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Abstract: With the rapid development of mechanical equipment, mechanical health 

monitoring field has entered the era of big data. Deep learning has made a great 

achievement in the processing of large data of image and speech due to the powerful 

modeling capabilities, this also brings influence to the mechanical fault diagnosis field. 

Therefore, according to the characteristics of motor vibration signals (nonstationary and 

difficult to deal with) and mechanical ‘big data’, combined with deep learning, a motor 

fault diagnosis method based on stacked de-noising auto-encoder is proposed. The 

frequency domain signals obtained by the Fourier transform are used as input to the 

network. This method can extract features adaptively and unsupervised, and get rid of the 

dependence of traditional machine learning methods on human extraction features. A 

supervised fine tuning of the model is then carried out by backpropagation. The 

Asynchronous motor in Drivetrain Dynamics Simulator system was taken as the research 

object, the effectiveness of the proposed method was verified by a large number of data, 

and research on visualization of network output, the results shown that the SDAE method 

is more efficient and more intelligent. 
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1 Introduction 

Motor has been the most widely used drive machine in modern society. Once a failure 

occurs, it may damage the entire equipment, even affect the entire production process, 

resulting in huge economic losses and even bring disaster to people's lives. Therefore, it 

is of great economic and social significance to diagnose the motor faults in time and 

accurately and take corresponding measures [Li, Sanchez and Zurita (2016)]. 

The traditional method of motor fault diagnosis is based on some parameters which can 

be measured practically. The fault feature is extracted by means of mathematical and 

signal processing methods. These parameters include vibratory [Lei, Li and Lin (2015)], 

acoustic [Hou, Jiang and Lu (2013)], thermal [Younus and Yang (2012)], electrical 
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[Ottewill and Orkisz (2013)], etc. These methods require the operator to have a wealth of 

practical experience and a good understanding of the motor and related background 

knowledge. To check the overall health of the motor, a condition monitoring system was 

used to collect real-time data from the machine, so a large amount of data is acquired 

after the long running of the motor. As the data is generally collected faster than 

diagnosticians can analyze it, there is an urgent need for diagnosis methods that can 

effectively analyze massive data and automatically provide accurate diagnosis results. 

This kind of methods is called intelligent fault diagnosis methods. Glowacz [Glowacz 

(2015)] proposed a motor fault analysis technique using of acoustic signals by Coiflet 

Wavelet Transform, and K-Nearest Neighbor Classifier. Zhao et al. [Zhao, Fang and 

Deng (2016)] adopted the wavelet analysis method to decompose the vibration 

acceleration signal of the motor in order to obtain the energy ratio of each sub-frequency 

band. Then use the energy ratio to train the optimized support vector machine (SVM). Li 

et al. [Li, Li and Jiang (2014)] proposed a fault diagnosis method for asynchronous motor, 

which based on Kernel Principal Component Analysis (KPCA) and Particle Swarm 

Support Vector Machine. For other diagnostic objects, Pandya et al. [Pandya, Upadhyay 

and Harsha (2014)] utilized multinomial logistic regression and wavelet packet transform 

to diagnose bearing faults. Khazaee et al. [Khazaee, Ahmadi and Omid (2014)] 

developed a fault classifier using data fusion of the vibration and the acoustic signals for 

planetary gearboxes by Dempster-Shafer evidence theory. However, through the 

literature review, it has some obvious insufficient, the features input into classifiers are 

usually extracted and selected by diagnosticians from the original signals, much 

depending on prior knowledge about signal processing techniques and diagnostic 

expertise. In addition, manual feature extraction often makes the raw signals lose a 

certain part. Therefore, it is necessary to use adaptive mining features instead of manually 

extracted features for fault diagnosis.  

In the current intelligent diagnosis methods, deep learning has powerful representation 

ability, which can overcome the above shortcomings. In 2006, Hinton [Hinton, Osindero 

and Teh (2006)] proposed the deep learning method for the first time, and it set off a 

wave of deep learning in the academic and industrial. At present, deep learning shows a 

clear advantage to process large data volume of images and speech [Hinton, Deng and Yu 

(2012)]. In large scale visual recognition challenge involving millions of labeled images, 

Krizhevsky et al. [Krizhevsky, Sutskever and Hinton (2012)] used a DNN-based method 

and got the best result. In 2012, Hinton et al. [Hinton, Deng and Yu (2012)] had a great 

progress in speech recognition by deep neural networks, and the training data reached 

3000 h. The aforementioned applications prove that deep learning is a promising tool for 

dealing with massive data. In the field of mechanical fault diagnosis, deep learning is also 

applied. Wang et al. [Wang, Li and Rui (2015)] utilized Singular Value Decomposition 

and Deep Belief Networks to build a fault diagnosis system for rolling bearings, and it 

achieved a satisfactory result. Lei et al. [Feng, Lei and Lin (2016)] proposed a new 

method for gear fault diagnosis. In this method, they established a Stacked Auto-encoder 

Network, and then utilized the frequency domain as the input to train the network and 

realize the gear fault diagnosis. Considering the similarity between health states of 

complex rotary machinery components and heterogeneous data in image pattern 

classification problems with high-dimensionality, deep learning may show great 
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advantages in system fault diagnosis thanking to the advantage of a dominant training 

mechanism and deep network architecture [Arel, Rose and Karnowski (2010)]. Besides, 

Deep learning is considered to be able to discover higher order feature representations 

associated with raw signals, which enables the diagnostic system to be more effective and 

accurate when faced with complex and mixed health classification tasks [Tamilselvan and 

Wang (2013)]. Recent theoretical studies suggest that in challenging classification tasks, 

network structures should be deeper and more complex in order to achieve better and more 

robust generalization performance [Vincent (2010); Zhang (2015)]. However, despite these 

advantages, deep learning is still rarely used in electromechanical systems for fault 

diagnosis. 

In the present study, in order to cope with complex motor fault classification problems, a 

deep learning method based on SDAE (Stacked Denoising Auto-encoder) was proposed. 

The raw signal was converted into Frequency domain signal by Fourier transform. After 

that, the Frequency domain signal was used as the input of the SDAE and used these 

preprocessed sample to do supervised training in order to realize the motor fault 

diagnosis. The proposed deep learning method is trained by using the data collected from 

Drivetrain Dynamics Simulator system and verified by test set, to determine whether the 

method is applicable to detection and classification of complex health conditions. 

Existing health state classification methods, such as SVM and EMD (Empirical Mode 

Decomposition) are used for comparison. 

This paper is organized as follows: SDAE methods is introduced in Section 2. Section 3 

is dedicated to a description of the model design and signal preprocessing. In Section 4, 

the proposed model is validated using the testing datasets that collecting from the motors 

of the Drivetrain Dynamics Simulator system; besides, the research on the selection of 

parameters and feature visualization is also discussed and a comparison is also made with 

the proposed methods in this section. Section 5 concludes the paper. 

2. Stacked de-noising auto-encoder 

2.1 Auto-encoder 

Stack de-nosing auto-encoder(SDAE) is one of the main deep learning methods. Auto-
encoder (AE) is the basic component of this method. In essence, auto-encoder is a three-
layer unsupervised network that can reproduce the input signal as much as possible. The 
training process of AE network is shown in Fig. 1, the input signal is converted into a 
feature encoding by the encoder, and then converted to the reconstructed signal through 
the decoder, afterward, calculating the error of the reconstructed signal and the input 
signal, then, let the error back-propagate to the encoder, so the error can be decreased by 
adjusting the weights of each neuron in the AE network. When the error is reduced to the 
desired value, the AE network is said to have completed training. 



 

 

 

226   Copyright © 2018 Tech Science Press             CMC, vol.57, no.2, pp.223-242, 2018 

 

Figure 1: Auto-encoder 

{x(1), x(2), ⋯ x(3)} denote the sample data set that training for the AE network, and this 

sample set is composed of n m-dimensional vectors (𝓍 ∈ [0,1]𝓂×1) ,encoding is the 

process of propagating the input sample 𝓍 from the input layer to the hidden layer, then 

the n-dimensional vector will be mapped into k-dimensional vector(ℎ ∈ [ ]𝑘×1) by the 

activation function (Such as Tanh, Sigmoid, etc.), as shown in Eq. (1) and the Sigmoid 

activation function is given in Eq. (2) 

𝑓(∙) =
1

1+𝑒−𝑡                                                                                                                 (1) 

ℎ = 𝑓(𝜃1)(𝓍) = 𝑓(𝑤1 ∙ 𝓍 + 𝑏1)                                                                                       (2) 

Where 𝓍  and  𝑓(∙)  denote the input sample and activation function, 𝜃1 = {𝓌1, 𝑏1} 

represents the network parameters, 𝓌1 is the weight matrix and 𝑏1 is the bias vectors. 

Decoding is to propagate the feature encoding from the hidden layer to the output layer, 

then the k-dimensional vector ℎ  will be mapped into m-dimensional vector by the 

activation function, finally, reconstruct the input sample and will obtain 𝓍̂ ∈ [0,1]𝓂×1 , 

the decoding processing is as follows. 

𝓍̂ = 𝑓(𝜃2)(ℎ) = 𝑓(𝑤2 ∙ ℎ + 𝑏2)                                                                                    (3) 

Where 𝓍̂ and 𝑓(∙) denote the reconstruction of the sample 𝓍 and the activation function, 

𝜃2 = {𝓌2, 𝑏2} represents the network parameters, 𝓌2 is the weight matrix and 𝑏2 is the 

bias vectors.  

The goal of the AE network is to find a set of optimal parameters 𝜃∗ =
{𝑤1

∗, 𝑤2
∗, 𝑏1

∗, 𝑏2
∗}  which enable the output to be equal to the input data, that is to 

minimize the loss function(𝐿(𝑤1, 𝑤2, 𝑏1, 𝑏2)). 

𝐿(𝑤1, 𝑤2, 𝑏1, 𝑏2) = [
1

𝑛
∑ 𝐽(𝑥(𝑖), 𝑥(𝑖))𝑛

𝑖=1 ] +
𝜆

2
∑ ∑ ∑ (𝑊𝑖𝑗

(𝑙))
2𝑠𝑙+1

𝑗=1
𝑠𝑙
𝑖=1

𝑛𝑙−1
𝑙=1                         (4) 
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J(𝑥(𝑖), 𝑥(𝑖)) =
1

2
‖𝑥(𝑖) − 𝑥(𝑖)‖

2
=

1

2
‖𝑥(𝑖) − 𝑓(𝑤2 ∙ 𝑓(𝑤1 ∙ 𝑥 + 𝑏1) + 𝑏2)‖

2
               (5) 

The first item in Eq. (4) represents the sum of the error with the input and output data of 

all training samples, where 𝑥(𝑖)  and 𝑥(𝑖) represent the input vectors and reconstruction 

vectors of the i-th samples. As shown in Eq. (5), 𝐽(𝑥(𝑖), 𝑥(𝑖)) stands for the mean square 

error (MSE) between 𝑥(𝑖)  and 𝑥(𝑖) . The second item in Eq. (4) is the regularization 

constraint item, it is used to prevent over fitting. 

AE network minimizing the loss function 𝐿(𝑤1, 𝑤2, 𝑏1, 𝑏2) by the error back propagation 

and the gradient descent method. The process of iterative optimization of AE network is 

as follows 

Step 1: Initialize all the network parameters (𝑤1, 𝑤2, 𝑏1, 𝑏2). 

Step 2: Forward propagation and get the value of the hidden layer and the output layer 

neuron.  

Step 3: Calculate the value of the error function 𝐿(𝑤1, 𝑤2, 𝑏1, 𝑏2) in the current network 

state and determine whether the error is to achieve the desired minimum :If so, then the 

AE network is trained to complete and the current network parameters(𝑤1, 𝑤2, 𝑏1, 𝑏2) are 

optimal; If it is not, do the next step. 

Step 4: Calculate the residual error 𝛿𝑖
(3)

 of each neuron in the output layer of the network 

and the residual error 𝛿𝑗
(2)

 of each neuron node in the hidden layer, as shown in Eqs. (6) 

and (7). Based on the residual error, the residual error is propagated by the gradient descent 

method, and the network parameters 𝑤1, 𝑤2, 𝑏1, 𝑏2 are updated, as shown in Eqs. (8) and 

(9). 

 

𝛿𝑖
(3) =

𝜕𝐽(𝑤1,𝑤1,𝑏1,𝑏1)

𝜕𝑥
= −(𝓍 − 𝓍̂) ∙ 𝑓′(𝑥𝑖̂)                                                             (6) 

𝛿𝑗
(2)

= (∑ 𝑤𝑖𝑗
(2)𝑆3

𝑖=1 ∙ 𝛿𝑖
(3)

) ∙ 𝑓′(ℎ𝑗)                                                                           (7) 

𝑊𝑖𝑗
(𝑙)

= 𝑊𝑖𝑗
(𝑙)

− 𝛼
𝜕𝐿(𝑤1,𝑤2,𝑏1,𝑏2)

𝜕𝑊
𝑖𝑗
(𝑙)                                                                                     (8) 

𝑏𝑖
(𝑙)

= 𝑏𝑖
(𝑙)

− 𝛼
𝜕𝐿(𝑤1,𝑤2,𝑏1,𝑏2)

𝜕𝑏
𝑖
(𝑙)                                                                                     (9) 

Where in the Eqs. (6), (7), (8), (9), 𝑊𝑖𝑗
𝑙  is the weight between the lth layer and the l+1t  

layer, 𝑏𝑖
(𝑙)

 stands for the bias between the lth layer and the l+1th layer and 𝑆3 represents 

the number of neurons in the output layer; 𝑓(∙) is the activation function. 

Step 5: Complete this iteration and return to Step 2. 

2.2 De-noising auto-encoders 

In reality, some part of the signal will lose the authenticity by the existence of noise (If 

the motor vibration signal is disturbed by the noise at a certain time, the feature of the 

signal will not express the motor state accurately.). Due to the above factor, the features 

obtained by AE method may be unreliable. De-noising Auto-encoder is to add noises to 
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the training data on the basis of the Auto-encoder. The encoder needs to learn to get rid of 

noises so as to obtain the input signal which is not contaminated by noises, which makes 

it more robust. 

First of all, according to the 𝑞𝐷 distribution, the random noise will be added in the sample 

𝓍𝓃, such as Eq. (10). 

)|~(~~ xxqx D                                                                                                                  (10) 

Where, 𝓍̃  is the corrupted input data. And 𝓍̃  is achieved by means of a stochastic 

mapping of 𝑞𝐷(𝓍̃|𝓍). 

Then, the same as the traditional AE, it uses optimization algorithm to complete the 

network training by repeated iteration. In DAE method, we add random noise into the 

training samples. So, the influence of training samples and test samples distribution will 

be reduced, and the robustness of feature expression can be improved. 

2.3 Stacked de-noising auto-encoder 

Stacked De-noising Auto-encoder (SDAE) is stacked by many DAEs, the hidden layer of 

the above level DAE is used as the input layer of the next DAE, that is the feature vector 

of the above DAE hidden layer is used as the input of the hidden layer in next level, thus 

forming a multi-level network structure (Fig. 2). Bengio et al pointed out that different 

feature representation can highlight or remove some of the explanatory factors of the data, 

so that it can have different expression ability and multi-layer network structure can 

enhance the ability to distinguish the input data and weaken the non-related factors. So 

that to get the feature representation which is more suitable for task requirements. 

The training of SDAE network: Firstly, input the initial data, train DAE1 network and get 

feature encoding h1; then, put the feature encoding h1 that get from the DAE1 network as 

the input of DAE2 network, and so on, put the feature encoding of DAE(n-1) network as 

the input of DAEn network, then training the DAEn network and get the final feature 

edcoding hn of the SDAE network. 

The function of SDAE network is to feature encoding the input samples and strengthen 

the ability to distinguish the input data by the multi-times encoding of multi-layer 

network, which is conducive to better achieve sample classification. SDAE is an 

unsupervised network, which cannot complete the sample classification problem. In order 

to apply the SDAE network to the classification problem, the last layer of the SDAE 

network is coupled with a supervised network. As shown in Fig. 3, a supervised classifier 

(Softmax: will be introduced in the 2.3 Section) is added to the feature encoding of DAEn, 

so that the entire network becomes supervised. 

 



 

 

 

Fault Diagnosis of Motor in Frequency Domain Signal                                       229 

 

Figure 2: Network structure of SDAE 

 

Figure 3: Supervised network 

2.4 Classifier 

Softmax is a generalization of Logistic classifier, mainly to solve the multi-classification 

problem. Suppose the input sample in the training data is 𝓍 and the corresponding label is 

𝑦. It will determine the sample 𝑗 probability for a category for 𝑝(𝑦 = 𝑗|𝑥). Thus, for a 
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class K classifier, the output will be a vector of K dimension (The sum of elements in a 

vector is 1), as shown in Eq. (11). 
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Where, 𝜃1; 𝜃2; ⋯ ; 𝜃𝑘 ∈ ℜ𝑛+1  are the parameter of our model; Notice that the term
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. normalizes the distribution, so that it sums to one. 

In the training, after using the gradient descent method, the cost function of Softmax can 

be minimized by several iterations in order to complete the network training. The cost 

function 𝐽(𝜃) is shown in Eq. (12). 
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                                                                   (12) 

Where, 1{∙} is a indicative function, which means when the value of the braces is true, the 

result is 1; otherwise, the result is 0. 

3 Model design and Signal preprocessing 

The process of motor fault network training that based on SDAE is divided into 5 steps, 

with Fig. 4 showing the flow chart. 

Step 1: Obtain the different fault signals of motor, then, take spectral analyzing, get the 

frequency domain signals as the input. 

Step 2: Determine network parameters (such as network structure, learning rate, number 

of iterations, etc.). 

Step 3: Layer by layer training according to motor fault features. In this paper, the 

number of hidden layer is N. The Auto-encoder neural network is trained sequentially. 

Let the output of DAE1 be the input of DAE2 and let the output of DAE2 (ℎ(ℎ(𝓍))) 

input to the classifier Softmax. According to the error of the network output and the 

expected target, the weight and bias term of each layer of the network are adjusted by the 

back propagation algorithm. 

Step 4: Determine whether the accuracy meets requirements. If it meets, end the network 

training; if not satisfied, then adjust the network parameters and repeat the above steps 

(3). 

Step 5: Complete network construction. 
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Figure 4: Flow chart of motor fault diagnosis 

The input signals in this paper are frequency domain signals. Fast Fourier transform (FFT) 

is used to analyze the original signal in frequency domain to obtain frequency domain 

signals. The specific process is shown in Fig. 5. 

 

Figure 5: Signal preprocessing 

4 Experiment and analysis 

4.1 Data description 

In this paper, the research object is the Asynchronous motor in Drivetrain Dynamics 

Simulator system (Fig. 6) and the signal type is the vibration signal, we use SDAE 
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method to monitor and diagnose their health status. The system consists of asynchronous 

motor, two levels of planetary gear box, fixed-axis gear box and magnetic powder brake. 

The sensor is installed on the right end of the motor. By changing the motor, we can 

simulate 7 different fault states. As shown in Tab. 1. 

 

Figure 6: Drivetrain dynamics simulator system 

For data acquisition, the working speed of the motor was 60 Hz, a sampling rate of 5 KHz 

was used for the motor faults. In order to ensure the diversity of the experimental data, 8 

different working conditions were simulated when the data were collected correspond to 4 

speeds (3560 RPM, 3580 RPM, 3600 RPM, 3620 RPM) and two different loads (have or 

not). Considering the influence of sensor position, two acceleration sensors are installed at 

the 9 o’clock and 12 o’clock positions on the right side of the motor (As show in Fig. 6). 

When selecting data, each working condition corresponds to 200 samples (each sensor 

contributes 100 signals). Thus, the total number of samples for each fault is 1600, the 

dataset contains 11200 samples. Each sample corresponds to the vibration signal of 4000 

points. 

Table 1: Seven states of the motor 

Motor state SDAE sample number Label 

Normal 1600 1 

built-in rotor unbalance 1600 2 

stator winding faults 1600 3 

built-in faulted bearing 1600 4 

built-in bowed rotor 1600 5 

built-in broken rotor bars 1600 6 

Voltage unbalance and single phase 1600 7 

4.1.1 Fault description 

We collected data on seven different health conditions of the motor (As shown in Tab. 1). 

These conditions involve normal, built-in rotor unbalance, stator winding faults, built-in 

faulted bearing, built-in bowed rotor, built-in broken rotor bars and voltage unbalance 
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and single phasing. In each experiment, different motors were replaced, while the other 

components were normal.  

Rotor unbalance is achieved by taking a balanced rotor from the manufacturer and 

intentionally removing balance weights and/or adding weight. The balance weights are 

attached to small aluminum pins protruding from both ends of the rotor. The bowed rotor 

motor consists of a motor with an intentionally bent rotor in the center 0.010. The faulted 

bearing motor consists of a motor with intentionally faulted bearings: One bearing with an 

inner race fault, and one bearing with an outer race fault. The broken rotor bar motor 

consists of a motor already fitted with an intentionally broken rotor bar. Enough material has 

been removed to expose three rotor bars. The motor has two windings with a 4V to 5V 

voltage difference which have been tapped to enable adding an additional load to the 

winding via an external control box. The control box consists of a 0-4 ohm variable resistor. 

The variable resistor or rheostat is used to introduce varying amounts of resistance in the 

turn-to-turn short between the windings, high resistance simulates an insulated winding and 

low resistance simulates a shorted winding. The phase loss and voltage imbalance is 

achieved by switching phases on and off; and introducing resistance with a control box. 

Simply connector the wire from the motor controller to the control box, and then connect the 

control box to the MFS. The phase loss switch opens the circuit to the first phase. The 

voltage control switch introduces a variable resistor of 0-25 ohm to the second phase. The 

third phase wiring remains untouched. 

4.2 SDAE experiment and analysis 

4.2.1 Number of hidden layers and nodes 

In SDAE model, the number of hidden nodes and the depth of the deep architecture is 

normally of great importance to achieving high performance. Therefore, an experiment 

had been taken based on different hidden nodes and deep architecture. However, for 

better experimentation, all the other classifier model parameters are set as shown in Tab. 

2. Then, change the number of network layers and the number of nodes, and get the 

results shown in Tab. 3. It can be seen that when the first layer consisted of 1000 or 500, 

the error is too big, but when the nodes of first layer is 200 or 100, we can get better 

results. 

The network structure should be as simple as possible, so focus on the first layer of the 

node to 100 of the situation. Through more experiments, we found that the effect of 3 

hidden layers was significantly better than 2 and when the hidden layer is too much, the 

experimental effect may be reduced. Therefore, in order to ensure faster computing speed 

and less resource consumption, 3 hidden layer structures (100-100-50) are used. 

Table 2: The SDAE classifier model parameters 

Learning rate 0.5 Noising mask probability 0.5 Epoch (fine tuning) 100 

Epoch(autoencoder) 50 Batch-size (autoencoder) 100 Batch-size (fine tuning) 100 
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Table 3: Experimental result comparison with different hidden layer parameters 

Number of hidden nodes Number of hidden layer Error 

1000-500-100 3 0.8571 

1000-100 2 0.3952 

1000-100-50 3 0.8571 

500-200-100 2 0.8571 

500-200-100-50 4 0.8571 

500-100 2 0.1467 

500-100-100 3 0.8571 

200-100-100 3 0.0067 

200-100-50 3 0.1648 

100-100 2 0.1505 

100-100-100-100 4 0.0032 

100-100-100-100-100 5 0.0095 

100-100-50 3 0.0032 

100-100-50-20 4 0.0057 

100-100-50-20-20 5 0.4286 

100-50 2 0.1543 

100-50-50 3 0.0067 

4.2.2 The selection of batch-size 

Batch-size is an important parameter in deep learning. It represents the amount of data 

that is loaded at one time during training. The batch-size first determines the direction in 

which the gradient descends. When the data set is small, Full batch learning can be used. 

The direction determined by the full data set can better represent the sample population, 

so that it is more accurate to the direction of the extremum. However, for big data set, 

with the massive increase in data sets and memory constraints, it is becoming 

increasingly impossible to load all the data at once. So need to be trained in batches. But 

due to the sampling difference between the batches, the corrections for each gradient may 

cancel each other and cannot be corrected. In a certain range, in general, the greater the 

batch-size, the more accurate the descent direction, the smaller the training shock. 

However, blindly increasing the batch-size will reduce the number of iterations of an 

epoch, and the time it takes to achieve the same precision is greatly increased. Therefore, 

choosing a suitable batch-size not only improves accuracy, but also reduces the training 

time of the network. So we selected the batch-size as shown in Tab. 4 to experiment, In 

the best network structure (2000-100-100-50) and keep the other parameters unchanged. 

As can be seen from the table, when the batch-size reached 35, the accuracy rate reached 

the maximum and the time consumption is relatively small. 
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Table 4: Error under different batch-size 

Batch-

size 
700 500 250 175 140 100 70 35 20 10 

Error 0.467 0.316 0.216 0.012 0.006 0.003 0.004 0.001 0.001 0.001 

Time(s) 152 158 166 184 191 202 223 276 326 572 

4.2.3 Noising mask probability 

The method of adding noise in this method does not add the Gauss noise, Instead, the 

value of the input layer node is set to 0 with a certain probability. This method is similar 

to the commonly used Dropout in deep learning, but dropout works on the hidden layer. 

This way (SDAE) is similar to the human sensory system, such as when people look at 

objects, if a small part of the object is blocked, people can still identify it. This approach 

can improve the generalization ability of the network. The method of adding noise is used 

only in unsupervised training, not in fine tuning. 

 

Figure 7: Error under different batch-size 

In order to determine the best noising mask probability, we designed the following 

experiment (network structure: 2000-100-100-50, batch-size: 20, in addition to the 

noising mask probability, other parameters remain unchanged). 

From Tab. 5, When the noising mask probability is very low, the error rate can be 0, but 

we suspect that the network may be overfitting. At this point, the generalization ability of 

the network is insufficient. To enable the network to have high generalization capability, 

we choose 0.6 as the appropriate probability of noising mask. (The choice of this 

parameter is conservative, and the research on the relationship between specific 

generalization ability and noising mask probability is not in this paper). 
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Table 5: Error under different noising mask 

Noising mask Error Noising mask Error 

0.7 0.0076 0.35 0.0011 

0.65 0.0054 0.3 0 

0.6 0.0011 0.25 0 

0.55 0.0011 0.2 0 

0.5 0.0011 0.15 0 

0.45 0.0011 0.1 0 

0.4 0.0011 0 0 

4.2.4 learning rate 

In the process of training the SDAE, the gradient descent method is used for optimizing, 

learning rate is an important parameter that influences the adjustment of the weights and 

the convergence of the error. In order to improve the efficiency of network training, it is 

very important to select a suitable learning rate. However, as shown in Tab. 6, the 

learning rate is less affected under the current data set and parameters. 

In the following experiment, we chose 0.5 as learning rate. 

Table 6: Error under different learning rate 

Learning rate Error Learning rate Error 

0.7 0.0046 0.35 0.0011 

0.65 0.0032 0.3 0.0011 

0.6 0.0011 0.25 0.0015 

0.55 0.0011 0.2 0.0011 

0.5 0.0011 0.15 0.0023 

0.45 0.0011 0.1 0.0011 

0.4 0.0023   

 

Figure 8: The frequency domain signal of each fault 
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4.2.5 Fine tuning 

To further improve the classification performance, a back-propagation algorithm was 

used to fine tune the trained encoder. The network parameters are updated by minimizing 

training errors. The SDAE training process is divided into two steps: unsupervised 

training (Training the encoder layer by layer) and supervised training (Fine tuning). In 

order to explore the validity of fine tuning, we do feature visualization with the input 

samples of different faults by the trained network. So, we select one sample for each fault 

(as show in Fig. 8). Then, perform a forward operation, calculate the output of each 

encoder and print them. 

Fig. 9 shows the seven different fault frequency domain signals, it is clear that the 

amplitude of the seventh failure is much larger than the first six. The second and seventh 

faults have more frequency domain components. The frequency domain signals of the 1, 

3, and 4 faults are similar, at the same time, 5 and 6 fault have a high degree of similarity. 

As show in Fig. 9, it is the output of three encoders with unsupervised training under 50 

epochs (AE before fine tuning). and the output of the encoders after fine tuning. It can be 

clearly seen that the difference between the outputs of the various faults before fine 

tuning is not significant. But after fine tuning, there are very significant differences 

between the output of the various faults. It can be seen that the effect of fine tuning is 

obvious, it can improve the accuracy of the network. 

 

Figure 9: The output of each encoder before and after fine tuning 

0 100 200 300 400 500 600 700
Input data

-2

0

2

A
m

p
lit

u
d
e
/m

1

1 2 3 4 5 6 7

0 100 200 300 400 500 600 700
Input data

-2

0

2

A
m

p
lit

u
d
e
/m

2

1 2 3 4 5 6 7

0 50 100 150 200 250 300 350
Input data

-2

0

2

A
m

p
lit

u
d
e
/m

3

1 2 3 4 5 6 7

0 100 200 300 400 500 600 700
Input data

-2

0

2

A
m

p
lit

u
d
e
/m

1

1 2 3 4 5 6 7

0 100 200 300 400 500 600 700
Input data

-2

0

2

A
m

p
lit

u
d
e
/m

2

1 2 3 4 5 6 7

AE1 before fine tuning AE1 after fine tuning

AE2 before fine tuning

AE3 before fine tuning

AE2 after fine tuning

AE3 after fine tuning

0 50 100 150 200 250 300 350
Input data

-2

0

2

A
m

p
lit

u
d
e
/m

3

1 2 3 4 5 6 7



 

 

 

238   Copyright © 2018 Tech Science Press             CMC, vol.57, no.2, pp.223-242, 2018 

 

Figure 10: Scatter plots of feature vectors after T-SNE 

4.3 Research on feature visualization 

In this particular section, we use the T-SNE method (Which is a kind of non-linear 

dimensionality reduction, which is to ensure that similar data points in high-dimensional 

space are as close as possible in low-dimensional space) to reduce each self-encoded 

output to 2-dimensional and print them out to represent different faults in different colors. 

The input of this experiment is for all test set data. As can be seen from the first figure of 

Fig. 10, after the first encoder, the fault data formed seven clusters. But it is clear that the 

blue and red clusters each have a gap. Then in the second figure, the clustering of each 

fault data is more closely (like a bar), but the red data showed a clear separation. Finally, 

after the third encoder, the apparent separation of red data is gone, all faults are well 

clustered into clusters. Thus, in dealing with high-dimensional data, SDAE has a good 

classification ability. 

4.4 Comparative analysis between SDAE methods and other motor fault diagnosis 

methods 

Feature extraction and pattern recognition are the two main processes of motor fault 

diagnosis. At present, the main methods of feature extraction are wavelet analysis, 

empirical mode decomposition and principal component analysis. We can also complete 

the feature extraction by analyzing the average motor signal variance, kurtosis, peak 

value and energy ratio. The methods commonly used in motor fault diagnosis are BP 

neural network and SVM. 
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Figure 11: Cross validation results by each method 

In order to compare with the traditional intelligent methods, in this paper, we also use 

EMD+SVM (BP) [Hu, Lou and Tang (2013)], PCA+SVM (BP), Diagnosis 

features+SVM (BP), and SAE for the motor fault diagnosis. Each method is compared 

with signal in time domain and frequency domain (The EMD method and the fault feature 

extraction method cannot be applied to frequency domain signals) The results are shown in 

Tab. 7 and Fig. 11. 

PCA is a linear method in essence, and it is weak in dealing with the nonlinear problem. 

In this method, we select 8 feature components as the input of SVN and BP, and the 

PCA+SVM(BP) method has an unsatisfactory effect and its diagnostic accuracy is only 

28%-36% for time-domain signal, and for frequency domain signals, the accuracy can 

reach 80%-86%. EMD can adaptive decompose signals, its essence is to obtain the eigen 

oscillation model through the characteristic time scale of signal, and then decompose the 

data. Therefore, it can only act in the time domain signal. And, either SVM or BP is used 

as classifier, the accuracy of the EMD method can reach more than 90%. For diagnostic 

features method, a strong prior knowledge is needed, and the original signals are 

statistically extracted to extract different features, the results under the two classifiers can 

both reach 90%-94%. As you can see from the Fig. 10 and Tab. 7, the SDAE and SAE 

methods have very poor effect when processing the time domain signals. From Tab. 5, 

we can see that when the noising mask is 0 (That is, the SAE method), the accuracy of 

the training set can reach 100%, but when the model is cross validated, the accuracy rate 

is not as high as that of the SDAE method. The accuracy of the SDAE method is nearly 1% 

higher than that of the SAE method. It shows that the robustness of the network can be 

enhanced by using the noise mechanism. 
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Table 7: Cross validation results by each method 

Method Signal 
type 

Cross validation 

1 2 3 4 

PCA+SVM Time 0.3052 0.3279 0.3015 0.3221 

PCA+BP Time 0.2815 0.3619 0.3327 0.3026 

PCA+SVM Frequency 0.8506 0.8026 0.8517 0.8324 

PCA+BP Frequency 0.8429 0.8427 0.8317 0.8614 

EMD+SVM Time 0.9367 0.9312 0.9425 0.9126 

EMD+BP Time 0.9126 0.9418 0.9627 0.909 
Diagnostic 
features+SVM Time 0.9505 0.9203 0.9516 0.9426 

Diagnostic 
features+BP 

Time 0.9016 0.9413 0.9217 0.9009 

SDAE Frequency 0.9989 0.9879 0.9901 0.9847 

SAE Frequency 0.9761 0.9715 0.9926 0.9831 

SDAE Time 0.2104 0.2617 0.2195 0.2678 

SAE Time 0.2094 0.2248 0.2516 0.2654 

 

5 Conclusion 

In this paper, a deep learning method has been reported for motor fault diagnosis using 

Stacked De-noising Auto-encoder. Before the network training, we preprocessed the 

original signal and convert it into Frequency domain signal by Fourier Transform. By 

selecting different training parameters, an optimal one can be obtained to make the 

accuracy on the test set up to 99.89%, By comparing the diagnostic experiment results, 

the deep learning method used in this paper can adaptively extract the fault features and 

classify the faults with high accuracy. Through the study of feature visualization and 

compared with the traditional diagnostic methods. The advantage of the proposed 

approach is that by a universal learning process, rather than manually designed or with a 

priori knowledge of signal processing techniques, which is very useful for diagnosing 

problems. 

Future work will include more experimental testing to further understand the limitations 

of the SDAE method. Especially in practical industrial applications, when faced with 

more complex faults. The choice of network structure and parameters is still an open 

problem. 

Acknowledgment: This research is supported financially by Natural Science Foundation 

of China (Grant No. 51505234, 51405241, 51575283). 

References 

Arel, I.; Rose, D. C.; Karnowski, T. P. (2010): Research frontier: Deep machine 

learning- a new frontier in artificial intelligence research. IEEE Computational 

Intelligence Maga-zine, vo1. 5, no. 4, pp. 13-18. 



 

 

 

Fault Diagnosis of Motor in Frequency Domain Signal                                       241 

Feng, J.; Lei, Y. G.; Lin, J. (2016): Deep neural networks: A promising tool for fault 

characteristic mining and intelligent diagnosis of rotating machinery with massive data. 

Mechanical Systems and Signal Processing, vol. 72-73, pp. 303-315. 

Glowacz, A. (2015): Dc motor fault analysis with the use of acoustic signals, coiflet 

wavelet transform, and k-nearest neighbor classifier. Archives of Acoustics, vol. 40, no. 3, 

pp. 321-327. 

Hinton, G.; Deng, L.; Yu, D. (2012): Deep neural networks for acoustic modeling in 

speech recognition: The shared views of four research groups. IEEE Signal Processing 

Magazine, vol. 29, no. 6, pp. 82-97. 

Hinton, G.; Osindero, S.: Teh, Y. W. (2006): A fast learning algorithm for deep belief 

nets. Neural Computation, vol. 18, no. 7, pp. 1527-1554. 

Hou, J. J.; Jiang, W. K.; Lu, W. B. (2013): Application of a near-field acoustic 

holography-based diagnosis technique in gearbox fault diagnosis. Journal of Vibration 

and Control, vol. 19, no. 1, pp. 3-13. 

Hu, R. H.; Lou, P. H.; Tang, D. B. (2013): Fault diagnosis of rolling bearings based on 

EMD and parameter adaptive support vector machine. Computer Integrated Manufacturing 

Systems, vol. 19, no. 2, pp. 438-447. 

Khazaee, M.; Ahmadi, H.; Omid, M. (2014): Classifier fusion of vibration and acoustic 

signals for fault diagnosis and classification of planetary gears based on dempster-shafer 

evidence theory. ARCHIVE Proceedings of the Institution of Mechanical Engineers Part 

E Journal of Process Mechanical Engineering, vol. 228, no. 1, pp 21-32.  

Krizhevsky, A.; Sutskever, I.; Hinton, G. E. (2012): Imagenet classification with deep 

convolutional neural networks. International Conference on Neural Information Processing 

Systems, vol. 60, no. 2, pp. 1097-1105. 

Lei, Y. G.; Li, N. P.; Lin, J. (2015): Two new features for condition monitoring and 

fault diagnosis of planetary gearboxes. Journal of Vibration and Control, vol. 21, no. 4, 

pp. 755-764. 

Li, C.; Sanchez, R. V.; Zurita, G. (2016): Gearbox fault diagnosis based on deep 

random forest fusion of acoustic and vibratory signals. Mechanical Systems and Signal 

Processing, vol. 76, pp. 283-293. 

Li, P.; Li, X. J.; Jiang, L. (2014): Fault diagnosis of asynchronous motor based on KPCA 

and PSOSVM. Journal of Vibration Measurement and Diagnosis, vol. 34, no. 4, pp. 616-620. 

Lu, C.; Wang, L. Y.; Qin, W. L. (2017): Fault diagnosis of rotary machinery 

components using a stacked denoising autoencoder-based health state identification. 

Signal Processing, vol. 130, no. C, pp. 377-388. 

Ottewill, J. R.; OrkiSz, M. (2013): Condition monitoring of gearboxes using 

synchronously averaged electric motor signals. Mechanical Systems and Signal 

Processing, vol. 38, no. 2, pp. 482-498. 

Pandya, D. H.; Upadhyay, S. H.; Harsha, S. P. (2014): Fault diagnosis of rolling 

element bearing by using multinomial logistic regression and wavelet packet transform. 

Soft Computing, vol. 18, no. 2, pp. 255-266. 



 

 

 

242   Copyright © 2018 Tech Science Press             CMC, vol.57, no.2, pp.223-242, 2018 

Tamilselvan, P.; Wang, P. F. (2013): Failure diagnosis using deep belief learning based 

health state classification. Reliability Engineering and System Safety, vol. 115, no. 7, pp. 

124-135. 

Vincent, P. (2010): Stacked denoising autoencoders: Learning useful representations in a 

deep network with a local denoising criterion. Journal of Machine Learning Research, 

vol. 11, no. 12, pp. 3371-3408. 

Wang, X. Q.; Li, Y. F.; Rui, T. (2015): Bearing fault diagnosis method based on hilbert 

envelope spectrum and deep belief network. Journal of Vibroengineering, vol. 17, no. 3, 

pp. 1295-1308. 

Younus, A.; Yang, B. S. (2012): Intelligent fault diagnosis of rotating machinery using 

infrared thermal image. Expert Systems with Applications, vol. 39, no. 2, pp. 2082-2091. 

Zhang, Z. F. (2015): Deep neural network-based bottleneck feature and denoising 

autoencoder-based dereverberation for distant-talking speaker identification. Eurasip 

Journal on Audio Speech and Music Processing, vol. 2015, no 1, pp. 12. 

Zhao, H.; Fang, C.; Deng, W. (2016): Study on motor fault diagnosis based on svm 

with intelligent optimization method. Journal of Dalian Jiao Tong University, vol. 37, no. 

1, pp. 92-96. 


