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Abstract: Image recognition has always been a hot research topic in the scientific 

community and industry. The emergence of convolutional neural networks(CNN) has 

made this technology turned into research focus on the field of computer vision, 

especially in image recognition. But it makes the recognition result largely dependent on 

the number and quality of training samples. Recently, DCGAN has become a frontier 

method for generating images, sounds, and videos. In this paper, DCGAN is used to 

generate sample that is difficult to collect and proposed an efficient design method of 

generating model. We combine DCGAN with CNN for the second time. Use DCGAN to 

generate samples and training in image recognition model, which based by CNN. This 

method can enhance the classification model and effectively improve the accuracy of 

image recognition. In the experiment, we used the radar profile as dataset for 4 categories 

and achieved satisfactory classification performance. This paper applies image recognition 

technology to the meteorological field. 
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1 Introduction 

Nowadays, with the development of deep learning, people are increasingly pursuing the 

accuracy of image recognition. Deep learning neural networks that mimic human 

thinking also appear more and more in this field. The design of the architecture, the 

tuning of parameters, and the selection of samples directly influences the final 

recognition results of the neural network. At present, many studies have used 

Convolutional Neural Network(CNN) as an entry point to improve the accuracy of image 

recognition. As we all know, the CNN can use the original pixels of the image directly as 

input. It is no longer necessary to extract the features in advance using the traditional 

method. This has reported superior performance compared to earlier work relying on 

manual features [Dixit, Chen, Gao et al. (2015)]. In fact, CNN is successfully applied for 

the classification of handwritten characters and gesture recognition [Kim, Lee and Park 

(2008)] which is applied directly to the data flow without pre-processing or feature 

selection. CNN training model is invariant to distortions such as scaling, translation, 
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rotation and has strong generalization ability. The biggest advantage of CNN is that can 

handle high-dimensional data onto the shared convolution kernel. Convolutional kernels 

deal with complex feature calculations through multi-layer training in end-to-end 

networks. This design can greatly reduce amounts of parameters of the neural network 

and at the same time reduce the complexity of the neural network model, giving an 

optimization space of large classification accuracy. 

Most of the CNN image classification is based on supervised learning. A large amount of 

data is needed as a training sample to obtain more accurate classification in training 

process. However, some samples are hard to collection. For example, radar profiles of the 

specific climate. It is extremely difficult to collect samples due to the limitations of the 

conditions. Fortunately, lan Goodfellow [Goodfellow, Pouget-Abadie, Mirza et al. (2014)] 

proposed GAN which was a framework of generating models and inspired by game 

theory. GAN can generate images or image restoration. In pix2pix, change monochrome 

image to color image, line drawing image of texture, shadows and luster image etc. [Isola, 

Zhu, Zhou et al. (2017)]. For the dispersive phenomenon that the raw GAN training 

appeared, Conditional GAN [Mirza and Osindero (2014)] turns the original generation 

process into a generation process based on some additional information. The generator 

tries to generate labels and random noise together. The discriminator discriminates 

between the data source and the data label at the same time, providing the generator of a 

more efficient gradient which makes it easily extendable to semi-supervised learning. 

After that, due to the instability and intractability of neural network self-training, 

DCGAN [Radford, Metz and Chintala (2016)] extends the structure to convolutional 

neural networks. In this work, a set of convolutional neural networks were proposed, 

using Batch Normalization to achieve local normalization making it possible to train real 

large-scale datasets such as CelebA. 

The major contributions of this paper are as follows: 

1. We designed a novel model structure to generate sample which hard to collect based 

on DCGAN’s high scalability and excellent sample generation capabilities. 

2. The learning rate decay strategy is used to speed up learning on generator optimization 

problems. 

3. In our image recognition experiment, we built a recognition framework based on CNN 

and matched enough sample generation to strengthen the training recognition model. 

Finally improved the classification accuracy. 

4. We used the radar profile as a dataset, applies the proposed technology to the 

meteorological field and extends the application of image recognition. 

2 Relation work 

2.1 GAN 

There are two components in the GAN framework. One is the generate model G and the 

other is the discriminant model D. The G model is responsible for producing spurious 

data that is close to the real data. The D model is responsible for identifying the 

authenticity of the data produced by G. Competition between D and G made the two sides 

constantly to optimize the training until reaching a balanced state. GAN can learn 
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independently through such clever design. Similar to the two-player min-max game, 

where one plays the generator role and attempts to generate samples from random noise, 

and another plays the discriminator, attempts to discriminate synthetic samples and real 

ones. Its overall loss function is expressed as minimizing the distance between the 

generated data distribution and the real data distribution. Given a generator condition, the 

best discriminator D is shown as: 

𝐷(𝑥) =
𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥)+𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)
                                                                                                  (1) 

In this theory, Goodfellow et al. [Goodfellow, Pouget-Abadie, Mirza et al. (2014)] 

concludes that the final desired result is that the real distribution 𝑃𝑑𝑎𝑡𝑎(𝑥) is equal to the 

generated distribution 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥) and the discriminant boundary is 1 2⁄ . However, it is 

easy to lose the direction of convergence because of GAN’s own degree of freedom in 

training is too large. In addition, the deep neural network of the GAN is not stable in 

training and prone to underfitting or overfitting. Therefore, it is difficult to adjust the 

parameters of the GAN itself during training. 

2.2 DCGAN representation 

OpenAI proposed Improved GAN [Salimans, Goodfellow, Zaremba et al. (2016)], which 

defined two training techniques: feature matching and minibatch discrimination. It 

enhances the diversity of samples generated by the generate network also increases the 

diversity of the discriminate network when discriminating samples. Inspired by this, 

DCGAN expanded GAN from multi-layer perceptron MLP structure of convolutional 

neural network structure [Radford, Metz and Chintala (2016)]. It provides a set of 

convolutional neural networks, removing the pooling layer and adding Batch 

Normalization between convolutional layer and activation function to achieve local 

normalization, which greatly improves the network model. DCGAN expands on GAN 

not only retains the ability to generate excellent data but also incorporates the advantages 

of CNN feature extraction, making it have an improvement in image analysis and 

processing capabilities. DCGAN has achieved satisfactory results from training in real 

large-scale datasets such as CelebA, LSUN and Google Image Net. Among the visual 

data, there are a lot of near-duplicate images, which cause a serious waste of limited 

storage, computing, and transmission resources of networks and a negative impact on 

recognition experience [Zhou, Wu, Huang et al. (2017)]. Therefore, in this paper, we 

designed sample generation experiments based on the DCGAN network structure. 

2.3 CNN image recognition 

Recently, CNN is widely used in image recognition applications [Oquab, Bottou, Laptev 

et al. (2014); Shin, Yamaguchi, Ohnishi et al. (2016)]. Different from existing methods, 

CNN can generate high-level semantic representations by learning and concatenating 

low-level edge and shape features from a large amount of labeled data. The upper layers 

of CNN are more sensitive to semantics, while the middle layers are particularly sensitive 

to underlying patterns such as colors and gradients, so using the upper layers or middle 

layers is a common and effective practice of CNN. Numerous practices and researches 

have made CNN have many variant forms. From the LeNet-5 [LeCun, Bottou, Bengio et 
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al. (1998)] to AlexNet which is the key to promote the development of CNN; From 

Googlenet to VGGNet and OverFeat, deep network extraction features can be used for 

image classification, detection and segmentation [Krizhevsky, Sutskever and Hinton 

(2012); Szegedy, Liu, Jia et al. (2015); Simonyan and Zisserman (2014)]. The aim of 

object detection is to find the location of all the targets and specify each target category 

on a given image or video. The radar profile that we want to recognize is different from 

the general object image. It describes categories based on spectral distribution and color 

similarity. So, this level of semantics can use CNN to perform feature extraction better 

[Dixit, Chen, Gao et al. (2015)]. Classifications operation need to be performed after the 

features were extracted from the recognition system. We directly connect feature extractors 

and classifiers in the network as the main structure of identification framework. This paper 

does not use MPM as a classifier, which can directly estimate the probabilistic accuracy 

bound by minimizing the maximum probability of misclassification [Gu, Sun and Sheng 

(2016)], but adopts the method of full connection layer and Softmax function classification. 

3 Method 

In this section, we will explain the main ideas and methods of this paper, including the 

establishment of network models, the generation of image samples, the performance of the 

sample test, and specific image recognition programs. The overall process is shown in Fig. 1. 

 

Figure 1: Image recognition system process framework 

3.1 Build DCGAN network 

DCGAN is implemented in convolutional neural networks. It can also be understood as 

the application of convolutional neural networks in GAN. In traditional CNN, feature 

extraction and down sampling are performed through the convolutional layer and the 

pooling layer respectively. But in DCGAN, the discriminative model and the generative 

model cancelled the pooling layer [Gong, Wang and Lazebnik (2014)], leaving only the 

convolutional layer and allowing the network to learn spatially up and down sampling by 

itself. The discriminative model is a convolutional neural network which removes the 

full-connected layer. All activation functions using LeakyReLu, and Sigmoid or SoftMax 

function is used as a binary problem. The essence of the discriminant model is to 

compress a picture into a feature vector. Generative model is a deconvolution process. 
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All activation functions except the output layer uses ReLu, and the output layer uses tanh 

function. In this way, it is possible to turn several random feature vectors into pictures. 

Upsampling and down sampling are achieved by defining stride when writing code. In 

the model structure of this paper, we build our own sample generation network and 

discriminant network by referring to the DCGAN network structure. 

 

Figure 2: The structural association of generative model and discriminative model in 

DCGAN 

As shown in Fig. 2. The overall network structure mainly includes two kinds of networks, 

a discriminative network and a generated network. Their layers are unified into 4 layers. 

Our goal is to train a generator 𝐺 that can transform the noise vector 𝑧 into sample 𝑥. The 

training target of the generator 𝐺  is defined by a discriminator 𝐷 which distinguished 

between the real sample data 𝑝𝑑𝑎𝑡𝑎(𝑥) and the generated data 𝑝𝑧(𝑧). The generator 𝐺 

will confuse the discriminator 𝐷 to think that the generated data is true. Through training 

will guide 𝐺  and 𝐷  eventually find a balance of non-convex game. We use gradient 

descent method of optimization and do without any assumptions or model requirements 

on the distribution of data in advance. The network loss function is defined by: 

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]                             (2) 

The convergence direction of the network is 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺). We decompose the loss 

function of formula (2) into two parts, where the discriminative model loss functions and 

the generative model loss function are as follows: 

𝐿𝑂𝑆𝑆(𝐷) = −(𝑙𝑜𝑔(𝐷1(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷2(𝐺(𝑧))))                                                      (3) 

𝐿𝑂𝑆𝑆(𝐺) = −(𝑙𝑜𝑔(𝐷2(𝐺(𝑧))))                                                                                        (4) 

where 𝐷 represents a discriminator, 𝐺 represents a generator. 𝐺(𝑧) is a sample generated 

by a random vector and 𝑥 is a real sample data. We obtain the optimal weight value by 

minimizing the loss function. Then to make the generative model generate the sample 

what we need. We have adopted a strategy with a constantly decreasing learning rate in 

order to speed up learning in training process. The reason why the strategy with a 

constantly decreasing learning rate is adopted because of DCGAN uses mini-batch 

gradient descent to optimize the network parameters in this paper. Appearing of noise let 
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the descending process do not to converge accurately on the iterative process. Whenever 

training a certain number of times, the learning rate will be decreasing once. In the 

beginning, a larger learning rate can achieve very fast convergence. As the learning rate 

getting smaller, the stride of convergence also decreasing. It will not cause much error 

even if it swings around the minimum value. The learning rate decay strategy can be 

expressed as: 

𝛼𝑖 =
1

1+𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒∗𝑒𝑝𝑜𝑐ℎ𝑖
∗ 𝛼0                                                                                            (5) 

The 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 will set to 0.95 in subsequent experiments, 𝑒𝑝𝑜𝑐ℎ𝑖 is represented as the 

𝑖 th training. 𝛼0  is the initial learning rate. The decayed learning rate needs to be 

combined with a optimizer in order to achieve a goal of quickly obtaining an optimal 

solution and making the later training more stable. An optimizer that operates on 

parameters, such as Momentum which makes the gradient steeper. Although it can 

converge faster, makes the training very difficult. Another optimizer, such as AdaGrad, 

which adds punish patterns based on modifying the learning rate so that each parameter 

has its own learning efficiency but it’s inefficient. In this paper, we combine these two 

optimizers and use Adam to accelerate the training of neural networks. Its mathematical 

expression is as follows: 

𝑚 = 𝑏1 ∗ 𝑚 + (1 − 𝑏1) ∗ 𝑑𝑥                                                                                        (6) 

𝑣 = 𝑏2 ∗ 𝑣 + (1 − 𝑏2) ∗ 𝑑𝑥2                                                                                       (7) 

𝑊+= −𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 ∗ 𝑚 √𝑣⁄                                                                                          (8) 

In the formula, 𝑏  represents bias and 𝑊  represents weight. The updating of weight 

parameters depends on two variables 𝑚 and 𝑣 and the amount of change, 𝑑𝑥. Formula (6) 

contains the Momentum gradient attribute, and formula (7) contains AdaGrad’s 

resistance attribute. Therefore, taking both 𝑚 and 𝑣 into account by formula (8) weight 

parameters can be updated. 

In the previous tests, it was often found that there were barely noticeable difference in the 

generated images because the sample parameters almost converged on one point. During 

the sample generation experiment, we used mini-batch execution to improve training 

efficiency. This strategy can make reasonable use of the computer’s memory while also 

saving the training time. But at the same time, batch training also brings about 

competition between the gradients. Through the study of neural network, it is found that 

when the parameters of a certain layer of neural network change with the gradient 

training, the distribution of the output data of the layer may change. For the each layer of 

the neural network, the output distribution of each layer will be different from the 

corresponding input signal distribution after the operation within the layer. This 

difference will increase with the increase of the network depth, which resulting in the 

covariate shift [Ioffe and Szegedy (2015)] problem that the trained model cannot be 

generalization well. Gradient may gradually vanish when it spreads. For this reason, we 

add Batch Normalization between the convolution and activation functions to solve the 

vanishing gradient problem and help the gradient propagated to each layer. Batch 

Normalization can overcome the difficulty of deep neural network training well. In the 

process of normalization, the batch training samples can be expressed as: 𝑋 =



 

 

 

A Method for Improving CNN-Based Image Recognition Using DCGAN                 173 

{𝑥1, 𝑥2, … , 𝑥𝑚}; Where 𝑥𝑖 represents the sample at index 𝑖. The mean and variance 

can be calculated by these samples. Mathematical  expression is as follows: 

𝑚𝑒𝑎𝑛𝑥 =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1                                                                                                             (9) 

𝜎𝑥
2 =

1

𝑚
∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛𝑥)2𝑚

𝑖=1                                                                                           (10) 

Formula (9) shows calculating the average value through sample points. Using the 

average can be calculated variance by formula (10). According to the calculated results, 

the normalization operation can be executed. The range of 𝑥𝑖 can be constrained by the 

element 𝜀 in conjunction with formula (11). 𝜀 is an indefinite number within a certain 

range. 

𝑥𝑖 =
𝑥𝑖−𝑚𝑒𝑎𝑛𝑥

√𝜎𝑥
2+𝜀

                                                                                                                  (11) 

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽                                                                                                                    (12) 

To enable DCGAN to learn the appropriate input,  γ and β are used to transform 𝑥𝑖, and the 

process is represented by 𝐵𝑁𝛾,𝛽(𝑥𝑖). Both γ and β are learned autonomously by the network. 

3.2 Generate samples by DCGAN 

We trained 2000 radar profiles with rain-wind and rain-nowind categories on DCGAN, 

respectively. In order to train more efficiently and prevent all images of being read into 

memory at one time, we used a mini-batch training method. Each batch trains 64 images. 

For every 100 training batch, a sample plot will be generated locally for visual inspection. 

We set the number of training for 300 times to make the network fully learn from 

generating features. After the end of the training, the generated model was saved for the 

next training and generate sample. With DCGAN, rain-wind and rain-nowind samples 

were generated for later experiments. Fig. 3 shows the generated samples in different 

epoch cases. The first half (raw) is the training results by original DCGAN, and the last 

half (add norm) is the training results after adding Batch Normalization. It can be seen 

that the sample convergence is more realistic after adding Batch Normalization. 

 

Figure 3: Radar profile dataset 
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3.3 Establishing image recognition network 

We established a recognition framework based on deep learning convolutional neural 

networks to identify the radar profiles. 

As shown in Fig. 4, according to the scale and number of test data, referring to the 

VGG19 network form, the model for identification is constructed as a neural network 

having 4 layers of convolution layers and 3 layers of full connection layers. The result of 

the output is the four classifications of the radar profile image. 

Initialization weights are taken as random values of a normal distribution standard 

deviation from 0.01, and the initialization bias value is 0. The convolution operation 

stride uniformly set to 1. The processing mode is SAME for the exceeding boundary 

portion. The stride of the pooling operation set to 2, its boundary processing method is 

VALID. The initialization operations for weights and bias, convolution kernel, and 

pooling in the remaining convolution layer are same as the first layer. Since the picture 

pixels are used as direct inputs, the data dimension needs to be changed to obtain the final 

one-dimensional classification result. Therefore, we define 1024 kernels of the first fully 

connected layer. Image recognition network to add dropout mechanism between fully 

connected layers in order to prevent too many unnecessary kernels of participating in 

calculations. The second layer of full connectivity define 512 kernels, and the last layer 

uses 4 kernels as output, representing 4 types of probability results. 

    

Figure 4: Image recognition framework: We defined 32 convolution kernels of 5x5 

dimensions in the first convolutional layer. The second convolution layer sets 64 

convolution kernels of 5x5 dimensions; the third convolution layer sets 128 convolution 

kernels of 3x3 dimensions; The fourth convolution layer also sets 128 convolutions of 

3x3 dimensions. Behind the link, there are 3 fully connected layers 

3.4 Sample performance test 

Although the samples generated by DCGAN have been affirmed visually, there is still 

necessary to carry out a test to prove whether the sample really has the attributes of real 

data [Theis, Oord and Bethge (2015)]. We use the pre-trained CNN identification network 

of Fig. 4 as the detection basis, randomly input part of the generated samples of the network 

and verify the quality of the generated samples based on the classification results. 
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4 Experiments 

In this section, we will first introduce the dataset and then statistically the pre-training 

results of the recognition framework as the basis for subsequent optimization. According 

to the verification result of the generated sample, we have selected part of the generated 

sample and the real sample to participate retraining based on the pre-training. The final 

result includes the accuracy in training and the final test accuracy. 

4.1 Dataset preparation 

Our pre-training dataset has 10,000 radar profiles, including four classification categories: 

Rain-wind, rain-nowind, norain-wind, norain-nowind. There are 2500 radar profiles in 

each category, and the pixel size of each image is 540*440. Radar profiles are from radar 

observation stations in Nanjing and Anhui in 2016 and 2017. We prepared two categories 

generated samples for quality verification: 200 rain-wind images and 200 rain-nowind 

images. In the final mixing training, samples generated by DCGAN were expanded to 

1000 in each category. In the final testing, we collected the latest radar profiles for 

classification. 

4.2 Deep learning model 

All models of image recognition are trained in the deep network framework shown in Fig. 

4. The first training starts from the initial state, because the objects we are training are 

special, and using an off-the-shelf model such as the ImageNet Champion model do not 

work well. 

4.3 Radar profile recognition 

We conduct a pre-training experiment firstly, which prove that our CNN network is better 

than the original CNN network.  After the pre-training, it was found that the accuracy of 

the raw CNN basically converged to about 51%, while the accuracy of our custom CNN 

structure basically converged to about 84% in Fig. 5. The experimental results show that 

our designed network has more advantages. 

 

Figure 5: Comparison of customized CNN and raw CNN pre-training result 
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According to the experimental results, we abandon the raw CNN network structure and 

run our self-designed model for the following experiments. After testing radar profiles of 

4 categories, the results are shown in Fig. 6. 

 

Figure 6: 4-classification result of radar profiles tested by pre-training models 

Before carrying out the mixing training, we verified the authenticity of the DCGAN 

generated samples. Here, we only need to verify both rain-wind and rain-nowind because 

these two kinds of samples are relatively difficult to obtain. The generated samples were 

input into the pre-trained model, and the correct rate of classification was counted. As 

shown in Fig. 7, the generated samples are already very close to the real samples. 

 

Figure 7: Generated samples test result 

We trained the data generated by DCGAN together with real data and found that the 

accuracy of the mixed training has improved. In Fig. 8, the accuracy rate after mixing 

training has converged to 89.37%, and the training process is more stable. 

 

Figure 8: Comparison of pre-training convergence result 
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Finally, we collected the latest radar data onto testing. The results show that the accuracy 

of model recognition after mixed training has improved, as shown in Fig. 9. 

 

Figure 9: The results of test the improved recognition model 

5 Conclusion 

In this paper, we have combined DCGAN with CNN for the second time. The 

experimental results show that accelerating learning through the learning rate decayed 

strategy can make the sample generated by DCGAN more valuable for training. Not only 

can participate in training with real data onto the CNN network that we design, but also 

improve the recognition accuracy of radar profile images. At the same time, we also 

solved the problem of difficult convergence of parameters caused by the difficulty of 

collecting samples and excessively similar features. In terms of details of recognition, 

DCGAN can be optimized by adjusting the number of trainings and learning rate to 

obtain more realistic samples. The CNN image recognition framework can also make the 

results more accurate by setting network depth and convolution kernel parameters. 

Combining image recognition of meteorological applications is an extension of deep 

learning in applications. Later, we can automate the recognition task, detect weather 

conditions in real time, and use more optimized deep learning algorithms to achieve more 

accurate weather forecasts. 
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