

Copyright © 2018 Tech Science Press CMC, vol.57, no.1, pp.167-178, 2018

CMC. doi:10.32604/cmc.2018.02356 www.techscience.com/cmc

A Method for Improving CNN-Based Image Recognition Using

DCGAN

Wei Fang1, 2, Feihong Zhang1, *, Victor S. Sheng3 and Yewen Ding1

Abstract: Image recognition has always been a hot research topic in the scientific

community and industry. The emergence of convolutional neural networks(CNN) has

made this technology turned into research focus on the field of computer vision,

especially in image recognition. But it makes the recognition result largely dependent on

the number and quality of training samples. Recently, DCGAN has become a frontier

method for generating images, sounds, and videos. In this paper, DCGAN is used to

generate sample that is difficult to collect and proposed an efficient design method of

generating model. We combine DCGAN with CNN for the second time. Use DCGAN to

generate samples and training in image recognition model, which based by CNN. This

method can enhance the classification model and effectively improve the accuracy of

image recognition. In the experiment, we used the radar profile as dataset for 4 categories

and achieved satisfactory classification performance. This paper applies image recognition

technology to the meteorological field.

Keywords: DCGAN, image recognition, CNN, samples.

1 Introduction

Nowadays, with the development of deep learning, people are increasingly pursuing the

accuracy of image recognition. Deep learning neural networks that mimic human

thinking also appear more and more in this field. The design of the architecture, the

tuning of parameters, and the selection of samples directly influences the final

recognition results of the neural network. At present, many studies have used

Convolutional Neural Network(CNN) as an entry point to improve the accuracy of image

recognition. As we all know, the CNN can use the original pixels of the image directly as

input. It is no longer necessary to extract the features in advance using the traditional

method. This has reported superior performance compared to earlier work relying on

manual features [Dixit, Chen, Gao et al. (2015)]. In fact, CNN is successfully applied for

the classification of handwritten characters and gesture recognition [Kim, Lee and Park

(2008)] which is applied directly to the data flow without pre-processing or feature

selection. CNN training model is invariant to distortions such as scaling, translation,

1 School of Computer & Software, Jiangsu Engineering Center of Network Monitoring, Nanjing University

of Information Science & Technology, Nanjing, 210044, China.

2 State Key Lab. for Novel Software Technology, Nanjing University, Nanjing, 210023, China.

3 Computer Science Department, University of Central Arkansas, Conway AR, 72035, USA.

* Corresponding Author: Feihong Zhang. Email: 20171211494@nuist.edu.cn.

168 Copyright © 2018 Tech Science Press CMC, vol.57, no.1, pp.167-178, 2018

rotation and has strong generalization ability. The biggest advantage of CNN is that can

handle high-dimensional data onto the shared convolution kernel. Convolutional kernels

deal with complex feature calculations through multi-layer training in end-to-end

networks. This design can greatly reduce amounts of parameters of the neural network

and at the same time reduce the complexity of the neural network model, giving an

optimization space of large classification accuracy.

Most of the CNN image classification is based on supervised learning. A large amount of

data is needed as a training sample to obtain more accurate classification in training

process. However, some samples are hard to collection. For example, radar profiles of the

specific climate. It is extremely difficult to collect samples due to the limitations of the

conditions. Fortunately, lan Goodfellow [Goodfellow, Pouget-Abadie, Mirza et al. (2014)]

proposed GAN which was a framework of generating models and inspired by game

theory. GAN can generate images or image restoration. In pix2pix, change monochrome

image to color image, line drawing image of texture, shadows and luster image etc. [Isola,

Zhu, Zhou et al. (2017)]. For the dispersive phenomenon that the raw GAN training

appeared, Conditional GAN [Mirza and Osindero (2014)] turns the original generation

process into a generation process based on some additional information. The generator

tries to generate labels and random noise together. The discriminator discriminates

between the data source and the data label at the same time, providing the generator of a

more efficient gradient which makes it easily extendable to semi-supervised learning.

After that, due to the instability and intractability of neural network self-training,

DCGAN [Radford, Metz and Chintala (2016)] extends the structure to convolutional

neural networks. In this work, a set of convolutional neural networks were proposed,

using Batch Normalization to achieve local normalization making it possible to train real

large-scale datasets such as CelebA.

The major contributions of this paper are as follows:

1. We designed a novel model structure to generate sample which hard to collect based

on DCGAN’s high scalability and excellent sample generation capabilities.

2. The learning rate decay strategy is used to speed up learning on generator optimization

problems.

3. In our image recognition experiment, we built a recognition framework based on CNN

and matched enough sample generation to strengthen the training recognition model.

Finally improved the classification accuracy.

4. We used the radar profile as a dataset, applies the proposed technology to the

meteorological field and extends the application of image recognition.

2 Relation work

2.1 GAN

There are two components in the GAN framework. One is the generate model G and the

other is the discriminant model D. The G model is responsible for producing spurious

data that is close to the real data. The D model is responsible for identifying the

authenticity of the data produced by G. Competition between D and G made the two sides

constantly to optimize the training until reaching a balanced state. GAN can learn

A Method for Improving CNN-Based Image Recognition Using DCGAN 169

independently through such clever design. Similar to the two-player min-max game,

where one plays the generator role and attempts to generate samples from random noise,

and another plays the discriminator, attempts to discriminate synthetic samples and real

ones. Its overall loss function is expressed as minimizing the distance between the

generated data distribution and the real data distribution. Given a generator condition, the

best discriminator D is shown as:

𝐷(𝑥) =
𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥)+𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)
 (1)

In this theory, Goodfellow et al. [Goodfellow, Pouget-Abadie, Mirza et al. (2014)]

concludes that the final desired result is that the real distribution 𝑃𝑑𝑎𝑡𝑎(𝑥) is equal to the

generated distribution 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥) and the discriminant boundary is 1 2⁄ . However, it is

easy to lose the direction of convergence because of GAN’s own degree of freedom in

training is too large. In addition, the deep neural network of the GAN is not stable in

training and prone to underfitting or overfitting. Therefore, it is difficult to adjust the

parameters of the GAN itself during training.

2.2 DCGAN representation

OpenAI proposed Improved GAN [Salimans, Goodfellow, Zaremba et al. (2016)], which

defined two training techniques: feature matching and minibatch discrimination. It

enhances the diversity of samples generated by the generate network also increases the

diversity of the discriminate network when discriminating samples. Inspired by this,

DCGAN expanded GAN from multi-layer perceptron MLP structure of convolutional

neural network structure [Radford, Metz and Chintala (2016)]. It provides a set of

convolutional neural networks, removing the pooling layer and adding Batch

Normalization between convolutional layer and activation function to achieve local

normalization, which greatly improves the network model. DCGAN expands on GAN

not only retains the ability to generate excellent data but also incorporates the advantages

of CNN feature extraction, making it have an improvement in image analysis and

processing capabilities. DCGAN has achieved satisfactory results from training in real

large-scale datasets such as CelebA, LSUN and Google Image Net. Among the visual

data, there are a lot of near-duplicate images, which cause a serious waste of limited

storage, computing, and transmission resources of networks and a negative impact on

recognition experience [Zhou, Wu, Huang et al. (2017)]. Therefore, in this paper, we

designed sample generation experiments based on the DCGAN network structure.

2.3 CNN image recognition

Recently, CNN is widely used in image recognition applications [Oquab, Bottou, Laptev

et al. (2014); Shin, Yamaguchi, Ohnishi et al. (2016)]. Different from existing methods,

CNN can generate high-level semantic representations by learning and concatenating

low-level edge and shape features from a large amount of labeled data. The upper layers

of CNN are more sensitive to semantics, while the middle layers are particularly sensitive

to underlying patterns such as colors and gradients, so using the upper layers or middle

layers is a common and effective practice of CNN. Numerous practices and researches

have made CNN have many variant forms. From the LeNet-5 [LeCun, Bottou, Bengio et

170 Copyright © 2018 Tech Science Press CMC, vol.57, no.1, pp.167-178, 2018

al. (1998)] to AlexNet which is the key to promote the development of CNN; From

Googlenet to VGGNet and OverFeat, deep network extraction features can be used for

image classification, detection and segmentation [Krizhevsky, Sutskever and Hinton

(2012); Szegedy, Liu, Jia et al. (2015); Simonyan and Zisserman (2014)]. The aim of

object detection is to find the location of all the targets and specify each target category

on a given image or video. The radar profile that we want to recognize is different from

the general object image. It describes categories based on spectral distribution and color

similarity. So, this level of semantics can use CNN to perform feature extraction better

[Dixit, Chen, Gao et al. (2015)]. Classifications operation need to be performed after the

features were extracted from the recognition system. We directly connect feature extractors

and classifiers in the network as the main structure of identification framework. This paper

does not use MPM as a classifier, which can directly estimate the probabilistic accuracy

bound by minimizing the maximum probability of misclassification [Gu, Sun and Sheng

(2016)], but adopts the method of full connection layer and Softmax function classification.

3 Method

In this section, we will explain the main ideas and methods of this paper, including the

establishment of network models, the generation of image samples, the performance of the

sample test, and specific image recognition programs. The overall process is shown in Fig. 1.

Figure 1: Image recognition system process framework

3.1 Build DCGAN network

DCGAN is implemented in convolutional neural networks. It can also be understood as

the application of convolutional neural networks in GAN. In traditional CNN, feature

extraction and down sampling are performed through the convolutional layer and the

pooling layer respectively. But in DCGAN, the discriminative model and the generative

model cancelled the pooling layer [Gong, Wang and Lazebnik (2014)], leaving only the

convolutional layer and allowing the network to learn spatially up and down sampling by

itself. The discriminative model is a convolutional neural network which removes the

full-connected layer. All activation functions using LeakyReLu, and Sigmoid or SoftMax

function is used as a binary problem. The essence of the discriminant model is to

compress a picture into a feature vector. Generative model is a deconvolution process.

A Method for Improving CNN-Based Image Recognition Using DCGAN 171

All activation functions except the output layer uses ReLu, and the output layer uses tanh

function. In this way, it is possible to turn several random feature vectors into pictures.

Upsampling and down sampling are achieved by defining stride when writing code. In

the model structure of this paper, we build our own sample generation network and

discriminant network by referring to the DCGAN network structure.

Figure 2: The structural association of generative model and discriminative model in

DCGAN

As shown in Fig. 2. The overall network structure mainly includes two kinds of networks,

a discriminative network and a generated network. Their layers are unified into 4 layers.

Our goal is to train a generator 𝐺 that can transform the noise vector 𝑧 into sample 𝑥. The

training target of the generator 𝐺 is defined by a discriminator 𝐷 which distinguished

between the real sample data 𝑝𝑑𝑎𝑡𝑎(𝑥) and the generated data 𝑝𝑧(𝑧). The generator 𝐺

will confuse the discriminator 𝐷 to think that the generated data is true. Through training

will guide 𝐺 and 𝐷 eventually find a balance of non-convex game. We use gradient

descent method of optimization and do without any assumptions or model requirements

on the distribution of data in advance. The network loss function is defined by:

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)[𝑙𝑜𝑔 𝐷(𝑥)] + 𝐸𝑧~𝑃𝑧(𝑧) [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] (2)

The convergence direction of the network is 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

𝑉(𝐷, 𝐺). We decompose the loss

function of formula (2) into two parts, where the discriminative model loss functions and

the generative model loss function are as follows:

𝐿𝑂𝑆𝑆(𝐷) = −(𝑙𝑜𝑔(𝐷1(𝑥)) + 𝑙𝑜𝑔(1 − 𝐷2(𝐺(𝑧)))) (3)

𝐿𝑂𝑆𝑆(𝐺) = −(𝑙𝑜𝑔(𝐷2(𝐺(𝑧)))) (4)

where 𝐷 represents a discriminator, 𝐺 represents a generator. 𝐺(𝑧) is a sample generated

by a random vector and 𝑥 is a real sample data. We obtain the optimal weight value by

minimizing the loss function. Then to make the generative model generate the sample

what we need. We have adopted a strategy with a constantly decreasing learning rate in

order to speed up learning in training process. The reason why the strategy with a

constantly decreasing learning rate is adopted because of DCGAN uses mini-batch

gradient descent to optimize the network parameters in this paper. Appearing of noise let

172 Copyright © 2018 Tech Science Press CMC, vol.57, no.1, pp.167-178, 2018

the descending process do not to converge accurately on the iterative process. Whenever

training a certain number of times, the learning rate will be decreasing once. In the

beginning, a larger learning rate can achieve very fast convergence. As the learning rate

getting smaller, the stride of convergence also decreasing. It will not cause much error

even if it swings around the minimum value. The learning rate decay strategy can be

expressed as:

𝛼𝑖 =
1

1+𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒∗𝑒𝑝𝑜𝑐ℎ𝑖
∗ 𝛼0 (5)

The 𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒 will set to 0.95 in subsequent experiments, 𝑒𝑝𝑜𝑐ℎ𝑖 is represented as the

𝑖 th training. 𝛼0 is the initial learning rate. The decayed learning rate needs to be

combined with a optimizer in order to achieve a goal of quickly obtaining an optimal

solution and making the later training more stable. An optimizer that operates on

parameters, such as Momentum which makes the gradient steeper. Although it can

converge faster, makes the training very difficult. Another optimizer, such as AdaGrad,

which adds punish patterns based on modifying the learning rate so that each parameter

has its own learning efficiency but it’s inefficient. In this paper, we combine these two

optimizers and use Adam to accelerate the training of neural networks. Its mathematical

expression is as follows:

𝑚 = 𝑏1 ∗ 𝑚 + (1 − 𝑏1) ∗ 𝑑𝑥 (6)

𝑣 = 𝑏2 ∗ 𝑣 + (1 − 𝑏2) ∗ 𝑑𝑥2 (7)

𝑊+= −𝑙𝑒𝑎𝑟𝑛_𝑟𝑎𝑡𝑒 ∗ 𝑚 √𝑣⁄ (8)

In the formula, 𝑏 represents bias and 𝑊 represents weight. The updating of weight

parameters depends on two variables 𝑚 and 𝑣 and the amount of change, 𝑑𝑥. Formula (6)

contains the Momentum gradient attribute, and formula (7) contains AdaGrad’s

resistance attribute. Therefore, taking both 𝑚 and 𝑣 into account by formula (8) weight

parameters can be updated.

In the previous tests, it was often found that there were barely noticeable difference in the

generated images because the sample parameters almost converged on one point. During

the sample generation experiment, we used mini-batch execution to improve training

efficiency. This strategy can make reasonable use of the computer’s memory while also

saving the training time. But at the same time, batch training also brings about

competition between the gradients. Through the study of neural network, it is found that

when the parameters of a certain layer of neural network change with the gradient

training, the distribution of the output data of the layer may change. For the each layer of

the neural network, the output distribution of each layer will be different from the

corresponding input signal distribution after the operation within the layer. This

difference will increase with the increase of the network depth, which resulting in the

covariate shift [Ioffe and Szegedy (2015)] problem that the trained model cannot be

generalization well. Gradient may gradually vanish when it spreads. For this reason, we

add Batch Normalization between the convolution and activation functions to solve the

vanishing gradient problem and help the gradient propagated to each layer. Batch

Normalization can overcome the difficulty of deep neural network training well. In the

process of normalization, the batch training samples can be expressed as: 𝑋 =

A Method for Improving CNN-Based Image Recognition Using DCGAN 173

{𝑥1, 𝑥2, … , 𝑥𝑚}; Where 𝑥𝑖 represents the sample at index 𝑖. The mean and variance

can be calculated by these samples. Mathematical expression is as follows:

𝑚𝑒𝑎𝑛𝑥 =
1

𝑚
∑ 𝑥𝑖

𝑚
𝑖=1 (9)

𝜎𝑥
2 =

1

𝑚
∑ (𝑥𝑖 − 𝑚𝑒𝑎𝑛𝑥)2𝑚

𝑖=1 (10)

Formula (9) shows calculating the average value through sample points. Using the

average can be calculated variance by formula (10). According to the calculated results,

the normalization operation can be executed. The range of 𝑥𝑖 can be constrained by the

element 𝜀 in conjunction with formula (11). 𝜀 is an indefinite number within a certain

range.

𝑥𝑖 =
𝑥𝑖−𝑚𝑒𝑎𝑛𝑥

√𝜎𝑥
2+𝜀

 (11)

𝑦𝑖 = 𝛾𝑥𝑖 + 𝛽 (12)

To enable DCGAN to learn the appropriate input, γ and β are used to transform 𝑥𝑖, and the

process is represented by 𝐵𝑁𝛾,𝛽(𝑥𝑖). Both γ and β are learned autonomously by the network.

3.2 Generate samples by DCGAN

We trained 2000 radar profiles with rain-wind and rain-nowind categories on DCGAN,

respectively. In order to train more efficiently and prevent all images of being read into

memory at one time, we used a mini-batch training method. Each batch trains 64 images.

For every 100 training batch, a sample plot will be generated locally for visual inspection.

We set the number of training for 300 times to make the network fully learn from

generating features. After the end of the training, the generated model was saved for the

next training and generate sample. With DCGAN, rain-wind and rain-nowind samples

were generated for later experiments. Fig. 3 shows the generated samples in different

epoch cases. The first half (raw) is the training results by original DCGAN, and the last

half (add norm) is the training results after adding Batch Normalization. It can be seen

that the sample convergence is more realistic after adding Batch Normalization.

Figure 3: Radar profile dataset

174 Copyright © 2018 Tech Science Press CMC, vol.57, no.1, pp.167-178, 2018

3.3 Establishing image recognition network

We established a recognition framework based on deep learning convolutional neural

networks to identify the radar profiles.

As shown in Fig. 4, according to the scale and number of test data, referring to the

VGG19 network form, the model for identification is constructed as a neural network

having 4 layers of convolution layers and 3 layers of full connection layers. The result of

the output is the four classifications of the radar profile image.

Initialization weights are taken as random values of a normal distribution standard

deviation from 0.01, and the initialization bias value is 0. The convolution operation

stride uniformly set to 1. The processing mode is SAME for the exceeding boundary

portion. The stride of the pooling operation set to 2, its boundary processing method is

VALID. The initialization operations for weights and bias, convolution kernel, and

pooling in the remaining convolution layer are same as the first layer. Since the picture

pixels are used as direct inputs, the data dimension needs to be changed to obtain the final

one-dimensional classification result. Therefore, we define 1024 kernels of the first fully

connected layer. Image recognition network to add dropout mechanism between fully

connected layers in order to prevent too many unnecessary kernels of participating in

calculations. The second layer of full connectivity define 512 kernels, and the last layer

uses 4 kernels as output, representing 4 types of probability results.

Figure 4: Image recognition framework: We defined 32 convolution kernels of 5x5

dimensions in the first convolutional layer. The second convolution layer sets 64

convolution kernels of 5x5 dimensions; the third convolution layer sets 128 convolution

kernels of 3x3 dimensions; The fourth convolution layer also sets 128 convolutions of

3x3 dimensions. Behind the link, there are 3 fully connected layers

3.4 Sample performance test

Although the samples generated by DCGAN have been affirmed visually, there is still

necessary to carry out a test to prove whether the sample really has the attributes of real

data [Theis, Oord and Bethge (2015)]. We use the pre-trained CNN identification network

of Fig. 4 as the detection basis, randomly input part of the generated samples of the network

and verify the quality of the generated samples based on the classification results.

A Method for Improving CNN-Based Image Recognition Using DCGAN 175

4 Experiments

In this section, we will first introduce the dataset and then statistically the pre-training

results of the recognition framework as the basis for subsequent optimization. According

to the verification result of the generated sample, we have selected part of the generated

sample and the real sample to participate retraining based on the pre-training. The final

result includes the accuracy in training and the final test accuracy.

4.1 Dataset preparation

Our pre-training dataset has 10,000 radar profiles, including four classification categories:

Rain-wind, rain-nowind, norain-wind, norain-nowind. There are 2500 radar profiles in

each category, and the pixel size of each image is 540*440. Radar profiles are from radar

observation stations in Nanjing and Anhui in 2016 and 2017. We prepared two categories

generated samples for quality verification: 200 rain-wind images and 200 rain-nowind

images. In the final mixing training, samples generated by DCGAN were expanded to

1000 in each category. In the final testing, we collected the latest radar profiles for

classification.

4.2 Deep learning model

All models of image recognition are trained in the deep network framework shown in Fig.

4. The first training starts from the initial state, because the objects we are training are

special, and using an off-the-shelf model such as the ImageNet Champion model do not

work well.

4.3 Radar profile recognition

We conduct a pre-training experiment firstly, which prove that our CNN network is better

than the original CNN network. After the pre-training, it was found that the accuracy of

the raw CNN basically converged to about 51%, while the accuracy of our custom CNN

structure basically converged to about 84% in Fig. 5. The experimental results show that

our designed network has more advantages.

Figure 5: Comparison of customized CNN and raw CNN pre-training result

176 Copyright © 2018 Tech Science Press CMC, vol.57, no.1, pp.167-178, 2018

According to the experimental results, we abandon the raw CNN network structure and

run our self-designed model for the following experiments. After testing radar profiles of

4 categories, the results are shown in Fig. 6.

Figure 6: 4-classification result of radar profiles tested by pre-training models

Before carrying out the mixing training, we verified the authenticity of the DCGAN

generated samples. Here, we only need to verify both rain-wind and rain-nowind because

these two kinds of samples are relatively difficult to obtain. The generated samples were

input into the pre-trained model, and the correct rate of classification was counted. As

shown in Fig. 7, the generated samples are already very close to the real samples.

Figure 7: Generated samples test result

We trained the data generated by DCGAN together with real data and found that the

accuracy of the mixed training has improved. In Fig. 8, the accuracy rate after mixing

training has converged to 89.37%, and the training process is more stable.

Figure 8: Comparison of pre-training convergence result

A Method for Improving CNN-Based Image Recognition Using DCGAN 177

Finally, we collected the latest radar data onto testing. The results show that the accuracy

of model recognition after mixed training has improved, as shown in Fig. 9.

Figure 9: The results of test the improved recognition model

5 Conclusion

In this paper, we have combined DCGAN with CNN for the second time. The

experimental results show that accelerating learning through the learning rate decayed

strategy can make the sample generated by DCGAN more valuable for training. Not only

can participate in training with real data onto the CNN network that we design, but also

improve the recognition accuracy of radar profile images. At the same time, we also

solved the problem of difficult convergence of parameters caused by the difficulty of

collecting samples and excessively similar features. In terms of details of recognition,

DCGAN can be optimized by adjusting the number of trainings and learning rate to

obtain more realistic samples. The CNN image recognition framework can also make the

results more accurate by setting network depth and convolution kernel parameters.

Combining image recognition of meteorological applications is an extension of deep

learning in applications. Later, we can automate the recognition task, detect weather

conditions in real time, and use more optimized deep learning algorithms to achieve more

accurate weather forecasts.

Acknowledgement: This work was supported in part by the Priority Academic Program

Development of Jiangsu Higher Education Institutions.

References

Dixit, M.; Chen, S.; Gao, D.; Rasiwasia, N.; Vasconcelos, N. (2015): Scene

classification with semantic fisher vectors. Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pp. 2974-2983.

Gong, Y.; Wang, L.; Guo, R.; Lazebnik, S. (2014): Multi-scale orderless pooling of deep

convolutional activation features. European Conference on Computer Vision, pp. 392-407.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D. et al. (2014):

Generative adversarial nets. Advances in Neural Information Processing Systems, pp.

2672-2680.

Gu, B.; Sun, X.; Sheng V. S. (2011): Structural minimax probability machine. IEEE

Transactions on Neural Networks and Learning Systems, vol. 28, no. 7, pp. 1646-1656.

178 Copyright © 2018 Tech Science Press CMC, vol.57, no.1, pp.167-178, 2018

Ioffe, S.; Szegedy, C. (2015): Batch normalization: Accelerating deep network training

by reducing internal covariate shift. Machine Learning, pp. 1-11.

Isola, P.; Zhu, J. Y.; Zhou, T.; Efros, A. A. (2017): Image-to-Image translation with

conditional adversarial networks. Computer Vision and Pattern Recognition, pp. 1-17.

Kim, H. J.; Lee, J. S.; Park, J. H. (2008): Dynamic hand gesture recognition using a

CNN model with 3D receptive fields. IEEE Conference on Neural Networks and Signal

Processing, pp. 14-19.

Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (2012): Imagenet classification with deep

convolutional neural networks. Advances in Neural Information Processing Systems, pp.

1097-1105.

LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. (1998): Gradient-based learning applied

to document recognition. Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324.

Mirza, M.; Osindero, S. (2014): Conditional generative adversarial nets. Machine

Learning, pp. 1-7.

Oquab, M.; Bottou, L.; Laptev, I.; Sivic, J. (2014): Learning and transferring mid-level

image representations using convolutional neural networks. IEEE International Conference

on Computer Vision and Pattern Recognition, pp. 1717-1724.

Radford, A.; Metz, L.; Chintala, S. (2015): Unsupervised representation learning with

deep convolutional generative adversarial networks. Computer Science, pp. 1-15.

Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Radford, A. et al. (2016):

Improved techniques for training gans. Advances in Neural Information Processing

Systems, pp. 2234-2242.

Simonyan, K.; Zisserman, A. (2014): Very deep convolutional networks for large-scale

image recognition. Computer Vision and Pattern Recognition, pp. 1-14.

Shin, A.; Yamaguchi, M.; Ohnishi, K.; Harada, T. (2016): Dense image representation

with spatial pyramid VLAD coding of CNN for locally robust captioning. Computer

Vision and Pattern Recognition, pp. 1-18.

Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S. et al. (2015): Going deeper with

convolutions. Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pp. 1-9.

Theis, L.; Oord, A.; Bethge, M. (2015): A note on the evaluation of generative models.

Machine Learning, pp. 1-10.

Zhou, Z.; Wu, Q. J.; Huang, F.; Sun, X. (2017): Fast and accurate near-duplicate image

elimination for visual sensor networks. International Journal of Distributed Sensor

Networks, vol. 13, no. 2.

