. For the
cost of computation and storage, we only consider the following items: Signature
overhead, verification overhead and increased size of the signature. For the computation
complexity and memory space, we consider the computation costs of cryptographic
operations involved in signature and verification schemes. For the space, we measure the
memory cost, focus on the storage cost of key including the sizes of public key and
private key.

5.1 The costs of computation and storage
Consider the scenario: After the developer accomplishes APK, a modifier applies for mod-
ifying the APK. The developer authorizes the modifier to improve or increase some
functions in APK’s specified location. According to the requirements of Android
signature, the modifier can carry out two operations as following:

(1) After completing the modification, the modifier sends the modified APK to the
developer. The developer signs and releases it;

(2) The modifier directly signs and releases the modified APK.

Table 1: The comparing of the overhead costs. SO denotes the signature overhead. VO
denotes the verification overhead. IS denotes the increased size which means the size of
extra signature file. Rd denotes the decryption overhead of one time RSA algorithm. Re
denotes the encryption overhead of one time RSA algorithm. T denotes the transmission
overhead that an applicant returns to the designer. m denotes the number of APK files to
modify. Ep denotes the exponentiation operation overhead. E denotes the logarithm
operation overhead

Scheme SO VO IS
Scheme 1 [Neidhardt (2011)]
APK-SAN scheme

nRd + T
2mEp

nRe
2mEp+2E

N
3|tt1|

The operations in Scheme 1 [Neidhardt (2011)] belong to the first operation type, which are
used to protect the integrity of APK file based on RSA algorithm. The operations in APK-
SAN scheme belong to the second operation type. In this paper, we attempt to provide a
scheme that the modifier is able to directly sign and release the modified APK. Meanwhile,
one can verify the copyrights of APK. We assume that the Android signature is based on
RSA algorithm, known as Scheme 1 [Neidhardt (2011)]. Their computation and storage
costs are shown in Tab. 1. Here, each APK contains n files. P is a large prime integer
used in this paper. Obviously, m<n.
From Tab. 1, the signature overhead of Scheme 1 [Neidhardt (2011)] is nRd+T , and its
verification overhead is nRe. T denotes the time to finish the sending and receiving

Provably Secure APK Redevelopment Authorization Scheme 463

processes. The transmission overhead is much higher than these of RSA encryption and
decryption. The overhead of APK-SAN scheme comes from the pairing operations that
depend on the number of the modified APK. If the 1024bits-RSA is adopted in Scheme 1
[Neidhardt (2011)], it costs 50 ms to finish a signature and 2.5 ms for verifying.
Nevertheless, it only costs 43 ms to carry out the pairing operation in the finite field F97.
Obviously, APK-SAN scheme has less time overhead than that in Scheme 1. In the worst
case, i.e. m = 5, the time overhead of APK-SAN scheme approximately equals to 430 ms
in the signature phase and verification phase, respectively. These time costs are durable
for smart mobile phones. On the other hand, a new signature file is generated because one
needs sign APK files in Scheme 1 [Neidhardt (2011)]. The size of the signature is |N|,
where | N| is the digit of the modular number N. In APK-SAN scheme, the size of the
signature is 3 |G1|, where |G1| is the order of the finite group G1. At the same time,
Scheme 1 requires the certificate that increases the storage overhead. APK-SAN scheme
is based on the user’s identity without user’s certificate.

5.2 Security
A fine-grained authorization means that the modifier can only modify the specified APK.
Authentication means a scheme is able to verify the copyrights of the designer and the
validity of the designer’s and modifier’s signatures. The over-privilege detection means
that whether one scheme provides the over-privilege detection function or not. The
copyrights protection means that whether one scheme has the ability to protect the
copyrights after completing the modification.
As shown in Tab. 2, Scheme 1 [Neidhardt (2011)] only provides authentication for the
developer, and needs the certificate which increases the storage overhead. Scheme 1 cannot
provide a fine-grained authorization and Copyrights protection. The proposed APK-SAN
scheme can provide all of these securities. In APK-SAN scheme, the developer authorizes
a modifier, and specifies APK’s files and their sub files that are allowed to be modified.
Accordingly, it can restrict modifier’s modification permissions, which prevent malicious
codes from embedding in APK, and protect Copyrights of developer. If modifier violates
the authorization regulations to modify the unauthorized APK’s files, the modified APK’s
signature is invalid. Therefore, we can fulfill the over-privilege detection.

Table 2: The comparing of the security. FA denotes fine-grained authorization. OPD
denotes the over-privilege detection. CP denotes the copyrights protection after
modification

Scheme FA Authentication OPD CP
Scheme 1 [Neidhardt (2011)]
APK-SAN scheme

No
Yes

Yes
Yes

No
Yes

No
Yes

6 Conclusion
In this paper, we design a new APK signature APK-SAN with the unique properties of the
sanitizable signature. New scheme allows developers of Android applications to authorize
specified modifiers to modify designated source codes of APK file, and sign the modified
APK file. The signature of new APK file is still valid. APK-SAN signature is designed to

464 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.447-465, 2018

ensure the integrity, authenticity and non-repudiation of APK files, while can reduce the
communication time and computational overhead of developers. It also can maintain the
legitimate rights and interests of developers and modifiers. Therefore, the proposed
mechanism is able to solve the difficult problem that verifies the validity of the original
designer’s signature of APK and copyrights of APK when the authorization has
completed.

Acknowledgement: This work was supported by the National Natural Science Foundation
of China (No. 61662004, 61772437, 61702427), National Natural Science Foundation of
Guangxi (No. 2016GXNSFAA380215), Sichuan Youth Science and Technique Foundation
(No. 2017JQ0048), and EU ICT COST CryptoAction (No. IC1306).

References
Ateniese, G.; Chou, D. H.; DeMedeiros, B.; Tsudik, G. (2005): Sanitizable signatures.
European Symposium on Research in Computer Security, pp. 159-177.
Barrera, D.; Kayacik, H. G.; van Oorschot, P. C.; Somayaji, A. (2010): A methodology
for empirical analysis of permission-based security models and its application to Android.
Proceedings of the 17th ACM conference on Computer and Communications Security, pp.
73-84.
Blasing, T.; Batyuk, L.; Schmidt, A. D.; Camtepe, S. A.; Albayrak, S. (2010): An
Android application sandbox system for suspicious software detection. 5th International
Conference on Malicious and Unwanted Software, pp. 55-62.
Brzuska, C.; Fischlin, M.; Freudenreich, T.; Lehmann, A.; Page, M. et al. (2009):
Security of sanitizable signatures revisited. International Workshop on Public Key
Cryptography PKC 2009, pp. 317-336.
Chen, Y.; Ying, L.; Jiao, S.; Su, P.; Feng, D. (2014): Research on user privacy leakage of
mobile social application. Chinese Journal of Computers, vol. 37, no. 1, pp. 87-100.
Choi, J.; Sung, W.; Choi, C.; Kim, P. (2015): Personal information leakage detection
method using the inference-based access control model on the Android platform. Pervasive
and Mobile Computing, vol. 24, pp. 138-149.
Dimitriadis, A.; Efraimidis, P. S.; Katos, V. (2016): Malevolent app pairs: An Android
permission overpassing scheme. ACM International Conference on Computing Frontiers,
pp. 431-436.
Egele, M.; Brumley, D.; Fratantonio, Y.; Kruegel, C. (2013): An empirical study of
cryptographic misuse in android applications. Proceedings of ACM SIGSAC Conference
on Computer & Communications Security, pp. 73-84.
Enck, W.; Damien, O.; McDaniel, P. D.; Chaudhuri, S. (2011): A study of Android
application security. USENIX Security Symposium, vol. 2, pp. 2.
Felt, A. P.; Wang, H. J.; Moshchuk, A.; Hanna, S.; Chin, E. (2011): Permission re-
delegation: attacks and defenses. Proceedings of the 20th USENIX Security Symposium,
pp. 1-16.
Jeon, J.; Micinski, K. K.; Vaughan, J. A.; Fogel, A.; Reddy, N. et al. (2012): Android

Provably Secure APK Redevelopment Authorization Scheme 465

and hide: Fine-grained permissions in Android applications. ACM CCS Workshop on
Security and Privacy in Smartphones and Mobile Device, pp. 3-14.
Karim, M. Y.; Kagdi, H.; Penta, M. D. (2016): Mining Android Apps to recommend
permissions. IEEE 23rd International Conference on Software Analysis, Evolution, and
Reengineering, pp. 427-437.
Kim, J.; Yoon, Y.; Yi, K.; Shin, J.; Center, S. (2012): SCANDAL: Static analyzer for
detecting privacy leaks in Android applications. Mobile Security Technologies.
Ma, S.; Li, L. T.; Deng, R. H. (2016): CDRep: Automatic repair of cryptographic misuses
in Android applications. Proceedings of 11th ACM Asia Conference on Computer and
Communications Security, pp. 711-722.
Mahmood, R.; Esfahani, N.; Kacem, T.; Mirzaei, N.; Malek, S. et al. (2012): A
whitebox approach for automated security testing of Android applications on the cloud.
IEEE 7th International Workshop on Automation of Software Test, pp. 22-28.
Neidhardt, E. (2011): Asymmetric cryptography for mobile devices. Service
Centric Networking, pp. 1-12.
Park, J. K.; Choi, S. Y. (2015): Studying security weaknesses of Android system.
International Journal of Security and Its Applications, vol. 9, no. 3, pp. 7-12.
Pearce, P.; Nunez, G.; Wagner, D. (2012): Addroid: Privilege separation for
applications and advertisers in Android. Proceedings of the 7th ACM Asia Conference on
Computer and Communications Security, pp. 71-72.
Qin, S. (2016): Research progress of Android security. Journal of Software, vol. 27, no. 1,
pp. 45-71.
Qu, Z.; Keeney, J.; Robitzsch, S.; Zaman, F.; Wang, X. (2016): Multilevel pattern
mining architecture for automatic network monitoring in heterogeneous wireless
communication networks. China Communications, vol. 13, no. 7, pp. 108-116.
Shao, S.; Dong, G.; Guo, T.; Yang, T.; Shi, J. (2014): Modelling analysis and auto-
detection of cryptographic misuse in android applications. IEEE 12th International
Conference on Dependable, Autonomic and Secure Computing, pp. 75-80.
Silva, P.; Amcrim, V. J. P.; Ribeiro, F. N.; Muzetti, I. (2015): Privacy Mod: Controlling
and monitoring abuse of privacy-related data by Android applications. Brazilian
Symposium on Computing Systems Engineering, pp. 42-47.
Toorani, M.; Beheshti, A. A. (2008): LPKI-a lightweight public key infrastructure for the
mobile environments. IEEE Singapore International Conference on 11th Communication
Systems, pp. 162-166.
Waters, B. (2005): Efficient identity-based encryption without random oracles. Advances
in Cryptology, pp. 114-127.

	1 Introduction
	2 Preliminaries
	2.1 Android native signature mechanism
	2.2 Identity-based sanitizable signature scheme
	2.3 Secure model

	(1) Setup system parameters.
	3 IBSSS based APK authorization mechanism
	3.2 APK file generation and publishing
	3.3 Redevelopment authorization
	3.4 Redevelopment process

	4 Security analysis of APK-SAN
	4.1 Validation
	4.2 Security analysis of the proposed scheme

	5 Performances of the proposed scheme
	5.1 The costs of computation and storage
	5.2 Security

	6 Conclusion
	References
	Jeon, J.; Micinski, K. K.; Vaughan, J. A.; Fogel, A.; Reddy, N. et al. (2012): Android and hide: Fine-grained permissions in Android applications. ACM CCS Workshop on Security and Privacy in Smartphones and Mobile Device, pp. 3-14.

