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Abstract: Grover’s search algorithm is one of the most significant quantum algorithms, 

which can obtain quadratic speedup of the extensive search problems. Since Grover's 

search algorithm cannot be implemented on a real quantum computer at present, its 

quantum simulation is regarded as an effective method to study the search performance. 

When simulating the Grover's algorithm, the storage space required is exponential, which 

makes it difficult to simulate the high-qubit Grover’s algorithm. To this end, we deeply 

study the storage problem of probability amplitude, which is the core of the Grover 

simulation algorithm. We propose a novel memory-efficient method via amplitudes 

compression, and validate the effectiveness of the method by theoretical analysis and 

simulation experimentation. The results demonstrate that our compressed simulation 

search algorithm can help to save nearly 87.5% of the storage space than the 

uncompressed one. Thus under the same hardware conditions, our method can 

dramatically reduce the required computing nodes, and at the same time, it can simulate 

at least 3 qubits more than the uncompressed one. Particularly, our memory-efficient 

simulation method can also be used to simulate other quantum algorithms to effectively 

reduce the storage costs required in simulation. 

  

Keywords: Grover’s search algorithm, probability amplitude, quantum simulation, 

memory compression. 

1 Introduction 

Quantum computation, which can accelerate a wide range of applications than their 

classical counterparts, has attracted much attention for the last three decades [Feynman 

(1982); Nielsen and Chuang (2000)]. Quantum computation has been applied to various 

fields, including quantum key agreement (QKA) [Liu, Chen, Ji et al. (2017); Liu, Xu, 

Yang et al. (2017)], quantum sealed-bid auction (QSA) [Liu, Wang and Yuan (2016); Liu, 

Wang, Ji et al. (2014)] and quantum machine learning [Lloyd, Mohseni and Rebentrost 

(2013)]. Notable among the quantum algorithms, Grover’s search algorithm can achieve 

quadratic acceleration on search applications over unstructured data [Grover (1999)]. 
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There have been a wide range of generalization and applications of the algorithm, solving 

problems like pattern classifications and weight decision problem [Singh (2014); Uyanik 

and Turgut (2013); Yoder, Low and Chuang (2014)]. For the sake of proof of principle, 

implementation of the algorithm can be achieved via nuclear magnetic resonance, 

trapped-ion system, cavity-QED and so on [Araujo-Ferreira, Brasil, Soares-Pinto et al. 

(2012); Ivanov, Ivanov, Linington et al. (2010); Waseem, Ahmed, Irfan et al. (2013)]. 

But those methods cannot be scalable for large qubits now. 

While realistic quantum computers have not been available yet, simulation on classical 

computers using traditional quantum circuit model can be utilized for studying and 

developing quantum algorithms [Karafyllidis (2005); Gutierrez, Romero, Trenas et al. 

(2010)]. On the supercomputer JUGENE with almost 300,000 processors, up to 42 qubits 

of the quantum system have been achieved [Henkel (2010)]. However, simulation of 

quantum circuits desires exponential memory resources, it is imperative that efficient 

methods should be implemented for simulating more qubits with less storage resources. 

To reduce the memory resources of the algorithm’s simulation, several compression 

methods on the storage of qubits and unitary operations were proposed. Sparse vector and 

matrix using a mathematica package were presented for quantum circuit simulation 

[Gerdt, Kragler and Prokopenya (2009)]. However, the memory resources and the 

calculation time have been reduced simply dramatically in terms of the sparsity of the 

qubit vector and unitary matrix. A saving of basis states’ number was proposed by storing 

the qubit states whose amplitudes are non-zeros, which has shortened the qubit state lists 

during the simulation to some extent [Lu, Yuan and Zhang (2013)]. Whereas the length 

of the state list which includes both basis states and amplitudes has still been 
12n+

. We 

have proposed a high-performance Grover’s algorithm simulation in Tang et al. [Tang, 

Xu and Zhou (2017)] combining the characteristics of Grover’s algorithm and the 

parallelism of cloud computing, which dramatically improves the performance of the load 

balancing among multi-core, the utilization of memory space and the efficiency of 

simulation. 

In this paper we propose a high compressed method in the simulation of Grover’s 

algorithm. Draw the lessons from the compressed methods recommended in Plattner et al. 

[Plattner and Zeier (2012)], we analyzed the duplication of the probability amplitudes 

along the process of the computation in the algorithm, and calculated the number of no 

duplicate probability amplitudes (NDPA) at each computational step, with the result 

showing that the maximal number is 7. Applying this result, the amplitudes vector length 

in the state list can be sharply reduced to 7 rather than
12n+

. And the efficiency of the 

Grover simulation algorithm has been improved significantly.  

This paper is organized as follows: Notations and a brief overview of Grover’s algorithm 

is given in Section 2. In Section 3, the NDPA theorem in the context of single solution of 

Grover’s algorithm is proposed with the proof process followed. Then we illustrate the 

high compressed simulation method using NDPA theorem in Section 4 and state the 

experiments on quantum simulation and analyze the results and performance of 

simulation in Section 5. Finally, the conclusion is drawn in Section 6. 
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2 Background 

The related notations will be firstly discussed. The superposition of n qubits, i.e. |  =  

2 1

0
|

n

ii
i

−

=
 , is labeled as a probability amplitude vector: 

0 1 1( , ,..., )T

Namp    −= , 

2nN =  where | i  and 
i  represent the basis state and the relevant probability amplitude 

respectively. Furthermore, two functions are involved here. The function unique(amp) 

returns a vector containing no duplicate probability amplitudes (written as NDPA vector) 

in amp. And the function unique_num(amp) returns the number of elements in 

unique(amp) (written as NDPA number).  

 

Figure 1: Circuit frame of Grover algorithm 

Let us simply remind the readers of the process of Grover search algorithm [Grover 

(1999)]. This algorithm employs pure states of n qubits which is initialized to the 

superposition of all computational basis states 
2 1

0
1/ 2

n
n

i
i

−

=
=  . Then the Grover 

iteration can be divided into four stages which are labeled as Oracle, 
1W , R  and 

2W , and 

the quantum circuits are illustrated in Fig. 1. Finally, the final measurement of the 

external system is followed.  

Oracle: Applying Oracle to recognizing the solution, and it can be simple expressed as 
( )( 1) f xx x− . 

1W : Applying the Hadamard transform 
nH 

. 

R : Performing a conditional phase shift 2 0 0 | I − , and make the probability ampli-

tude of every computational basis state except 0  receive a phase shift of -1.  

2W : Applying the Hadamard transform 
nH 

 again. 

Repeating the Grover iteration about ( / )R O N M= times we can obtained solutions 

with a high probability when the first n  quantum bits are measured. For a more intuitive 
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and clearer understanding of Grover algorithm in geometry, we assume that 
0X  is the set 

of non-solutions, and
1X  is the set of solutions. Then assume 

0

1

x X

x
N M




=
−

 , 

and 

1

1

x X

x
M




=  .  

The initial state can be written as 

0 1

1

0

1 1 1

cos sin
2 2

N

x x X x X

N M M
x x x

N NN N M M

N M M

N N



 
   

−

=  

   −
= = +   

−   

−
= + = +

  
  .                 (1) 
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Figure 2: The action of a single Grover iteration G (In the figure all states are unit 

vectors. In order to show the action of G clear,   and   are lengthened a little) 
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It can be seen in Fig. 2 that the vector   is rotated by   towards the superposition   

of all. Thus by performing about R Grover iterations, rotate   within an angle 
2 4

 
  

of  . And then obtaining the solutions is with very high probability through measuring. 

During the iteration, the Oracle qubit | q  [Trieu (2009)] initially prepared in the state 

1/ 2 (| 0 |1 ) −   is used for marking the target basis state | k . Assume that | q  is on 

the highest order of all qubits, making each probability amplitude satisfy the following 

equation:  

( 0,1, , 1)i N i i N  += − = − .                                                                                        (3) 

To simplify the process of the proof, we can make an appointment of omitting Oracle 

qubit | q  in stages 
1W  and 

2W  of the proof, i.e. we can just consider the condition for 

the first 2n
 basis states, where the latter 2n

 basis states are exactly the opposite of the 

first ones. 

3 Probability amplitudes analysis of Grover’s algorithm 

Quantum simulation has become the main method of current quantum theory research, 

but insufficient memory is the primary factor limiting the simulation to continue. In order 

to solve this problem, we present a memory-efficient simulation method. The theorem 

which is named as NDPA theorem is the soul of the memory-efficient simulation method. 

We explore the statistics of the probability amplitudes of Grover’s algorithm, and 

propose the NDPA theorem in the context of single solution.  

Theorem. The maximal NDPA number is seven after each step of the computation in 

Grover search algorithm, i.e.  

_ ( ) 7.unique num amp                                                                                                  (4) 

3.1 Proof 

The proof includes two major steps. Step I is on the analysis of the amp vector after 

Oracle operation of any Grover iteration, and Step II is divided into four stages according 

to the process of one Grover iteration which calculates the NDPA numbers. The 

coefficients are integer-valued by eliminating the scaling factor in the proof.  

Step I: The qubit | q  is omitted, with the length of the amp vector being 2n
. According 

to [Hanson, Ortiz, Sabry et al. (2014)], the amp vector after Oracle operation of any r -th 

Grover iteration including only two different elements can be described as follows: 

2 12 1

, , , , , , , , , , , , ,
r

nn

T T

out

Oracle r r r r r

kk kk

amp a a b a a a a b a a

− −− −

   
   =

  
  

                                (5) 
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where 
rb  is the probability amplitude of the target basis state, 

ra  is the probability 

amplitude of the other basis states which are all the same, and the subscript r  represents 

the r -th Grover iteration.  

Step II: By splitting any one Grover iteration into four stages, which is illustrated in 

Fig.1, we will calculate the NDPA number respectively and proof that the Eq. (4) will be 

satisfied after each step of the computation.  

(1) Referring to Grover [Grover (1999)] and Eq. (5), omitting the oracle qubit, there is 

2 1

, , , , , , .
r

n

T

in

Oracle

k k

amp a a b a a

− −

 
 = −
 
 

                                                                             (6) 

Oracle can be carried out by the following three elementary gates: Phase-X gates, 

control-X gates and Toffoli gates which just involve the exchange of the amplitudes of 

the related basis states after each step [Lu, Yuan and Zhang (2013)]. Taking on the oracle 

qubit, given any i , after the i -th step of operation, all elements in the vector 
out

iamp  

belong to the following set:  

 , , , .a b a b− −                                                                                                                   (7) 

(2) The second stage involves n  continuous Hadamard gates. Consider the process of the 

form 
1 1 2 3

n

nW H A A A A= =
 with 

iA  denoting the Hadamard gate performed on the 

i -th qubit. The non-zero elements in matrix 
iA  are as follows: 

1

1 1 1

2 , 2 2 , 2 2

2 2 , 2 2 2 , 2 2
1,

i i i i i

i i i i i i i

t m t m t m t m

t m t m t m t m

A A

A A

−

− − −

 +  +  +  + +

 + +  +  + +  + +

=

= = = −
                                                                (8) 

where n  denotes the number of qubits, 1 i n  , 0,1,2, ,2 1,  0,1,2, ,n it m−= − =  

12 1i− − .  

Mathematical induction can be used to prove that the probability amplitude vector 

satisfies the following equation after each step of 
1W ,  

( )

( ) ( )

1

1

12

12

12

· mod 2

12

2 , , 0,

0, , 0,

2 1 , , 0,

1 , , 0,

i

i

i

i

i

i

t

t m

i

t

m k

t m

a if t t m

if t t m

a b if t t m

b a if t t m











 +



 +

=   =

=  

= −  + = =

= −  − = 

                                                      (9) 

where 0,1,2, ,2 1, 0,1,2, ,2 1n i it m−= − = − .  

By Eq. (9), the elements in the vector 
i

out

Aamp  belong to the following set: 
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( ){2 ,0, 2 1 , , }.i ia a b b a a b−  + − −                                                                              (10) 

(3) The output of the second stage is 

( ) ( )(

( ) ( ) ( )

( ) ( ) ( )

1

1

2 12

1 2 2 1

2 , 1 ,

( 1) , ,               1

, 1 , 1 , , 1 ,

n

n

kout n

W

T
kk

T
k k k

amp a b a b a

b a b a

d c c c



− 

  − 

 + − −  −

−  − −  − 


 − −  −  − 

=

 
 

                                                  (11) 

where , (2 )nc b a d a b a= − = −  + − . 

The third stage can be treated as one particular case of Oracle operation, i.e. the element 

0  can be regarded as the target element (up to an irrelevant global phase of -1), thus 

given any i , after the i -th step of operation, all elements in the vector
out

iamp  belong to 

the following set:  

 , , , .c c d d− −                                                                                                                 (12) 

(4) Similarly to the second stage, mathematical induction can be used to prove that the 

probability amplitude vector satisfies the following equation after each step of 
2W ,  

( )

( )

( )

1

1

1

1

2

12

12

2 1 , 0,

, 0,

1 2 , 0,

0, 0,

0,1, , 2 1, 0,1, , 2 1 ,

i

i

i

i

k

m

t k i

t k

t m

n i i

d c if t m k

d c if t m k

c if t m k

if t m k

t m











 +

 +

−

= + −  = =

= − = 

= −    =

=  

= − = −

                                                             (13) 

where n  denotes the number of qubits, and 1 i n  . 

By Eq. (13), the elements in the vector 
i

out

Aamp  belong to the following set: 

( ) 2 1 , ,2 , 2 ,0 .i i id c d c c c+ − − −                                                                                (14) 

After the calculation of the NDPA vectors, we should also analyze the situation in the 

present of the Oracle qubit in stage II and IV. As is illustrated in Tab. 1, the first column 

expresses the operation stage of Grover iteration. The second column lists the amplitudes 

sets with no duplicate elements of the first 2n
 basis states, while the corresponding 

equations are showed in the sixth. Then Eq. (3) and the second column give the 

amplitudes sets with no duplicate elements of the last 2n
 basis states, which are shown in 

the third column. By the union operation of the front two columns, we get the sets in the 

fourth column and the relevant numbers in the fifth column. Obviously, the Eq. (4) is 
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satisfied according to the numbers in the fifth column. Now the proof of the NDPA 

theorem is completed. 

Table 1: Unique numbers of amplitudes analysis in Grover iteration 

Opera- 

tion 

NDPA set 

(first 2n
 states) 

NDPA set 

(last 2n
 states) 

NDPA set 

(all 
+12n

 states) 

NN 
a Eq b 

Oracle - - { , }a b   4 (7) 

1
( )

i
W A  

(1 )i n   

{2 ,
i

a  

(2 1) ,
i

a b−  +  

( ),0}a b −  

{ 2 ,
i

a−   

(2 1) ,
i

a b− −  −  

( ), 0}a b −  

{ 2 ,
i

a   

((2 1) ),
i

a b −  +  

( ), 0}a b −  

7 (10) 

R - - { , }c d   4 (12) 

2
( )

i
W A  

(1 )i n   

{ (2 1)
i

d c+ −  , 

, 2 ,0}
i

d c c−    

{ ( (2 1) ),
i

d c− + −   

( ), 2 ,0}
i

d c c− −    

{ ( (2 1) ),
i

d c + −   

( ), 2 ,0}
i

d c c −    
7 (14) 

a NN: NDPA Number 
b Eq: Equation 

3.2 Verification 

We verified the theorem on MATLAB. In the program, a float array amp[] is used to 

store the probability amplitudes in one Grover iteration; the function unique() returns an 

array representing NDPA vector and the integer array uni_num[] denotes the NDPA 

numbers along the whole computational process in which each data stores the length of 

unique(amp). The major corresponding pseudo code is as follows. 

UNIQUE_NUMBER(AMP) 

1.  () () amp initialize= ; 

2. for 1j   1 to ( / 4)* ( )pi sqrt N  

3.      do (:,1) ()amp Oracle ; 

4.        for 2i   to steps 

5.            do (:, ) * (:, 1)amp i operation amp i − ; 

6.        for 1i   to steps 

7.            do _ ( , ) ( ( (:, )))uni num j i length unique amp i ; 

8.        ()Oracle ; 
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Figure 3: NDPA numbers along the whole computational process in Grover’s algorithm 

Fig. 3 shows the behavior for 6n =  and 7n =  where we can easily observe that the 

maximal NDPA number is seven, i.e. the theorem is valid.  

 

Figure 4: Structure of the node type including state and amplitude 

4 The memory-efficient simulation method 

In this section we apply the theorem to quantum simulation of Grover algorithm for the 

purpose of compressing the memory size by developing a C program. As in the original 

method, the state list and amplitude list are both stored exponential whose maximal 

length is 
12n+

. Applying the NDPA theorem, the size of amplitude list can shrink to a 

constant. The relevant data structures in our program are shown in Fig. 4, where we use a 

seven-length list to store the unique amplitude at a single step along the algorithm. The 

key procedures of our program are depicted in Fig. 5(a), which serve to detail the 

compressed simulation method. The program begins with initialization of the amplitude 

list and the state list. Along the whole process of simulation algorithm, the quantum gates 

are performed one after another until the final iteration is over. Only the Hadamard gate 

involves amplitude updating procedure. Then the state list storing the index of the 
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amplitude refreshes and a round of the quantum register updating after quantum gate 

operation is finished.   

Furthermore, we detail the amplitude updating procedure, depicted in Fig. 5(b). An 

amp_temp list is initialized for storing the amplitudes after gate operation. If any 

computed amplitude data do not exist in the amp_temp list, the new data will be added to 

the amp_temp list. Then the program updates the state list with the new index of the 

amplitude. All basis states’ index numbers will be refreshed before the procedure is over 

with the help of an auxiliary list marking the basis state calculated.   

 

Figure 5: (a) Flowchart overview of the main procedure. (b) Flowchart overview of the 

amplitude updating procedure 

Now the compression ratio can be effortlessly figured out by theoretical analysis. For the 

uncompressed method, the state list stores 8 bytes which type is unsigned long long int 

for 
12n+

 times, the amplitude list stores as float_complex type needing 8 bytes for 
12n+

 

times. Thus, the complete storage space for the uncompressed list is now: 

1 5(8 8 ) 2 2 .n nbytes bytes bytes+ ++  =                                                                             (15) 

In comparison, for the compressed method, the state list (Reg:state) stores the location 

substituted for the numerical value of the corresponding amplitude for 
12n+

 times, i.e. the 

value range of the elements in Reg:state list is from 0 to 6, so 1 byte is sufficient for 

storing one location of the amplitude; and the amplitude list stores as float_complex type 

for only 7 times. Here we also need another byte as auxiliary to label the calculated state 

for 
12n+

 times and a temporary amplitude list for calculation. Thus the complete storage 

space for the compressed list is now: 



 

 

 

A Memory-efficient Simulation Method of Grover’s Search Algorithm                    317 

1 2(1 2 8 7) 2 (2 112) .n nbyte bytes bytes+ + +   = +                                                       (16) 

Compared to 
52n+

 bytes for the uncompressed one, a saving of nearly 87.5% can be 

achieved when n  is infinity.  

Table 2: Memory of LQ and CG programs with different qubits 

Program 
Qubits 

23 24 25 26 27 28 29 30 31 

LQ 256a 512 1024 2048 4096 8192 -b - - 

CG 32 64 128 256 512 1024 2048 4096 8192 
a Unit:(MB) 
b ‘-’ indicates that the hardware platform could not achieve the result. 

5 Experiments and analysis 

The experiments reported in this paper were performed on an Intel Xeon E5506 CPU 

with 4 cores at 2.13 GHz clock rate, 47.2 GiB of memory. The hardware platform may 

restrict the performance of the experiments, however, the trends in time and memory size 

can be seen from the results reported below. We have also run the libquantum1.1.1 

program for comparison [Weimer (2013)]. The two programs we implemented are 

itemized as follows: 

⚫ Libquantum (LQ): The serial code of the Grover algorithm executed is from the 

libquantum library, according to the release of libquantum1.1.1 [Weimer (2013)]. 

⚫ Compressed_Grover (CG): The algorithm is simulated according to the method 

described in Section 4. 

We compare the time consumption of LQ and CG and analyze the complexity of 

simulation process. We set the network delay as  and the communication consumption 

between processes is k  (where k is the number of nodes). As the number of qubits is 

large enough the extra-cost 
extra k  = +  can be approximated by a constant, so there 

is a little difference between the time efficiency of LQ and CG. 

For verifying the result on the basis of the experiment data, Tab. 2 compares the memory 

cost of the two programs. Interestingly, although CG program compress the length of 

amplitude list from 
12n+

 to 7, the trends of the total memory cost of the two programs 

both grow exponentially with the number of qubits n , which is for the reason that the 

storage of the basis states list increases exponentially with the qubits. Moreover, it is 

clear that 3 more qubits can be simulated in CG program than in LQ program base on the 

same storage memory. Taking 256 MB memory for example, 26 qubits can be simulated 

in CG program, while in LQ program, only 23 qubits can be implemented. Furthermore, 

8 or more computing nodes will be needed to simulate 31 qubits in LQ program, but only 

one computing node is needed in CG program. The result shows that the compression 

method is effective, which helps saving nearly 87.5% memory when n  is infinity. 
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6 Conclusion 

In summary, we have proposed an efficient simulation method of Grover’s search 

algorithm in the context of a single solution. In particular, we proposed a theorem 

showing that the storage of the probability amplitudes can be compressed to a constant 

which is independent of the number n  of qubits for large n . We have also applied the 

theorem to the simulation of Grover’s algorithm based on the classical computers, and the 

results show when n  is infinite 87.5% memory can be saved and three more qubits can 

be simulated in the same storage space. In the future work, this work can be used in the 

simulation on General Purpose GPU and more qubits can be simulated. In addition, the 

memory-efficient simulation method of Grover’s search algorithm we proposed will be 

used to optimize the training process of support vector machine and relevance vector 

machine. 
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