

Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

CMC. doi:10.3970/cmc.2018.03716 www.techscience.com/cmc

An Improved Memory Cache Management Study Based on Spark

Suzhen Wang 0F

1, Yanpiao Zhang1, Lu Zhang1, Ning Cao2, * and Chaoyi Pang3

Abstract: Spark is a fast unified analysis engine for big data and machine learning, in

which the memory is a crucial resource. Resilient Distribution Datasets (RDDs) are

parallel data structures that allow users explicitly persist intermediate results in memory

or on disk, and each one can be divided into several partitions. During task execution,

Spark automatically monitors cache usage on each node. And when there is a RDD that

needs to be stored in the cache where the space is insufficient, the system would drop out

old data partitions in a least recently used (LRU) fashion to release more space. However,

there is no mechanism specifically for caching RDD in Spark, and the dependency of

RDDs and the need for future stages are not been taken into consideration with LRU. In

this paper, we propose the optimization approach for RDDs cache and LRU based on the

features of partitions, which includes three parts: the prediction mechanism for

persistence, the weight model by using the entropy method, and the update mechanism of

weight and memory based on RDDs partition feature. Finally, through the verification on

the spark platform, the experiment results show that our strategy can effectively reduce

the time in performing and improve the memory usage.

Keywords: Resilient distribution datasets, update mechanism, weight mode.

1 Introduction

Human society has entered the era of Big Data which has become one of the most

important factors in production. The big data of industry and enterprise that can reach

hundreds of TB or even hundreds of PB at a time has far exceeded the processing capacity

of traditional computing techniques and information system. Cloud computing enables

convenient and on-demand access to a shared pool of configurable computing resources,

see Li et al. [Li and Liu (2017); Liu and Xiao (2016); Zhao, Wang, Xu et al. (2015);

Thanapal and Nishanthi (2013)]. Spark has been widely adopted for large-scale data

analysis, see Apache Spark [Apache Spark (2018)]. One of the most important capabilities

in Spark is persisting (or caching) a dataset in memory or on disk across operations, see Lin

et al. [Lin, Wang and Wu (2014); Zaharia, Chowdhury, Franklin et al. (2010)]. However,

the user manually selects the RDD to cache by experience, which leads to several

uncertainties and impact on efficiency. At the same time, the Spark can automatically

monitor cache usage on each node and drop out old data partitions in a LRU fashion.

1 Hebei University of Economics and Business, Shijiazhuang, Hebei, 050061, China.

2 University College Dublin, Belfield, Dublin 4, Ireland.

3 The Australian e-Health Research Centre, ICT Centre, CSIRO, Australia.

* Corresponding Author: Ning Cao. Email: 343412081@qq.com.

http://xueshu.baidu.com/s?wd=author:(THANAPAL,%20P)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(NISHANTHI,%20S.%20P)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://dl.acm.org/inst_page.cfm?id=60029470

416 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

However, in Spark, the LRU algorithm only considers the time feature of the node where

the partition is located but not the partition features.

Recognizing this problem, scholars have researched various replacement algorithms. By

studying FIFO, LRU and other cache algorithms, the AWRP algorithm that calculates the

weight for each object is designed in Swain et al. [Swain and Paikaray (2011)], but it

assumes that the size of the blocks is equal. For the Spark framework, Bian et al. [Bian,

Yu, Ying et al. (2017)] propose an adaptive cache management strategy from three

aspects: automatic selection algorithm, parallel cache cleanup algorithm and lowest

weight replacement algorithm. But it ignores the factor that the weight is changing during

execution. The WR algorithm in Duan et al. [Duan, Li, Tang et al. (2016)] is proposed to

calculate the weight of RDDs by considering the partitions computation cost, the number

of use for partitions, and the sizes of the partitions. However, it does not take into account

the change in the remainder usage frequency of the cache partition during task running.

Before the persistence, Jiang et al. [Jiang, Chen, Zhou et al. (2016)] further consider

whether the persistence is needed by judging the cost required and the computing cost.

Zhang et al. [Zhang, Shou, Xu et al. (2017); Chen, Zhang, Shou et al. (2017); Chen and

Zhang (2017)] put forward fine-grained RDD check-pointing and kick-out selection

strategy according to DAG diagram, which effectively reduces RDD computing cost and

maximizes memory utilization rate. Meng et al. [Meng, Yu, Liu et al. (2017)] taking full

account of the distributed storage characteristics of RDD partition point out the influence

of complete RDD partition and incomplete RDD partition on cache memory, but he does

not discuss the choice of RDD caches.

By analyzing the researches above, in this paper, we optimize the selection strategy for

caching RDD and the LRU replacement algorithm from the following aspects:

(1) We propose a prediction mechanism for caching RDDs. The use frequency of each

RDD is obtained based on the DAG diagram, and it is further decided whether to cache

the RDD according to the cost between the persistence and computation.

(2) We put forward a weight replacement algorithm based on RDD partition features

According to the characteristics of partition, we calculate the weight model by using

entropy method.

(3) The update mechanism for storage memory and weight of partition. Whenever the

usage frequency of the partition changes, we update the partition weights and the storage

memory in real time.

2 Introduction of Spark cache

2.1 Resilient distribution datasets

RDD is distributed collection of objects, that is, each one can be divided into multiple

partitions. RDDs support four types of operations: Creations, transformations, controls

and actions. The SparkContext is responsible for the creation of RDD. Additionally, the

transformation operations create a new dataset from an existing one, and the control

operations mainly persist the RDD. In the course of the execution of the program, the

operation of producing RDD is delayed until the action operation happened, see Ho et al.

[Ho, Wu, Liu et al. (2017)].

An Improved Memory Cache Management Study Based on Spark 417

During the task execution, a DGA graph based on the Lineage can be created by

DAGSheduler, and further divides the stage based on the dependency between the RDDs.

See Gounaris et al. [Gounaris, Kougka, Tous et al. (2017); Geng (2015)] for more details.

Each stage creates a batch of tasks which are then assigned to various executor processes.

After all the tasks in a stage are executed, the reused RDD would be stored in the cache

for further use, as illustrated in Fig. 1. The reused data is more common in some iterative

computations, such as the PageRank and K-means mentioned in Zaharia et al. [Zaharia,

Chowdhury, Das et al. (2012); Xu, Li, Zhang et al. (2016); Zhang, Shou, Xu et al. (2017);

Chen, Zhang (2017); Napoleon and Lakshmi (2010)]. It can effectively reduce the cost of

computing by caching the reused RDD to the storage memory. During the execution,

users can specify the caching level and the object to be stored, such as the

MEMORY_ONLY and MEMORY_ONLY_2 mean to store the RDD to the memory

[Ding and He (2004)].

task3

task1

task2

task4

task5

RDD1 RDD3

RDD4 RDD5

RDD6

RDD7

Stage1

Stage2 Stage3

RDD8

partition1

partition2

partition3

RDD2

Figure 1: The schematic diagram of parallel computing for RDD

2.2 Memory management mode

As shown in Fig. 2, the schematic diagram of memory partition in Spark 2.0.1 is obtained

by analyzing the source code, see Dabokele et al. [Dabokele (2016); Hero1122 (2017)].

The memory is firstly divided into two main parts: Memoryoverhead (default 384 M) and

ExecutorMemory. ExecutorMemory can be further divided into Reserved Memory (default

300 M) and UsableMemory. If the system memory is less than 1.5* ReservedMemory, there

would be an abnormality report. Note that 60% (the proportions can be modified) of the

UsableMemory is used for storage and calculation. HeapExecutorMemory is used for task

computing, and HeapStorageMemory is mainly used to cache the intermediate results that

need to be reused. After Spark 1.6, the StorageMemory and the ExecutorMemory can be

dynamically converted to each other, what is called Unified. Stroage and Execution can

borrow each other’s memory. It is important to note that when there is no enough memory

in both space, the Storage portion will spill the data that over 50% to the disk (based on the

storage_level) until the memory borrowed is returned, this is because the execution

(Execution) is more important than a cache (Storage). There the release data is also based

on the LRU algorithm.

http://xueshu.baidu.com/s?wd=author:(D.Napoleon)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(P.Ganga%20Lakshmi)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
https://blog.csdn.net/dabokele
https://blog.csdn.net/dabokele

418 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

HeapStorageMemory

(UsableMemory *0.6*0.5)

HeapExecutorMemory

(UsableMemory *0.6*0.5)

Other(UsableMemory *0.4)

ReserverdMemory(300M)

Memoryoverhead(384M)

ExecutorMemory

UsableMemory

Figure 2: The diagram of Spark memory allocation

2.3 Cache mechanism in Spark

All of the calculations in Spark are done in the memory, and when there is a RDD that

needs to be reused, it would be cached by experience. When storage capacity is

insufficient, something essential needs to be done with replacement algorithm to reclaim

the memory. The default algorithm is LRU which is mentioned in He et al. [He, Kosa and

Scott (2007)]. The principle of LRU algorithm is: (1) The data newly added is inserted

into the head of the linked list. (2) The data accessed is moved to the chain header. (3)

When the storage space of the linked list is insufficient, the data at the end of the linked

list is discarded. As shown in Fig. 3.

1.The data newly added 2.The data accessed 3.The data removed

Figure 3: The principle of LRU algorithm

An Improved Memory Cache Management Study Based on Spark 419

<RDD0,1>

<RDD1,3>

<RDD1,3>

<RDD0,0>

<RDD0,1>

<RDD2,1>

<RDD1,3>

<RDD0,0>

<RDD3,2>

<RDD0,0>

<RDD2,1>

<RDD1,3>

RDD0 RDD1 RDD0 RDD2 RDD3

Remove

Figure 4: The cache replacement schematic of RDD

In Spark, the LRU replacement algorithm is implemented by LinkedHashMap with the

characteristics of a double linked list, see Lan [Lan (2013)]. Because of its inability to

predict the future use of each page, it will release the least recently used page, see Wang

[Wang (2014)]. However, in Spark, different RDD partitions in the same storage memory

are heterogeneous, that is, they are different in the size and usage frequency. In this case,

it would lead to a lot of unnecessary calculations only by the time factor.

For instance, let RDD and the corresponding usage frequency represent for the series of

RDDs: <RDD0, 2>, <RDD1, 4>, <RDD2, 2>, <RDD3, 3>. The Fig. 4 shows the cache

replacement schematic of RDD. While the RDD is cached, the usage frequency decreases

by one. In accordance with the ideology of LRU, when RDD0 is used for the second time,

it will be placed in front of RDD1 along with the frequency of RDD0 drops to zero,

which means the RDD0 would not be reused in future operations. When RDD3 will be

cached, the RDD1 with frequence of 3 would be released because of the insufficient

memory. That is we will recalculate the partition next time, which would make

unnecessary computational cost. From above we can see that when a RDD partition does

not need to be reused in the next calculation, it may still occupy memory space. While

when a RDD may be reused next time, it may have been freed from memory. The LRU

algorithm is also used when the ExecutorMemory is not enough, and the StorageMemory

would put the more valuable partition data to the disk or somewhere else. Neither cache

replacement nor memory recall can meet the demand of task computing well, so it is

necessary to develop the replacement strategy based on partitioning features of RDD.

3 Cache replacement model of RDD

In this section, we will learn from the follow parts. Firstly, analyze the influence factors

of RDD cache, and then propose three innovations: The prediction mechanism for

persistence, the weight model by using the entropy method, and the update mechanism of

weight and memory based on RDDs partition feature.

Note that each job contains several RDDs, now let },...,...{ 1 ni RRRR = be the set of

RDDs, while },...,...{ 1 imiji RPRPRPRP = be the set of partitions of Ri.

Definition 1 Task execution speedup. There we use the task execution speedup expressed

by TEsp to measure the task performance with the optimized algorithm. There will be

better performance of the task execution with the greater speedup. The Formula is as

follows:

420 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

opt

LRU
sp

T

T
TE = (1)

Set TLRU as the execution time with LRU algorithm, and the Topt as the execution time

with optimized algorithm.

3.1 Analysis of influence factors

To improve the research, it is necessary to learn the characteristics of RDD. The

characteristic elements are as follows:

(1) The frequency of utilization

In order to avoid the unnecessary computation, it is necessary to make a judgment on the

usage frequency of RDD. When an action occurs, the DAGScheduler creates a DAG based

on the Lineage of RDD. By traversing the DAG diagram, we use  ii NR ,G to

represent the characteristics of the RDD, in which the Ni represents the total usage frequency

during the entire program. The RDD with larger Ni is more worthy of being cached.

(2) The remainder use frequency of RDD partition

The RDD caching is in the form of partitions, and the residual frequency of the partitions

decreases gradually in the course of task execution. There let Nij be the usage frequency

for each RDD partition. Before caching the Ri, we set the equation: Ni=Nij. When the first

caching occurs of Ri, the value of the Nij is reduced by one, and also it continues to

decrease whenever the Ri is used.

(3) Computational cost

When the cache memory is insufficient, the LRU algorithm will release the least recently

used RDD. In the system, the algorithm only takes into account the time feature of the

node where the partition is located. In fact, there would be unnecessary computational

overhead provided that the partition eliminated needs to be reused next time. Therefore,

the computational cost of partition should be a crucial factor. The partition with higher

cost shouldn't be replaced. Here we use ijRPT defined in Duan et al. [Duan, Li, Tang et al.

(2016)] to express the computational cost of RDD partition.

ijijRP STETT
ji

−= (2)

Let ETij represent for the finish time, while the STij as the start time. At the same time, the

execution time of a RDD is determined by the maximum time of all partitions, so the

computational cost of RDD is as follows:

},...,,...,max{
.,1 inijii RPRPRPR TTTT = (3)

(4) The size of partition

The partitions that occupy the larger memory space should be preferentially eliminated to

release more resources.

3.2 The prediction mechanism for caching

The prediction mechanism is divided into two parts:

(1) When Ni is equal to 2

An Improved Memory Cache Management Study Based on Spark 421

In this case, the frequency will change to 1 by storing RDD in the cache. If not cache,

there would be a recomputation cost. So it is necessary to decide whether it is worth to

cache the RDD according to the relation:

i

i

R

R

V

S
<

iRT (4)

Where
iRS is the size of a RDD, and

iRV is the speed for data persisting. If the re-

computing cost is larger than caching cost, it is suggested to cache the RDD.

(2) When Ni >2, it is suggested to be cached

The execution process is as follows:

Algorithm 1: RDD automatic cache prediction algorithm.

Input：RDD sequence: R={R1...Ri...Rn}

the usage frequency of RDD: NR

the partition of RDD: RP

the size of RDD partition: SRP

the frequency to be used of RDD partition: NRP

the remaining memory size of the storage node: Scach

the C is donated as the set of partitions cached.

Initialization：NR=NRP

For (i=1 to n)

 If (NR=2 and SRP<Scach)

 if (cacheCost<countCost) then

 C=C ∩ RP

 NRP=NRP-1

end if

 else if (NR>2 and SRP<Scach)

 C=C ∩ RP

 NRP=NRP-1

 else if (SRP>Scach)

 call Algorithm 2

 end if

end for

3.3 Weight replacement model

Replacement operations are required when the storage space is insufficient to

accommodate the RDD that needs to be cached. Also, the Storage section can apply to all

free memory in the Execution section. When the execution requires more memory, the

storage portion will spill the data to the disk (based on the storage_level) until the

422 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

memory borrowed is returned. Forced discard data is also based on LRU algorithm. In

order to represent the importance of an index in the whole analysis process, we adopt the

weight form. Therefore, to reduce the cost of the re-computation, we put forward the

weight calculation model based on partition feature by using entropy method in Zuo et al.

[Zuo, Cao and Dong (2013)] to optimize LRU algorithm. The entropy method determines

the index weight based on the degree of variation of each index value. Entropy is a

measure of the degree of disorder in the system and can be used to measure the effective

information of known data packets and determine weights. By determining the weights

based on the calculation of the entropy, the weight of each partition is determined

according to the degree of difference in the feature values of the partitions. When there is

a large difference between certain eigenvalues of the evaluation object, the entropy is

smaller which means the number of valid information provided by this feature is larger.

Accordingly, the weight of the object should be larger. Conversely, if the difference

between a certain feature value is small, the entropy value should be larger. It indicates

that the feature provides less information and the weight should be smaller. When a

feature value of a partition is exactly the same, the entropy value reaches a maximum,

which means that the feature value is useless information. The process of the weight

calculation is as follows:

(1) Converting the characteristic of partition into matrix form

Assuming that there are n partitions in the storage memory, and each partition has m

feature attributes. In this paper we set m=3, which means there are three features: Nij , ijRPT

and SRij. Let Xij be the value of the j-th index of the i-th partition, the matrix is as follows:

mn
nmn

m

XX

XX

RP

























=

,...,

..

..

..

,...,

1

111

 (5)

(2) Normalization processing

Since the measurement units of each feature are inconsistent, the standardized operations

must be performed before computing. That is, the absolute value of the eigenvalue should

be converted to the relative value to solve the homogeneity problem of different

eigenvalues. The Nij and ijRPT are positive correlation index, and SRij belongs to negative

correlation index. The normalized treatment formula is as follows:













−

−

−

−

=

indicators Negative，
},,...min{},...,max{

},...,max{

indicators Positive，
},...,min{},...,max{

},...,min{

'

11

11

njjnjj

ijnjij

njjnjj

njijij

ji

XXXX

XXX

XXXX

XXX

X
(6)

For convenience, the normalized data X'ij is still represented by Xij.

(3) Under the j-th feature, the i-th partition occupies the proportion of the feature

An Improved Memory Cache Management Study Based on Spark 423

)....2,1(

1

mj

X

X
P

n

i

ij

ij

ij ==


=

 (7)

(4) The entropy of the j-th feature

 
=

−=

n

i

ijijj PPke
1

)(ln (8)

Where the k>0, ln is natural logarithm, then the ej ≥0, and k=1/ln m2.

(5) The difference coefficient of the j-th eigenvalue

 jj eg −= 1 (9)

(6) The weight of each feature

)...2,1(

1

mj

g

g
W

m

j

j

j

j ==


=

 (10)

(7) The weight of each partition


=

==

m

j

ijji niPWV
1

)....2,1(* (11)

Finally, by calculating the weight of each partition, the partition with lowest weight

should be considered first to be replaced when the replacement happened. The process is

as follows:

Firstly, we need to compare the weight of the partition to be cached with the lowest

weight:

(1) If there is a qualified partition in the cache, release the partition. Otherwise,

conversely turn to (2).

(2) Put the RDD which needs to be cached to the wait cache area, and wait for weight

updating in the storage memory.

file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/?keyword=otherwise

424 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

The execution process is as follows:

Algorithm 2: weight replacement

Input：partition in cache area: Rp, weight：v

 the size of Rp：SRP

surplus space of storage memory：Scach

 the C is donated as the set of partitions cached

the set of the size for partitions cached:

{CSRP1CSRPp}

for (i=1 to p)

 if (CRPi .weigth < v)

 put CRPi to weigthList[j] according to the

weight

from small to large

 end if

 end for

 for (i=1 to weigthList.length)

 if (SRP<Scach-CSRPi)

 Rp replace CRPi

 NRP= NRP-1

 else if

 C=C

 waiting for weight update

 end if

 end for

3.4 The update mechanism for storage memory and weight of partition

As we can see that in the process of task execution, the frequency of each partition to be

used is constantly decreasing with the use of partitions, and the weights of the

corresponding partitions are also changing. So we propose the update mechanism for

storage memory and weight of partition: Whenever a partition in a storage area is used,

the usage frequency of the partition is reduced by one, and all partitions are traversed to

update the weight. At the same time, the partition to be used with frequency zero should

be released to release more memory. During task execution, the weight of the partition

should be updated whenever the remainder usage frequency of partitions in the storage

area is reduced. The execution process is as follows:

An Improved Memory Cache Management Study Based on Spark 425

Algorithm 3: Update mechanism

Input：the remainder usage frequency of partitions：NRP

the C is donated as the set of partitions cached:

C={CRP1,...,CRPi,...,CRPp}

while a RDD will be used in computing:

 for (i=1 to p)

 if (CRPi will be used) then

 NRPi=NRPi -1

 renew CRPi.weigth

 end if

 if (NRPi==0)

 C=C-CRPi

 end if

 end for

4 Experimental verification

The environment required in this experiment is as follows:

(1) Cluster environment: Six virtual machines that created by two laptop computers and a

desktop.

(2) Cloud environment: Use Spark 2.0.1 as the computing framework and Hadoop Yarn

as resource scheduling module.

(3) Monitoring environment: nmon and nmon analyser.

(4) Use The PageRank and K-means as the task algorithm, and choose three datasets from

SNAP et al. [SNAP (2018)] and [UCI (2007)] respectively. The datasets are shown in

Tab. 1 and Tab. 2.

Table 1: The Description of datasets from SNAP

 Name Size Description

WikiTalk 63.3 M
Communication network of Wikipedia

(till January 2008)

Web-BerKStan 105 M Web graph of Berkeley and Stanford

Cit-Patents 267 M Citation network among US Patents

426 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

Table 2: The Description of datasets from UCI

 Name Size Description

NIPS_1987-2015 127 M

This data set contains the distribution of words

in the full text of the NIPS conference papers

published from 1987 to 2015.

LD2011_2014 249 M
This data set contains electricity consumption of

370 points/ clients

USCensus1990 334 M

The USCensus1990raw data set contains a one

percent sample of the Public Use Microdata

Samples (PUMS) person records drawn from the

full 1990 census sample.

4.1 The verification for RDD cache prediction mechanism

This experiment was carried out under the PageRank and K-means tasks respectively,

meanwhile completed under different sizes of data sets. In this experiment, we mainly

compare and analyze the difference in execution time and memory utilization rate under

without RDD cache selection and with RDD cache selection. As shown in Fig. 5, the

results of each experiment are obtained by running 5 times. The Figs. 5(a) and 5(b) show

the experimental results under the PageRank task, while the Figs. 5(b) and 5(c) are under

the K-means. Through the comprehensive analysis of Figs. 5(a) and 5(c), when the

dataset is relatively small, the task execution time is short, so the difference is not

obvious. Along with the amount of data increases, the performance with the prediction

mechanism for caching is well. Through the comprehensive analysis of Figs. 5(b) and

5(d), the memory usage of the task with the prediction mechanism is very high mainly

because the cache data will occupy storage memory after the cache mechanism is

optimized. In summary, the prediction mechanism for caching reduce the execution time

and improve the rate of memory usage to a certain extent.

0

50

100

150

200

250

300

350

WikiTalk Web-BerkStan Cit-Patents

ti
m

e(
s)

PageRank

Selection without Selection

(a) Time comparison under PageRank task

An Improved Memory Cache Management Study Based on Spark 427

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

WikiTalk Web-BerkStan Cit-Patents

m
em

o
ry

 n
ti

liz
at

io
n

PageRank

Selection without Selection

(b) Comparison of memory utilization under PageRank task

0

100

200

300

400

500

600

NIPS_1987-2015 LD2011_2014 USCensus1990

tim
e(

s)

K-means

selection without selection

(c) Time comparison under K-means task

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

NIPS_1987-2015 LD2011_2014 USCensus1990

m
em

o
ry

 u
ti

liz
at

io
n

K-means

selection without selection

(d) Comparison of memory utilization under K-means task

Figure 5: Schematic diagram of task execution time and memory utilization under

optimization and unoptimized cache mechanism

428 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

4.2 The verification for weight replacement algorithm

This part is implemented by modifying the evictBlocksToFreeSpace function in the

source file named MemoryStore.

The datasets of WikiTalk and NIPS_1987-2015 have been used in this verification

separately. To ensure that there are multiple RDDs to be cached, the dataset is divided

into several small datasets separately in the process of data reading by analyzing

implementation code of PangRank and K-means. Now this process satisfies the

conditions for multiple RDDs to be cached.

Another condition is that there are RDDs that need to be cached, so we verify the weight

replacement algorithm by using the RDD cache prediction mechanism proposed by this paper.

This algorithm is called only when the storage memory is insufficient. So this experiment

is verified under different memory sizes: 1 G, 2 G, 3 G and 4 G. As shown in Fig. 6,

compared with LRU algorithm, when the memory is small, our improved algorithm could

not reduce the execution time well for the reason that the analyzing of the partition

features and the updating for weight and memory could occupy much time. With the

increase of memory, the weight replacement algorithm performs well. When the memory

is large, there is enough memory to store the cache partition, and the number of the

partition replacement is reduced. As we can see that the execution time of the two

algorithms is similar with enough memory.

As Fig. 7 shown, we use the task execution speedup to measure the task performance.

According to the Formula (1), it respectively shows the speedup under PageRank with

WikiTalk and K-means with NIPS_1987-2015. As we can see, the optimized algorithm

shows the poor performance in 1 G memory. While with the larger memory, it shows

good performance. When the memory is large enough, the optimization algorithm

advantage is no longer obvious.

0

10

20

30

40

50

60

70

80

90

100

1G 2G 3G 4G

Ex
ec

u
ti

o
n

 t
im

es
(s

)

PageRank

weight replacement
algorithm

LRU

(a) The contrast validation with WikiTalk dataset

An Improved Memory Cache Management Study Based on Spark 429

0

50

100

150

200

250

1G 2G 3G 4G

Ex
ec

u
ti

o
n

 t
im

es
(s

)

K-means

wieght replacement
algorithm

LRU

 (b) The contrast validation with NIPS_1987-2015 dataset

Figure 6: Time comparison analysis under different memory

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

1G 2G 3G 4G

 PageRank
with WikiTalk

K-means with
NIPS_1987-
2015

Figure 7: Task execution speedup with different tasks

5 Conclusion

The By analyzing the characteristics of the Spark RDD data model, we propose three

points: (1) Proposing prediction mechanism for RDD cache through the usage frequency

of RDD, and the cost of re-computation and cache. (2) Based on the entropy method, we

propose a weight model based on RDD partitioning feature by analyzing the remainder

frequency of RDD partition, computational cost and the size of partition. (3) Putting

forward the update mechanism for storage memory and weight of partition. In the actual

running scene, the memory of the cluster environment is limited. For the multitask

execution with big data, this method can effectively reduce the task execution time and

improve the memory utilization.

Acknowledgement: This paper is partially supported by Education technology research

Foundation of the Ministry of Education (No. 2017A01020).

430 Copyright © 2018 Tech Science Press CMC, vol.56, no.3, pp.415-431, 2018

References

Apache Spark (2018): Apache Spark. https://spark.apache.org/.

Bian, C.; Yu, J.; Ying, C. T.; Xiu, W. R. (2017): Self-adaptive strategy for cache

management in spark. Acta Electronica Sinica, vol. 45, no. 2, pp. 278-284.

Dabokele (2016): Spark memory management-UnifiedMemoryManager and Static-

MemoryManager. http://blog.csdn.net/dabokele/article/details/51475469.

Ding, C.; He, X. F. (2004): Cluster structure of k-means clustering via principal

component analysis. Lecture Notes in Computer Science, vol. 46, no. 4, pp. 414-418.

Duan, M. X.; Li, K. L.; Tang, Z.; Xiao, G. Q.; Li, K. Q. (2016): Selection and

replacement algorithms for memory performance improvement in spark. Concurrency &

Computation Practice & Experience, vol. 28, no. 8, pp. 2473-2486.

Geng, J. A. (2015): Spark Internals Core Design and Source Code Analysis. China

Machine Press, China.

Gounaris, A.; Kougka, G.; Tous, R.; Tripiana, C.; Torres, J. (2017): Dynamic

configuration of partitioning in spark applications. IEEE Transactions on Parallel &

Distributed Systems, vol. 28, no. 7, pp. 1891-1904.

Hero1122 (2017): The memory management mechanism and implementation principle

of Spark2.1. http://www.aboutyun.com/thread-21 951 -1-1.html.

Ho, L. Y.; Wu, J. J.; Liu, P. F.; Shih, C. C.; Huang, C. C. et al. (2017): Efficient

cache update for in-memory cluster computing with spark. IEEE/ACM International

Symposium on Cluster, pp. 21-30.

He, X. B. B.; Kosa, M. J.; Scott, S. L.; Engelmann, C. (2007): A unified multiple-level

cache for high performance storage systems. International Journal of High Performance

Computing and Netwotking, vol. 5, no. 1-2, pp. 97-109.

Jiang, Z. P.; Chen, H. P.; Zhou, H.; Wu, J. (2016): An elastic data persisting solution

with high performance for spark. IEEE International Conference on Smart City/

Socialcom/Sustaincom, pp. 656-661.

Lan, Y. (2013): Implementation of LRU algorithm with LinkedHashMap. https://www.cn

blogs.com/LZYY/p/3447785.html.

Li, Z.; Liu, Y. (2017): A differential game-theoretic model of auditing for data storage in

cloud computing. International Journal of Computational Science & Engineering, vol. 14,

no. 4, pp. 341-348.

Lin, X.; Wang, P.; Wu, B. (2014): Log analysis in cloud computing environment with

hadoop and spark. International Conference on Broadband Network & Multimedia

Technology, pp. 273-276.

Liu, D.; Xiao, P. (2016): An energy-efficient adaptive resource provision framework for

cloud platforms. International Journal of Computational Science & Engineering, vol. 13,

no. 4, pp. 346-354.

Meng, H. T.; Yu, S. P.; Liu, F.; Xiao, N. (2017): Research on memory management and

cache replacement policies in spark. Computer Science, vol. 44, no. 6, pp. 31-35.

http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=journaluri:(3515fde4da2a583e)%20%E3%80%8AActa%20Electronica%20Sinica%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited
https://blog.csdn.net/dabokele
http://xueshu.baidu.com/usercenter/data/journal?cmd=jump&wd=journaluri:(ef2596da2b997802)%20%E3%80%8ALecture%20Notes%20in%20Computer%20Science%E3%80%8B&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=publish&sort=sc_cited
file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/result.html?keyword=China%20Machine%20Press&lang=en
file:///C:/Users/Administrator/AppData/Local/youdao/dict/Application/7.5.0.0/resultui/dict/result.html?keyword=China%20Machine%20Press&lang=en
http://www.researchgate.net/publication/309887573_An_energy-efficient_adaptive_resource_provision_framework_for_cloud_platforms
http://www.researchgate.net/publication/309887573_An_energy-efficient_adaptive_resource_provision_framework_for_cloud_platforms

An Improved Memory Cache Management Study Based on Spark 431

Napoleon, D.; Lakshmi, P. G. (2010): An enhanced k-means algorithm to improve the

efficiency using normal distribution data points. International Journal of Computational

Science and Engineering, vol. 2, no. 7, pp. 2409-2413.

SNAP (2018): Stanford network analysis project. http://snap.stanford.edu/data/.

Swain, D.; Paikaray, B. (2011): AWRP: adaptive weight ranking policy for improving

cache performance. Computer Science, vol. 3, no. 2, pp. 209-214.

Thanapal, P.; Nishanthi, S. P. (2013): Efficient parallel data processing in the cloud.

International Journal of Computational Science and Engineering, vol. 5, no. 5, pp. 338-342.

UCI (2007): UCI Machine learning repository. http://archive.ics.uci.edu/ml/datasets.

Wang, H. (2014): Research on the realization of LRU algorithm. Applied Mechanics &

Materials, vol. 530-531, pp. 891-894.

Xu, L.; Li, M.; Zhang, L.; Butt, A. R.; Wang, Y. D. et al. (2016): MEMTUNE: Dynamic

memory management for in-memory data analytic platforms. IEEE International Parallel

and Distributed Processing Symposium, pp. 383-392.

Zaharia, M.; Chowdhury, M.; Franklin, M. J.; Shenker, S.; Stoica, I. (2010): Spark:

Cluster computing with working sets. HotCloud’10 Proceedings of the 2nd USENIX

conference on Hot topics in cloud computing, vol. 15, no. 1, pp. 10-18.

Zaharia, M.; Chowdhury, M.; Das, T.; Dave, A.; Ma, J. et al. (2012): Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.

NSDI’12 Proceedings of the 9th USENIX conference on Networked Systems Design and

Implementation, vol. 70, no. 2, pp. 2-16.

Zhang, D. B.; Shou, Y. F.; Xu, J. M. (2017): An improved parallel k-means algorithm based

on MapReduce. International Journal of Embedded Systems, vol. 9, no. 3, pp. 275-282.

Zhang, M. Y.; Chen, R. H.; Zhang, X. W.; Wang, X. (2017): Intelligent RDD

management for high performance in-memory computing in spark. International

Conference on World Wide Web Companion, pp. 873-874.

Zhao, X. F.; Wang, X.; Xu, H.; Wang, Y. L. (2015): Cloud data integrity checking

protocol from lattice. International Journal of High Performance Computing and

Netwotking, vol. 8, no. 2, pp. 167-175.

Zuo, L. Y.; Cao, Z. B.; Dong, S. B. (2013): Virtual resource evaluation model based on

entropy optimized and dynamic weighted in cloud computing. Journal of Software, vol.

24, no. 8, pp. 1937-1946.

http://xueshu.baidu.com/s?wd=author:(D.Napoleon)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(P.Ganga%20Lakshmi)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(THANAPAL,%20P)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(NISHANTHI,%20S.%20P)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(NISHANTHI,%20S.%20P)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://xueshu.baidu.com/s?wd=author:(NISHANTHI,%20S.%20P)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
http://archive.ics.uci.edu/ml/datasets
http://www.inderscience.com/info/inarticle.php?artid=84700
http://www.inderscience.com/info/inarticle.php?artid=84700
http://www.researchgate.net/publication/281163336_Cloud_data_integrity_checking_protocol_from_lattice
http://www.researchgate.net/publication/281163336_Cloud_data_integrity_checking_protocol_from_lattice

