
 

 

 

Copyright © 2018 Tech Science Press                      CMC, vol.56, no.3, pp.415-431, 2018 

CMC. doi:10.3970/cmc.2018.03716                                                                        www.techscience.com/cmc 

  

 

An Improved Memory Cache Management Study Based on Spark 
 

Suzhen Wang 0F

1, Yanpiao Zhang1, Lu Zhang1, Ning Cao2, * and Chaoyi Pang3 

 

 

Abstract: Spark is a fast unified analysis engine for big data and machine learning, in 

which the memory is a crucial resource. Resilient Distribution Datasets (RDDs) are 

parallel data structures that allow users explicitly persist intermediate results in memory 

or on disk, and each one can be divided into several partitions. During task execution, 

Spark automatically monitors cache usage on each node. And when there is a RDD that 

needs to be stored in the cache where the space is insufficient, the system would drop out 

old data partitions in a least recently used (LRU) fashion to release more space. However, 

there is no mechanism specifically for caching RDD in Spark, and the dependency of 

RDDs and the need for future stages are not been taken into consideration with LRU. In 

this paper, we propose the optimization approach for RDDs cache and LRU based on the 

features of partitions, which includes three parts: the prediction mechanism for 

persistence, the weight model by using the entropy method, and the update mechanism of 

weight and memory based on RDDs partition feature. Finally, through the verification on 

the spark platform, the experiment results show that our strategy can effectively reduce 

the time in performing and improve the memory usage. 

 

Keywords: Resilient distribution datasets, update mechanism, weight mode. 

1 Introduction 

Human society has entered the era of Big Data which has become one of the most 

important factors in production. The big data of industry and enterprise that can reach 

hundreds of TB or even hundreds of PB at a time has far exceeded the processing capacity 

of traditional computing techniques and information system. Cloud computing enables 

convenient and on-demand access to a shared pool of configurable computing resources, 

see Li et al. [Li and Liu (2017); Liu and Xiao (2016); Zhao, Wang, Xu et al. (2015); 

Thanapal and Nishanthi (2013)]. Spark has been widely adopted for large-scale data 

analysis, see Apache Spark [Apache Spark (2018)]. One of the most important capabilities 

in Spark is persisting (or caching) a dataset in memory or on disk across operations, see Lin 

et al. [Lin, Wang and Wu (2014); Zaharia, Chowdhury, Franklin et al. (2010)]. However, 

the user manually selects the RDD to cache by experience, which leads to several 

uncertainties and impact on efficiency. At the same time, the Spark can automatically 

monitor cache usage on each node and drop out old data partitions in a LRU fashion. 
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However, in Spark, the LRU algorithm only considers the time feature of the node where 

the partition is located but not the partition features. 

Recognizing this problem, scholars have researched various replacement algorithms. By 

studying FIFO, LRU and other cache algorithms, the AWRP algorithm that calculates the 

weight for each object is designed in Swain et al. [Swain and Paikaray (2011)], but it 

assumes that the size of the blocks is equal. For the Spark framework, Bian et al. [Bian, 

Yu, Ying et al. (2017)] propose an adaptive cache management strategy from three 

aspects: automatic selection algorithm, parallel cache cleanup algorithm and lowest 

weight replacement algorithm. But it ignores the factor that the weight is changing during 

execution. The WR algorithm in Duan et al. [Duan, Li, Tang et al. (2016)] is proposed to 

calculate the weight of RDDs by considering the partitions computation cost, the number 

of use for partitions, and the sizes of the partitions. However, it does not take into account 

the change in the remainder usage frequency of the cache partition during task running. 

Before the persistence, Jiang et al. [Jiang, Chen, Zhou et al. (2016)] further consider 

whether the persistence is needed by judging the cost required and the computing cost. 

Zhang et al. [Zhang, Shou, Xu et al. (2017); Chen, Zhang, Shou et al. (2017); Chen and 

Zhang (2017)] put forward fine-grained RDD check-pointing and kick-out selection 

strategy according to DAG diagram, which effectively reduces RDD computing cost and 

maximizes memory utilization rate. Meng et al. [Meng, Yu, Liu et al. (2017)] taking full 

account of the distributed storage characteristics of RDD partition point out the influence 

of complete RDD partition and incomplete RDD partition on cache memory, but he does 

not discuss the choice of RDD caches. 

By analyzing the researches above, in this paper, we optimize the selection strategy for 

caching RDD and the LRU replacement algorithm from the following aspects: 

(1) We propose a prediction mechanism for caching RDDs. The use frequency of each 

RDD is obtained based on the DAG diagram, and it is further decided whether to cache 

the RDD according to the cost between the persistence and computation. 

(2) We put forward a weight replacement algorithm based on RDD partition features 

According to the characteristics of partition, we calculate the weight model by using 

entropy method. 

(3) The update mechanism for storage memory and weight of partition. Whenever the 

usage frequency of the partition changes, we update the partition weights and the storage 

memory in real time. 

2 Introduction of Spark cache  

2.1 Resilient distribution datasets 

RDD is distributed collection of objects, that is, each one can be divided into multiple 

partitions. RDDs support four types of operations: Creations, transformations, controls 

and actions. The SparkContext is responsible for the creation of RDD. Additionally, the 

transformation operations create a new dataset from an existing one, and the control 

operations mainly persist the RDD. In the course of the execution of the program, the 

operation of producing RDD is delayed until the action operation happened, see Ho et al. 

[Ho, Wu, Liu et al. (2017)]. 
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During the task execution, a DGA graph based on the Lineage can be created by 

DAGSheduler, and further divides the stage based on the dependency between the RDDs. 

See Gounaris et al. [Gounaris, Kougka, Tous et al. (2017); Geng (2015)] for more details. 

Each stage creates a batch of tasks which are then assigned to various executor processes. 

After all the tasks in a stage are executed, the reused RDD would be stored in the cache 

for further use, as illustrated in Fig. 1. The reused data is more common in some iterative 

computations, such as the PageRank and K-means mentioned in Zaharia et al. [Zaharia, 

Chowdhury, Das et al. (2012); Xu, Li, Zhang et al. (2016); Zhang, Shou, Xu et al. (2017); 

Chen, Zhang (2017); Napoleon and Lakshmi (2010)]. It can effectively reduce the cost of 

computing by caching the reused RDD to the storage memory. During the execution, 

users can specify the caching level and the object to be stored, such as the 

MEMORY_ONLY and MEMORY_ONLY_2 mean to store the RDD to the memory 

[Ding and He (2004)]. 
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Figure 1: The schematic diagram of parallel computing for RDD 

2.2 Memory management mode 

As shown in Fig. 2, the schematic diagram of memory partition in Spark 2.0.1 is obtained 

by analyzing the source code, see Dabokele et al. [Dabokele (2016); Hero1122 (2017)]. 

The memory is firstly divided into two main parts: Memoryoverhead (default 384 M) and 

ExecutorMemory. ExecutorMemory can be further divided into Reserved Memory (default 

300 M) and UsableMemory. If the system memory is less than 1.5* ReservedMemory, there 

would be an abnormality report. Note that 60% (the proportions can be modified) of the 

UsableMemory is used for storage and calculation. HeapExecutorMemory is used for task 

computing, and HeapStorageMemory is mainly used to cache the intermediate results that 

need to be reused. After Spark 1.6, the StorageMemory and the ExecutorMemory can be 

dynamically converted to each other, what is called Unified. Stroage and Execution can 

borrow each other’s memory. It is important to note that when there is no enough memory 

in both space, the Storage portion will spill the data that over 50% to the disk ( based on the 

storage_level) until the memory borrowed is returned, this is because the execution 

(Execution) is more important than a cache (Storage). There the release data is also based 

on the LRU algorithm.  

http://xueshu.baidu.com/s?wd=author:(D.Napoleon)%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight=person
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Figure 2: The diagram of Spark memory allocation 

2.3 Cache mechanism in Spark 

All of the calculations in Spark are done in the memory, and when there is a RDD that 

needs to be reused, it would be cached by experience. When storage capacity is 

insufficient, something essential needs to be done with replacement algorithm to reclaim 

the memory. The default algorithm is LRU which is mentioned in He et al. [He, Kosa and 

Scott (2007)]. The principle of LRU algorithm is: (1) The data newly added is inserted 

into the head of the linked list. (2) The data accessed is moved to the chain header. (3) 

When the storage space of the linked list is insufficient, the data at the end of the linked 

list is discarded. As shown in Fig. 3.  

1.The data newly added 2.The data accessed 3.The data removed

 

Figure 3: The principle of LRU algorithm 
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Figure 4: The cache replacement schematic of RDD 

In Spark, the LRU replacement algorithm is implemented by LinkedHashMap with the 

characteristics of a double linked list, see Lan [Lan (2013)]. Because of its inability to 

predict the future use of each page, it will release the least recently used page, see Wang 

[Wang (2014)]. However, in Spark, different RDD partitions in the same storage memory 

are heterogeneous, that is, they are different in the size and usage frequency. In this case, 

it would lead to a lot of unnecessary calculations only by the time factor. 

For instance, let RDD and the corresponding usage frequency represent for the series of 

RDDs: <RDD0, 2>, <RDD1, 4>, <RDD2, 2>, <RDD3, 3>. The Fig. 4 shows the cache 

replacement schematic of RDD. While the RDD is cached, the usage frequency decreases 

by one. In accordance with the ideology of LRU, when RDD0 is used for the second time, 

it will be placed in front of RDD1 along with the frequency of RDD0 drops to zero, 

which means the RDD0 would not be reused in future operations. When RDD3 will be 

cached, the RDD1 with frequence of 3 would be released because of the insufficient 

memory. That is we will recalculate the partition next time, which would make 

unnecessary computational cost. From above we can see that when a RDD partition does 

not need to be reused in the next calculation, it may still occupy memory space. While 

when a RDD may be reused next time, it may have been freed from memory. The LRU 

algorithm is also used when the ExecutorMemory is not enough, and the StorageMemory 

would put the more valuable partition data to the disk or somewhere else. Neither cache 

replacement nor memory recall can meet the demand of task computing well, so it is 

necessary to develop the replacement strategy based on partitioning features of RDD. 

3 Cache replacement model of RDD 

In this section, we will learn from the follow parts. Firstly, analyze the influence factors 

of RDD cache, and then propose three innovations: The prediction mechanism for 

persistence, the weight model by using the entropy method, and the update mechanism of 

weight and memory based on RDDs partition feature. 

Note that each job contains several RDDs, now let },...,...{ 1 ni RRRR = be the set of 

RDDs, while },...,...{ 1 imiji RPRPRPRP = be the set of partitions of Ri.               

Definition 1 Task execution speedup. There we use the task execution speedup expressed 

by TEsp to measure the task performance with the optimized algorithm. There will be 

better performance of the task execution with the greater speedup. The Formula is as 

follows:                                                                                                  
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opt

LRU
sp

T

T
TE =                                                                                                                      (1) 

Set TLRU as the execution time with LRU algorithm, and the Topt  as the execution time 

with optimized algorithm. 

3.1 Analysis of influence factors 

To improve the research, it is necessary to learn the characteristics of RDD. The 

characteristic elements are as follows: 

(1) The frequency of utilization 

In order to avoid the unnecessary computation, it is necessary to make a judgment on the 

usage frequency of RDD. When an action occurs, the DAGScheduler creates a DAG based 

on the Lineage of RDD. By traversing the DAG diagram, we use  ii NR ,G to 

represent the characteristics of the RDD, in which the Ni represents the total usage frequency 

during the entire program. The RDD with larger Ni is more worthy of being cached. 

(2) The remainder use frequency of RDD partition 

The RDD caching is in the form of partitions, and the residual frequency of the partitions 

decreases gradually in the course of task execution. There let Nij be the usage frequency 

for each RDD partition. Before caching the Ri, we set the equation: Ni=Nij. When the first 

caching occurs of Ri, the value of the Nij is reduced by one, and also it continues to 

decrease whenever the Ri is used. 

(3) Computational cost 

When the cache memory is insufficient, the LRU algorithm will release the least recently 

used RDD. In the system, the algorithm only takes into account the time feature of the 

node where the partition is located. In fact, there would be unnecessary computational 

overhead provided that the partition eliminated needs to be reused next time. Therefore, 

the computational cost of partition should be a crucial factor. The partition with higher 

cost shouldn't be replaced. Here we use ijRPT defined in Duan et al. [Duan, Li, Tang et al. 

(2016)] to express the computational cost of RDD partition. 

ijijRP STETT
ji

−=                                                                                                                   (2)  

Let ETij represent for the finish time, while the STij as the start time. At the same time, the 

execution time of a RDD is determined by the maximum time of all partitions, so the 

computational cost of RDD is as follows: 

},...,,...,max{
.,1 inijii RPRPRPR TTTT =                                                                                (3) 

(4) The size of partition 

The partitions that occupy the larger memory space should be preferentially eliminated to 

release more resources. 

3.2 The prediction mechanism for caching 

The prediction mechanism is divided into two parts: 

(1) When Ni  is equal to 2 
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In this case, the frequency will change to 1 by storing RDD in the cache. If not cache, 

there would be a recomputation cost. So it is necessary to decide whether it is worth to 

cache the RDD according to the relation: 

  
i

i

R

R

V

S
<

iRT                                                                                                                             (4) 

Where
iRS is the size of a RDD, and 

iRV is the speed for data persisting. If the re-

computing cost is larger than caching cost, it is suggested to cache the RDD. 

(2) When Ni >2, it is suggested to be cached 

The execution process is as follows: 

Algorithm 1: RDD automatic cache prediction algorithm.
 

Input：RDD sequence: R={R1...Ri...Rn} 

the usage frequency of RDD: NR 

the partition of RDD: RP 

the size of RDD partition: SRP 

the frequency to be used of RDD partition: NRP 

the remaining memory size of the storage node: Scach 

the C is donated as the set of partitions cached. 

Initialization：NR=NRP 

For (i=1 to n) 

 If (NR=2 and SRP<Scach) 

 if (cacheCost<countCost) then 

      C=C ∩ RP 

      NRP=NRP-1 

end if 

  else if (NR>2 and SRP<Scach) 

 C=C ∩ RP 

 NRP=NRP-1 

  else if (SRP>Scach) 

 call Algorithm 2 

  end if 

end for 
 

3.3 Weight replacement model 

Replacement operations are required when the storage space is insufficient to 

accommodate the RDD that needs to be cached. Also, the Storage section can apply to all 

free memory in the Execution section. When the execution requires more memory, the 

storage portion will spill the data to the disk (based on the storage_level) until the 
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memory borrowed is returned. Forced discard data is also based on LRU algorithm. In 

order to represent the importance of an index in the whole analysis process, we adopt the 

weight form. Therefore, to reduce the cost of the re-computation, we put forward the 

weight calculation model based on partition feature by using entropy method in Zuo et al. 

[Zuo, Cao and Dong (2013)] to optimize LRU algorithm. The entropy method determines 

the index weight based on the degree of variation of each index value. Entropy is a 

measure of the degree of disorder in the system and can be used to measure the effective 

information of known data packets and determine weights. By determining the weights 

based on the calculation of the entropy, the weight of each partition is determined 

according to the degree of difference in the feature values of the partitions. When there is 

a large difference between certain eigenvalues of the evaluation object, the entropy is 

smaller which means the number of valid information provided by this feature is larger. 

Accordingly, the weight of the object should be larger. Conversely, if the difference 

between a certain feature value is small, the entropy value should be larger. It indicates 

that the feature provides less information and the weight should be smaller. When a 

feature value of a partition is exactly the same, the entropy value reaches a maximum, 

which means that the feature value is useless information. The process of the weight 

calculation is as follows: 

(1) Converting the characteristic of partition into matrix form 

Assuming that there are n partitions in the storage memory, and each partition has m 

feature attributes. In this paper we set m=3, which means there are three features: Nij , ijRPT  

and SRij. Let Xij be the value of the j-th index of the i-th partition, the matrix is as follows: 
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(2) Normalization processing  

Since the measurement units of each feature are inconsistent, the standardized operations 

must be performed before computing. That is, the absolute value of the eigenvalue should 

be converted to the relative value to solve the homogeneity problem of different 

eigenvalues. The Nij and ijRPT are positive correlation index, and SRij belongs to negative 

correlation index. The normalized treatment formula is as follows: 
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For convenience, the normalized data X'ij is still represented by Xij. 

(3) Under the j-th feature, the i-th partition occupies the proportion of the feature  
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(4) The entropy of the j-th feature 

 
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Where the k>0, ln is natural logarithm, then the ej ≥0, and k=1/ln m2. 

(5) The difference coefficient of the j-th eigenvalue 

  jj eg −= 1                                                                                                         (9) 

(6) The weight of each feature 
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(7) The weight of each partition 


=

==

m

j

ijji niPWV
1

)....2,1(*                                                                               (11) 

 

Finally, by calculating the weight of each partition, the partition with lowest weight 

should be considered first to be replaced when the replacement happened. The process is  

as follows: 

Firstly, we need to compare the weight of the partition to be cached with the lowest 

weight: 

(1) If there is a qualified partition in the cache, release the partition. Otherwise, 

conversely turn to (2). 

(2) Put the RDD which needs to be cached to the wait cache area, and wait for weight 

updating in the storage memory. 
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The execution process is as follows: 

Algorithm 2: weight replacement 
 

Input：partition in cache area: Rp, weight：v 

            the size of Rp：SRP  

surplus space of storage memory：Scach 

            the C is donated as the set of partitions cached         

the set of the size for partitions cached: 

{CSRP1 ....CSRPp} 

for (i=1 to p) 

        if (CRPi .weigth < v ) 

                put CRPi to weigthList[j] according to the 

weight 

from small to large 

        end if 

 end for 

 for (i=1 to weigthList.length) 

       if (SRP<Scach-CSRPi) 

            Rp replace CRPi 

            NRP= NRP-1 

       else if 

           C=C 

           waiting for weight update 

       end if 

 end for 

3.4 The update mechanism for storage memory and weight of partition 

As we can see that in the process of task execution, the frequency of each partition to be 

used is constantly decreasing with the use of partitions, and the weights of the 

corresponding partitions are also changing. So we propose the update mechanism for 

storage memory and weight of partition: Whenever a partition in a storage area is used, 

the usage frequency of the partition is reduced by one, and all partitions are traversed to 

update the weight. At the same time, the partition to be used with frequency zero should 

be released to release more memory. During task execution, the weight of the partition 

should be updated whenever the remainder usage frequency of partitions in the storage 

area is reduced.  The execution process is as follows: 
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Algorithm 3: Update mechanism 

Input：the remainder usage frequency of partitions：NRP 

the C is donated as the set of partitions cached: 

C={CRP1,...,CRPi,...,CRPp} 

while a RDD will be used in computing: 

    for (i=1 to p) 

         if (CRPi will be used) then  

              NRPi=NRPi -1 

              renew CRPi.weigth 

         end if 

         if (NRPi==0)  

              C=C-CRPi 

         end if 

    end for 

4 Experimental verification 

The environment required in this experiment is as follows: 

(1) Cluster environment: Six virtual machines that created by two laptop computers and a 

desktop. 

(2) Cloud environment: Use Spark 2.0.1 as the computing framework and Hadoop Yarn    

as resource scheduling module. 

(3) Monitoring environment: nmon and nmon analyser. 

(4) Use The PageRank and K-means as the task algorithm, and choose three datasets from 

SNAP et al. [SNAP (2018)] and [UCI (2007)] respectively. The datasets are shown in 

Tab. 1 and Tab. 2. 

Table 1: The Description of datasets from SNAP 

   Name Size Description 

WikiTalk 63.3 M 
Communication network of Wikipedia 

(till January 2008) 

Web-BerKStan 105 M Web graph of Berkeley and Stanford 

Cit-Patents 267 M Citation network among US Patents 
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Table 2: The Description of datasets from UCI 

   Name Size Description 

NIPS_1987-2015 127 M 

This data set contains the distribution of words 

in the full text of the NIPS conference papers 

published from 1987 to 2015. 

LD2011_2014 249 M 
This data set contains electricity consumption of 

370 points/ clients 

USCensus1990 334 M 

The USCensus1990raw data set contains a one 

percent sample of the Public Use Microdata 

Samples (PUMS) person records drawn from the 

full 1990 census sample. 

4.1 The verification for RDD cache prediction mechanism 

This experiment was carried out under the PageRank and K-means tasks respectively, 

meanwhile completed under different sizes of data sets. In this experiment, we mainly 

compare and analyze the difference in execution time and memory utilization rate under 

without RDD cache selection and with RDD cache selection. As shown in Fig. 5, the 

results of each experiment are obtained by running 5 times. The Figs. 5(a) and 5(b) show 

the experimental results under the PageRank task, while the Figs. 5(b) and 5(c) are under 

the K-means. Through the comprehensive analysis of Figs. 5(a) and 5(c), when the 

dataset is relatively small, the task execution time is short, so the difference is not 

obvious. Along with the amount of data increases, the performance with the prediction 

mechanism for caching is well. Through the comprehensive analysis of Figs. 5(b) and 

5(d), the memory usage of the task with the prediction mechanism is very high mainly 

because the cache data will occupy storage memory after the cache mechanism is 

optimized. In summary, the prediction mechanism for caching reduce the execution time 

and improve the rate of memory usage to a certain extent. 
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(a) Time comparison under PageRank task 
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(b) Comparison of memory utilization under PageRank task 
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(c) Time comparison under K-means task 
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(d) Comparison of memory utilization under K-means task 

Figure 5: Schematic diagram of task execution time and memory utilization under 

optimization and unoptimized cache mechanism 
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4.2 The verification for weight replacement algorithm 

This part is implemented by modifying the evictBlocksToFreeSpace function in the 

source file named MemoryStore. 

The datasets of WikiTalk and NIPS_1987-2015 have been used in this verification 

separately. To ensure that there are multiple RDDs to be cached, the dataset is divided 

into several small datasets separately in the process of data reading by analyzing 

implementation code of PangRank and K-means. Now this process satisfies the 

conditions for multiple RDDs to be cached. 

Another condition is that there are RDDs that need to be cached, so we verify the weight 

replacement algorithm by using the RDD cache prediction mechanism proposed by this paper. 

This algorithm is called only when the storage memory is insufficient. So this experiment 

is verified under different memory sizes: 1 G, 2 G, 3 G and 4 G. As shown in Fig. 6, 

compared with LRU algorithm, when the memory is small, our improved algorithm could 

not reduce the execution time well for the reason that the analyzing of the partition 

features and the updating for weight and memory could occupy much time. With the 

increase of memory, the weight replacement algorithm performs well. When the memory 

is large, there is enough memory to store the cache partition, and the number of the 

partition replacement is reduced. As we can see that the execution time of the two 

algorithms is similar with enough memory. 

As Fig. 7 shown, we use the task execution speedup to measure the task performance. 

According to the Formula (1), it respectively shows the speedup under PageRank with 

WikiTalk and K-means with NIPS_1987-2015. As we can see, the optimized algorithm 

shows the poor performance in 1 G memory. While with the larger memory, it shows 

good performance. When the memory is large enough, the optimization algorithm 

advantage is no longer obvious. 
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(a) The contrast validation with WikiTalk dataset 
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 (b) The contrast validation with NIPS_1987-2015 dataset 

Figure 6: Time comparison analysis under different memory 
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Figure 7: Task execution speedup with different tasks 

5 Conclusion 

The By analyzing the characteristics of the Spark RDD data model, we propose three 

points: (1) Proposing prediction mechanism for RDD cache through the usage frequency 

of RDD, and the cost of re-computation and cache. (2) Based on the entropy method, we 

propose a weight model based on RDD partitioning feature by analyzing the remainder 

frequency of RDD partition, computational cost and the size of partition. (3) Putting 

forward the update mechanism for storage memory and weight of partition. In the actual 

running scene, the memory of the cluster environment is limited. For the multitask 

execution with big data, this method can effectively reduce the task execution time and 

improve the memory utilization. 
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