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Abstract: The explosive growth of mobile data demand is becoming an increasing 

burden on current cellular network. To address this issue, we propose a solution of 

opportunistic data offloading for alleviating overloaded cellular traffic. The principle 

behind it is to select a few important users as seeds for data sharing. The three critical 

steps are detailed as follows. We first explore individual interests of users by the 

construction of user profiles, on which an interest graph is built by Gaussian graphical 

modeling. We then apply the extreme value theory to threshold the encounter duration of 

user pairs. So, a contact graph is generated to indicate the social relationships of users. 

Moreover, a contact-interest graph is developed on the basis of the social ties and 

individual interests of users. Corresponding on different graphs, three strategies are 

finally proposed for seed selection in an aim to maximize overloaded cellular data. We 

evaluate the performance of our algorithms by the trace data of real-word mobility. It 

demonstrates the effectiveness of the strategy of taking social relationships and individual 

interests into account. 

 

Keywords: Mobile social network, social data offloading, extreme value model, 

Gaussian graphical model. 

1 Introduction 

With the rapid progress of mobile communication technologies, it promotes massive 

growth of smart devices, rising popularity of mobile applications and eager engagement 

with connected services [Zheng, Yang, Zhang et al. (2016)]. For example, people have an 

active tendency to download interesting contents via mobile devices, such as multimedia 

newspapers, weather forecast, pictures and movies. Mobile data traffic is therefore 

predicated to unceasingly grow at a fast rate in accordance with ongoing tsunami of 

mobile data demand in the next few years. This situation poses a great challenge for 

future cellular network and becomes a serious concern of mobile network operators.  

To increase the cellular network capacity, the operators have proposed various 

straightforward solutions, such as cellular network upgrade and new network 

construction. Moreover, mobile data/traffic offloading has attracted a lot of attentions in 
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mobile social networks (MSNs) because of avoiding overwhelming the cellular network 

infrastructure, see Rebecchi et al. [Rebecchi, De Amorim, Conan et al. (2015); Zhang, 

Chu, Guo et al. (2015); Ma, Li and Qiu (2011)]. Users can find neighbors with the same 

interests and build up the short-range connection with them to receive the contents, e.g., 

Bluetooth, Wi-Fi Direct, Near-Field-Communication (NFC), and Device-to-Device (D2D) 

communications. It is a low-cost solution for operators while providing low-price 

complementary network with high data rate for users. 

One of the promising approaches for offloading mobile data/traffic is to promote 

opportunistic D2D communications among mobile users whenever possible, see Aijaz et 

al. [Aijaz, Aghvami and Amani (2013); Li, Qian, Jin et al. (2014)]. In detail, the network 

operators first push data items to a set of users as initial seed users vial cellular networks, 

and then the seed users share content with other neighboring users via short-range 

communications. Some users will access the cellular infrastructure to directly download 

the contents if they fail to receive them after a certain delay. Nevertheless, we still meet 

some critical challenges as follows. The first challenge we consider is how to stimulate 

active and effective cooperation for D2D communications among users since different 

individuals pursue different interests and users might more likely share with others the 

same data they are interested in. The second challenge we concentrate on is how to 

increase the opportunistic communications for content sharing among users. Last but the 

most important challenge is how to design the seeding strategy for drastically reducing 

the data traffic from the cellular network operators while satisfying the access 

requirement of all users? It has been studied that selecting an appropriate initial set of 

seeds can be a critical building block for efficient data offloading, see Wang et al. [Wang, 

Chen, Han et al. (2012)]. To answer these three questions, we are motivated to propose a 

new algorithm of choosing influential and popular seed users for content sharing via D2D 

communications.  

The rest of the paper is prepared as follows. Section 2 briefly reviews the related work. In 

Section 3, we then detail the framework of our proposed algorithm, which designs 

modeling social properties of users to assist seed user selection. Section 4 implements 

experimental evaluation and analysis to verify the performance of our proposed algorithm. 

In Section 5, we discuss our proposed methodology and conclude the paper. 

2 Related work 

In this section, we review the related work of opportunistic offloading via D2D 

communications and the mechanism of wisely seed-set selection in the data sharing 

process. The final goal of all those works is to maximally reduce overloaded cellular 

traffic networks. 

2.1 Opportunistic offloading via D2D communication 

The study of opportunistic offloading via D2D communications has increased in 

popularity recently. Online and offline human social activities are employed to enhance 

D2D communications considering the fact that the handheld devices are carried by 

human beings and actively involved in people’s routine mobility. Chen et al. [Chen, 

Proulx, Gong et al. (2015)] studied the cooperative D2D communications by exploring 



 

 

 

Seed Selection for Data Offloading Based on Social and Interest Graphs                 573 

social ties in human social networks. They designed the mechanism of social-tie-based 

cooperation based on two key social phenomena, social trust and social reciprocity, 

which enhance efficient cooperation for D2D communications among users. Wang et al. 

[Wang, Sun, Song et al. (2015)] proposed a strategy of user-centered opportunistic 

offloading in D2D-enhaneced networks. They exploit the theory of a network formation 

game to form a cooperative network, in which the behaviors of user selfishness are 

considered into account in the D2D sharing process. To maximize content sharing via 

D2D communication, Jiang et al. [Jiang, Zhang, Li et al. (2016)] focused on the study of 

selectively caching popular content and maximally matching between senders and 

receivers. Correspondingly, they proposed an interference-aware communication model, 

which formulates selective caching as a Knapsack problem and sender-receiver matching 

as a maximum weighted matching problem in a bipartite problem. 

2.2 Seed user selection for data dissemination 

The selection of high potential user as initial seeds for data dissemination significantly 

determines the performance of offloading mobile data traffic via opportunistic 

communications. Efforts have been carried out to offload traffic by the mechanism of 

seed user selection. Some works focus on maximizing the overall system performance to 

deal with data offloading problems, see Han et al. [Han, Hui, Kumar et al. (2012); Li, 

Qian, Jin et al. (2014)]. Han et al. [Han, Hui, Kumar et al. (2012)] study how k seed users 

is only selected to minimize the mobile data traffic over cellular networks. Li et al. [Li, 

Qian, Jin et al. (2014)] formulated the optimal seed user selection as a problem of 

submodular function maximization under multiple linear constraints, including traffic 

heterogeneity, user interests and limited storages Both of these strategies employ greedy 

selection algorithms to identify a sub-optimal seed set since the subset selection problem is 

NP-hard.  

However, above-mentioned strategies commonly concentrate on user mobility without 

considering the practical social relationships among users. Wang et al. [Wang, Chen, Han 

et al. (2014)] proposed an approach of Traffic Offloading assisted by Social network 

services via opportunistic Sharing in mobile social networks (TOSS). The algorithm of 

TOSS first selected a group of seed users and pushed the same contents to them. Seed 

users then share contents with others via local connectivity while meeting 

opportunistically them. In especial, the choice of the appropriate seed users critically 

depends on the construction of online Social network services (SNS) and offline mobile 

social networks (MSNs). VIP delegation is designed to alleviate overloaded cellular 

networks through opportunistic offloading [Barbera, Viana, De Amorim et al. (2014)]. 

The basic idea is that a few but important users are selected as a bridge to transfer 

massive data between the network infrastructure and the remaining of the network. To 

guarantee that VIP users can regularly contact all the rest of the network users, the 

proposed method construct a social graph to leverage the VIPs. 

3 Design of the new social offloading model 

This section presents the mechanism of our data offloading. Section 3.1 briefly introduces 

the basic framework of our work. In Section 3.2, we illustrate the structure learning of 
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interest graph to indicate user-user interest associations. Section 3.3 constructs the 

contact graph, capturing social ties of users in the real world. A contact-interest graph is 

constructed for describing social ties and individual interests of users in Section 3.4. 

Relying upon the constructed three types of graphs, the three strategies are proposed for 

seed selection in Section 3.5. 

3.1 System overview 

In our daily life, people usually move with a certain purpose, affected by their interests or 

social roles in the real world. Besides, just a few of popular users have an “influential” 

role rather than the unpopular ones within the network. Motivated by these facts, we 

propose our new social offloading approach of choosing a few popular users as seed users 

based on user-user interest interactions and region-based user mobility. The seed users 

are capable of regularly delivering data items to them via D2D communications when the 

rest of users send access requirements, as displayed in Fig. 1. It is expected to greatly 

reduce data traffic by the use of our approach. 

 

 

Figure 1: Illustration of our work 

We first build item and user profiles to characterize heterogeneous interests of users. 

Gaussian graphical modeling is further employed to decode pairwise interest interactions 

between users and generate an interest graph. To explore social ties of users in the real 

word, we first threshold the pairwise contact duration into two classes by the use of 

extreme value theory. We think that user pairs have close relationships if theirs overall 

contact duration exceeds the threshold. Correspondingly, a contact graph is generated to 

indicate the social ties of users. Moreover, a contact-interest graph is built for 

charactering social ties and individual interests. We finally propose three strategies with 

centrality metric to select popular hubs as seed users. The wisely chosen seed users can 

infect a larger number of other users, resulting in drastically reducing cellular traffic. 
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3.2 Interest graph modeling with Gaussian graphical structure 

Assume that a mobile offloading system involves in multiple data items and users. Let 

M={1,⋯,n} and N={1,⋯,d} be the items and users, respectively. Users usually have 

different interests on different items, which result in different accessing behaviors from 

users. We here investigate the users’ interests for the different data items in this system. 

It has been stated that people commonly assemble by regions and interests [Rodrigues, 

Benvenuto, Cha et al. (2011); Jin, Chen, Wang et al. (2013)]. Choudhury et al. 

[Choudhury, Sundaram, John et al. (2010)] define this phenomenon as “birds-of-a-feather” 

effect. Therefore, users are more willing to share and deliver the interesting items with 

those that have similar interests. In addition, popular data items would be more 

interesting to most users, while outdated data items would attract little attention. To 

characterize users’ different interests on items, we build an item profile for each item and 

a user profile for each user. In this way, the complicated interest associations among 

users can be exposed by the use of Gaussian graphical modeling. 

To create user and item profiles, a set of important features is picked to describe the 

preference of users and the content of data items. Let F denote the vector of features, F =
[𝑓1, 𝑓2, ⋯ , 𝑓𝑛𝐹

]𝑇 , where 𝑛𝐹  is the number of features. Thus, any item i can be well 

described by a vector 𝑎𝑖
𝑇 with length 𝑛𝐹, that is, 𝑎𝑖

𝑇 = [𝑎𝑖1, 𝑎𝑖2, ⋯ , 𝑎𝑖,𝑛𝐹
]𝑇. For any user j, 

the profile is built by the use of Rocchio algorithm.  

Assume that 

𝑢𝑗
𝑇 = 𝛽 ∙

1

|𝑀𝑟|
∑ 𝑎𝑠

𝑇
𝑎𝑠∈𝐼𝑟

− 𝛾 ∙
1

|𝑀𝑛𝑟|
∑ 𝑎𝑡

𝑇
𝑎𝑟∈𝐼𝑛𝑟

 (1) 

where 𝑀𝑟 denotes a set of data items that user j has more concerns on and 𝑀𝑛𝑟 denotes a 

set of data items that user j has less concerns on. The parameters 𝛽 and 𝛾 are the positive 

and negative feedback weights, respectively. 

Given user profile and item profile, the preferences of user j to data item i can be 

estimated, 

𝑥𝑖𝑗 =
𝑎𝑖

𝑇𝑢𝑗

‖𝑎𝑖‖‖𝑢𝑗‖
  (2) 

where 𝑖 = 1, ⋯ , 𝑛 and 𝑗 = 1, ⋯ , 𝑑 . The matrix 𝑋 = (𝑥𝑖𝑗)
𝑛×𝑑

 summaries users’ interest 

on items. 

Depending on the interest matrix X, Gaussian graphical modeling is then employed to 

explore conditional interest dependences between users. In detail, the problems are 

defined as follows: let G=(V, E) be an undirected graph, where V is the defined set of 

users above and 𝐸 ⊂ 𝑉 × 𝑉 is the set of existing undirected edges. A Gaussian graphical 

model with respect to the graph G is defined, 

ℳ𝐺 = {𝑁𝑑(𝑢, 𝛴)|𝛩 = 𝛴−1 ∈ ℙ𝐺}  (3) 

where Θ is the precision matrix and ℙ𝐺  represents the space of 𝑑 × 𝑑 positive definite 

matrices with elements (i,j) equal to zero whenever (𝑖, 𝑗) ∉ 𝐸. The graph structure is 

determined by the precision matrix, Θ = {{𝑖, 𝑗} ∈ 𝐸; Σ𝑖𝑗
−1 ≠ 0} . 
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Accordingly, the log-likelihood function is written as, 

∑ −
1

2
(𝑥𝑖 − 𝑢)𝑇𝑛

𝑖=1  𝛩(𝑥𝑖 − 𝑢) +
𝑛

2
𝑙𝑜𝑔𝑑𝑒𝑡(𝛩) −

𝑛𝑑

2
𝑙𝑜𝑔 (2𝜋) (4) 

where 𝑥𝑖 is the ith row of matrix X. For a given Θ, the optimal u is the mean of samples 

𝑥̅ =
1

𝑛
∑ 𝑥𝑖

𝑛
𝑖=1 . The ℓ1-penalized MLE framework of the graphical Lasso is used to infer 

the graph structure [Friedman, Hastie and Tibshirani (2008); Witten and Friedman (2011); 

Zhao, Liu, Roeder et al. (2012)]. 

𝛩̂𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛩≻0 {∑ −
1

2
(𝑥𝑖 − 𝑥̅)𝑇𝑛

𝑖=1  𝛩(𝑥𝑖 − 𝑥̅) +
𝑛

2
𝑙𝑜𝑔𝑑𝑒𝑡(𝛩) −

𝑛

2
𝜆 ∑ |𝛩𝑖𝑗|𝑖<𝑗 } (5) 

Let S be the empirical covariance matrix, the equation above becomes 

𝛩̂𝜆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛩≻0{−𝑙𝑜𝑔{𝑑𝑒𝑡(𝛩)} + 𝑡𝑟(𝑆𝛩) + 𝜆 ∑ |𝛩𝑖𝑗|𝑖<𝑗 } (6) 

We here apply the method of rotation information criterion for variable selection and 

Gaussian graphical modeling [Wei, Duan, Shi et al. (2013)]. Stability selection integrates 

subsampling with high-dimensional selection algorithm. The use of stability selection 

method is beneficial to generate finite sample control for familywise errors and 

significantly improved the accuracy of structure estimation. Finally, the inferred graph is 

obtained as 

𝛩̂𝜆 = {(𝑖, 𝑗) ∈ 𝐸; 𝛩̂𝑖𝑗
𝜆 ≠ 0}  (7) 

By the use of the Gaussian graphical modeling to discover interest associations between 

users, the inferred interest graph is elected with displaying user cliques and hub users. 

Users are grouped into different cliques based on similar interests. In each clique, hub 

users are the ones who own more links with others. Therefore, these hub users are 

supported as the candidates for seed users. 

3.3 Contact graph construction for social relationship determination 

It has been investigated that mobile users have different mobility patterns since people in 

real life have different levels of popularity, interests, social relationships and so on [Ma 

Li and Qiu (2011); Zhuo, Gao, Cao et al. (2014); Wang, Chen, Han et al. (2014)]. 

However, the mobility traces of users are not random but regularly follow fixed patterns. 

People often move toward some certain destinations, which are determined by their social 

roles and interests. For example, friends meet each other more frequently or stay longer 

than strangers. Therefore, users with close relationships have more opportunities to share 

items between them. In addition, users are selfish, only considering their individual 

payoff rather than the performance of the overall cellular traffic system. For example, 

selfish users can’t bear sharing contents with strangers considering their own limited 

device storage, energy usage and private safety. Comparatively, close pair of users 

deserves social trust with each other and voluntarily promote mutual cooperation. 

We are motivated to convert user mobility traces into a weighted contact graph for 

exploring social relationships. The nodes of the graphs represent users from the traces 

and the edges are the contacts between users. The weight of the edges is the value based 

on a metrics to reveal the social relationships. Scarrott et al. [Scarrott and MacDonald 
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(2012)] stated that contact duration indicates familiarity. In particular, a threshold 

approach was used to detect familiar pairs. An edge is added if the total contact duration 

exceeds a threshold. We here measure the relationship between users by how long they 

stay with each other. If two users spend more time together, they are in closer 

relationships. Assume that 𝐺̃ = (𝑉, 𝐸̃) be the contact graph, where V is the defined set of 

users above, 𝐸̃ ⊂ 𝑉 × 𝑉 is the set of existing undirected contact edges.  

We start with analyzing the distribution of total contact durations of all pairwise users in 

order to detect an appropriate threshold for separating close-relationship pairs from other 

pairs. To this end, extreme value modeling is applied for describing the likelihood of 

behavior of a small amount of close-relationship pairs and then choosing the threshold for 

distinguishing social ties. Various kinds of approaches have been developed for the 

choice of threshold, such as parametric, semi-parametric and non-parametric models. 

Considering the complicated multi-modality of the distribution of total contact duration, 

we explore non-parametric kernel mixture models to estimate the structure of the duration 

data without assuming a particular parametric form. This model equips a standard kernel 

density estimator as the bulk with GPD tail model [Hu (2013); Qin, Zhu, Zhu et al. (2016)]. 

Assume that the nonzero duration time of user pairs is composed of 𝑛𝑡 independent and 

identically distributed observations 𝑌 = {𝑦1, ⋯ , 𝑦𝑁𝑝
} . The corresponding distribution 

function of kernel GPD model is defined, 

𝐹(𝑦|𝑌, ℎ, 𝛿, 𝜎𝛿 , 𝜉, 𝛷𝛿) = {
(1 − 𝛷𝛿)

𝐻(𝑥|𝑋,𝜆)

𝐻(𝑢|𝑋,𝜆)
𝑦 ≤ 𝛿

(1 − 𝛷𝛿) + 𝛷𝛿𝐺(𝑥|𝛿, 𝜎𝛿 , 𝜉) 𝑦 > 𝛿
 (8) 

where 𝐻(∙ |𝑋, 𝜆) is the distribution function of the kernel density estimation, 𝐺(𝑥|δ, 𝜎δ, 𝜉) 

is unconditional GPD function and Φδ is the probability of being above the threshold δ, 

Φδ =  𝑃(𝑌 > δ). 

Specifically, 𝐻(𝑦|𝑋, ℎ) is denoted as, 

𝐻(𝑦|𝑌, 𝜆) = ∫ 𝑝𝑛𝑡,𝜆
𝐾𝑦

−∞
(𝑢)𝑑𝑢  (9) 

𝑝𝑛𝑡,ℎ
𝐾 = 

1

𝑛𝑡𝜆
∑ 𝐾(

𝑦−𝑦𝑖

ℎ
)𝑛

𝑖=1   (10) 

where 𝑝𝑛𝑡,ℎ
𝐾  is the kernel estimator, 𝜆 is the bandwidth, 𝐾(𝑦) is a kernel function that 

usually meets the following conditions: 𝐾(𝑦) ≥ 0 and ∫ 𝐾(𝑦)𝑑𝑦 = 1. 

Given the threshold δ, the excess 𝑦 − δ can be well approximated by a generalized Pareto 

distribution, which is 

𝐺(𝑦|𝛿, 𝜎𝛿 , 𝜉) = 𝑃𝑟(𝑌 < 𝑦|𝑌 > 𝛿) = {
1 − [1 + 𝜉 (

𝑦−𝛿

𝜎𝛿
)]

+

−1 𝜉⁄

𝜉 ≠ 0

1 − 𝑒𝑥𝑝 [− (
𝑦−𝛿

𝜎𝛿
)]

+
𝜉 = 0

 (11) 

where 𝑦 > 𝑢 , 𝑧+ = max(𝑧, 0),  𝜉  and 𝜎δ > 0  are the shape and scale parameters, 

respectively. We then fit the kernel GPD models to obtain the estimated threshold δ. 

In real world, user mobility guided by their interests or social roles generate repeatability 

in their behaviors, such as go to work/school every day, go shopping with friends. 

Intuitively, observing patterns of contact and interest indicates enough useful information 
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for the choice of seed users since users with closely social ties or similar interest might be 

willing to share and transfer the interesting information and resources with each other. 

Image a scenario that if a user is strange with others and also is not interested in the data, 

the processing of receiving the data via direct cellular links and delivering it to others 

becomes a burden for him without any gain. In this situation, selecting this user as a seed 

would be challenging to offload the network traffic. 

We are encouraged to construct a contact-interest graph, indicating closely social 

relationships and similar interests of users. Details are described as follows. Users can be 

divided into three types based on social relationships and interests. The first one is that 

user pairs meet each other in a longer duration, therefore, they are viewed as being in a 

close relationship, such as friends, family. These users are willing to share items with 

each other without considering the interest factor. We naturally think that if pair of users 

is in this social relationship, items can be delivered with a higher probability 𝑝1. The 

second one is that pair of users meet each other in a certain frequency and also have 

common interests. Assume users with this type of relationship share data items with a 

probability 𝑝2. The third one is that pair of users encounter each other but have different 

interests. Assume users with this type of relationship share data items with a probability 

𝑝3 . It can be obviously concluded that 𝑝3 <𝑝2 <𝑝1 . Under this environment, contact-

interest graph can be constructed by the combination of contact graph and interest graph. 

3.4 Contact-interest graph construction by considering social ties and individual 

interests 

In real world, user mobility guided by their interests or social roles generate repeatability 

in their behaviors, such as go to work/school every day, go shopping with the same 

friends. Intuitively, observing patterns of contact and interest indicates enough useful 

information for the choice of seed users since users with closely social ties or similar 

interest might be willing to share and transfer the interesting information and resources 

with each other. Image a scenario that if a user is strange with others and also is not 

interested in the data, the processing of receiving the data via direct cellular links and 

delivering it to others becomes a burden for him without any gain. In this situation, 

selecting this user as a seed would be challenging to offload the network traffic. 

We are encouraged to construct a contact-interest graph, indicating closely social 

relationships and similar interests of users. Details are described as follows. Users can be 

divided into three types based on social relationships and interests. The first one is that 

user pairs meet each other in a longer duration, therefore, they are viewed as being in a 

close relationship, such as friends, family. These users are willing to share items with 

each other without considering the interest factor. We naturally think that if pair of users 

is in this social relationship, items can be delivered with a higher probability 𝑝1. The 

second one is that pair of users meet each other in a certain frequency and also have 

common interests. Assume users with this type of relationship share data items with a 

probability 𝑝2. The third one is that pair of users encounter each other but have different 

interests. Assume users with this type of relationship share data items with a probability 

𝑝3 . It can be obviously concluded that 𝑝3 <𝑝2 <𝑝1 . Under this environment, contact-

interest graph can be constructed by the combination of contact graph and interest graph. 
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3.5 Seed user selection mechanism 

Given a data item of size M during a time period, the total size of the offloaded data that a 

user can deliver to its neighbors is defined as 

𝑂(𝑢𝑖) = ∑ 𝑀𝑝𝑖,𝑘𝑆𝑖,𝑘𝑢𝑘∈𝒩(𝑢𝑖)   (12) 

where 𝒩(𝑢𝑖) is the direct neighbors of user 𝑢𝑖 , 𝑝𝑖𝑘  is the sharing probability of data 

items between user 𝑢𝑖 and user 𝑢𝑘 by D2D communication, and 𝑆𝑖,𝑘 is the indicator of 

opportunistic contact of user 𝑢𝑖 and user 𝑢𝑘. 𝑆𝑖,𝑘 = 1 if users 𝑢𝑖 and 𝑢𝑘 stay in proximity; 

otherwise, 𝑆𝑖,𝑘 = 0. Seed users are selected by yielding the highest offloaded data, 

𝑚𝑎𝑥
𝑢𝑖

𝑂(𝑢𝑖)  (13) 

However, it has proved that it is a NP-hard problem of choosing a given number of user 

seeds to delivery data items with maximum coverage [Clauset, Newman, Moore et al. 

(2004)]. Therefore, three heuristic solutions of seed selection are designed for 

maximizing user satisfaction as well as reducing cellular traffic. 

The three proposed strategies select seeds based on community structures in an aim to 

improve opportunistic sharing efficiency. For instance, users in other communities the 

data cannot be delivered to other if most of selected seeds belong to the same community. 

A specified example is displayed for illustration. Assume that most of selected seeds 

belong to the same community. In this environment, it indeed improves the efficiency of 

opportunistic communication of this community. However, the users in this community 

can repeatedly receive the same data from different seeds and users in other communities 

would have little opportunity to obtain it. Consequently, the total efficiency of data 

offloading cannot be enhanced by this approach of seed selection. Instead, a better 

mechanism is to select seeds from the disjointed communities. 

3.5.1 Seed selection based on contact graph 

Seed users are selected based on offline contact graph, which aim to maximize 

opportunistic item delivery. To do this, three key steps are executed as follows. We first 

discover the dense subgraph, also called communities, based on the weighted contact 

graph. An algorithm of fast greedy optimization of modularity is implemented for 

detecting the community structure [Landherr, Friedl, Heidemann et al. (2010)]. Pairs with 

social relationship often meet with each other; therefore, these pairs have a tendency to 

lie in the same community. We then define the importance of a user in each community 

by the use of several structural attributes, including degree centrality, betweenness 

centrality, closeness centrality, PageRank, and eigenvector centrality. All of these 

attributes are well-known in social network theory [Landherr, Friedl, Heidemann et al. 

(2010); Brin and Page (1998)]. Five groups of seed users are selected on the basis of the 

importance of users, which are ranked by each attribute. Finally, we choose the group of 

seed users that is able to maximize the offload data items. 

3.5.2 Seed selection based on interest graph 

People with similar interests like to share and transfer the interesting information with 

each other. Therefore, we here also employed the algorithm of fast greedy optimization 
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of modularity to detect the structure of interest-based community. Users in the same 

community are often interested in the same data items. Similarly, five attributes are 

individually used to rank the importance of users in detected community structure. The 

users with high importance are probably capable of propagating information to a 

maximum number of “interested” users. Correspondingly, it generates five groups of seed 

users. We choose the group of seed users that reduces the maximal offloading data items. 

3.5.3 Seed selection based on contact-interest graph 

This approach takes users of social relationships and interest into consideration to 

construct a graph of the contact expectation according to Eq. (12). We do categorize users 

into community, of which users possess similar interests and locally social contacts. 

Under this situation, the most popular hub of each smaller group as seed users is expected 

to push more data items via direct D2D communications, such as, WIFI, Bluetooth and so 

on. This is because the popular hubs own the data items attracting other users; meanwhile 

have more social ties-based trust with others. Users would be free to obtain interested 

items without hesitation. 

4 Simulations 

In this section, we report the performance evaluation of our proposed algorithms. We, for 

illustration, conduct evaluations on the trace data of real-word mobility of Reality and 

Infocom2006 [Scott, Gass, Crowcroft et al. (2009); Eagle and Pentland (2006)]. Reality 

dataset is collected by the MIT Reality Mining Project, which records contacts among 

100 participants of students and staff using Bluetooth device at MIT. Infocom2006 

dataset is the human mobility contact trace of Infocom conference. Participants with 79 

short range and 20 long range devices were selected to generate the connectivity trace. 

The node with ID 99 in the original trace actually did not encounter any other users, 

therefore, the total number of participants was reduced to 98.  

To evaluate the proposed three algorithms of seed selection, we need MSN trace data to 

discover the mobility patterns among users, as well as online shopping data to analyze 

user interests. However, we find no publicly available trace data that contains both user 

mobility patterns and individual interests. To deal with this issue, we simulate the user 

interest with the number of data items M=200. A set of 100 features is extracted for 

charactering data items, F = [𝐹1, 𝐹2, ⋯ , 𝐹100]𝑇. For data item 𝑖, the normal distribution is 

employed to generate its profile, 𝑎𝑖
𝑇 = [𝑎𝑖1, 𝑎𝑖2, ⋯ , 𝑎𝑖,100]𝑇. Considering that users often 

assemble by their interests in real world, we randomly arrange users into different groups. 

Each group of users has their own Points-Of-Interest (POIs). For the user 𝑢𝑗 in a group, 

two samples are randomly selected as his interesting data items. We then calculate the 

user profile for 𝑢𝑗 according to (1). 

We simulate a scenario of data sharing with the number of 10 data items, {𝐷1, ⋯ , 𝐷10} 

and the average size of data items with 100 M. The delay of data dissemination is 

considered by a constraint that the data item is delivered before its deadline. Assume data 

lifetimes are uniformly generated as {𝑇1, ⋯ , 𝑇10}. In addition, the parameters of  𝑝1, 𝑝2 

and 𝑝3, are initialized as 𝑝1= 0.9, 𝑝2 = 0.7 and 𝑝3 = 0.1. 
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4.1 Results with reality dataset 

As discussed in Section 3, we exploit the movement patterns of users and social contacts 

among them over an observation period. The duration threshold is first calculated by the 

non-parametric extreme value model in order to construct the contact graph. We then 

conduct the interest simulation by selecting 200 popular data items and built the interest 

graph. The combination of contact graph and the interest graph generates the contact-

interest graph. We implement community detection by the use of the fast greedy 

algorithm. Fig. 2 shows the detected communities for the three constructed graphs of 

contact graph, interest graph and contact-interest graph from (a)-(c). Different community 

structures are identified in the three different graphs. 

 

   

Figure 2: The three graphs show the detected communities, which are denoted as 

different colors in the original manuscript 

We investigate the offloaded data of the three strategies over time. In this scenario, the 

number of seeds is initialized as 15. We consider each strategy with five different 

centrality attributes, including Degree, Closeness, Betweenness, PageRank, Eigenvector, 

as shown in Fig. 3. For the contact-interest approach, the attribute of PageRank centrality 

has the best performance, and ultimately offloads over 8000 M data. In comparison, the 

offloading amount is lower than 3000 M by the use of any attribute of the contact-based 

and interest-based strategies. Experimental results demonstrate that seed selection for 

offloading data would not be efficient while only considering only single factor of social 

relationship and interest. Therefore, taking into account both of two factors can 

maximally reduce the data in the overloaded network. 
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Figure 3: Performance comparison of the three proposed strategies in terms of the five 

different attributes over time 

The number of seeds is studied in the following scenarios. On the one hand, it is not easy 

to realize offloading data via selecting few seeds. On the other hand, a higher number of 

seeds may increase the network overhead, as well as involving a high cost. We here 

construct four scenarios in accordance with different seed numbers in order to discover 

the appropriate number of seeds (Fig. 4). From (a)-(d), the number of seeds is 10, 20, 30 

and 40, respectively. With the increasing of the number of seeds, it is coupled with the 

high amount of offloaded data for the threes strategies. It can also be easily found that the 

contact-interest strategy outperforms other rivals for data offloading. The attributes of 

closeness, betweenness and PageRank have an advantage over the attributes of degree 

and event for contact-interest strategy. In addition, the contact-based strategy performs 

comparable with interest-based strategy. 

From the analysis above, the contact-interest based strategy is the best performing for 

realizing offloading maximization. The next critical step is to determine the number of 

seeds. Fig. 5 displays the amount of offloaded data varying with the number of seeds. It 

can be found that the contact-interest based strategy performs well with the attributes of 

closeness, betweenness and PageRank, which is consistent with the previous result. The 

use of these three attributes maximally offloads 10169 M, 10420 M, and 10290 M while 

the number of seeds is arranged to 26, 19, and 12, respectively. Of these three attributes, 

the closeness attribute is inferior because of the large number of seeds. The betweenness 

attribute can be applied for reducing the highest amount of cellular data, however, it 

requires a relatively number of seeds. Comparatively, the data can be offloaded highly 

with PageRank attribute while selecting few seeds. Therefore, the better choice is 

PageRank attribute in comparison with others. 
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Figure 4: Performance comparison of the three proposed strategies with five attributes in 

terms of different number of seeds for Reality dataset 

  

Figure 5: Determination of the number of seeds for the contact-interest strategy 

4.2 Results with infocom2006 dataset 

The performance of the three strategies is also investigated by exploring Infocoom2006 

dataset. We first calculate the duration threshold as 9100 with the non-parametric 

extreme value model, which is a compromise in comparison with 7200 [Scarrott and 

MacDonald (2012)] and 20,000 [Zhuo, Gao, Cao et al. (2014)]. So, the close relationship 

can be discovered for constructing the contact graph. We here choose 200 data items 

related with the participants’ research work for the simulation of user interest, such as 

books, papers, and so on, on which the interest is successfully built. The contact-interest 

graph is generated based on the contact graph and the interest graph. The fast greedy 
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algorithm is used for detecting communities from these three graphs. Fig. 6 shows the 

detected communities for contact graph, interest graph and contact-interest graph from 

(a)-(c). It can be found that the detected communities in the contact-interest graph are 

more close to those on contact graph. This situation is probably generated by the fact of 

high encounters among participants during conference. The recurrence of contacts 

between users can be guided by the social and interest factors, such as, the country of 

origin, research topic. 

 

 

Figure 6: The three graphs show the detected communities, which are denoted as 

different colors in the original manuscript 

The three strategies with five attributes are then considered for data offloading. We 

observe the performance of the tree strategies while varying the number of seeds, as 

displayed in Fig. 7. From (a)-(d), the number of seeds is 10, 20, 30 and 40, respectively. 

The contact-based strategy is a better choice while selecting few seeds. Besides, the 

offloading results are comparable by the use of the five attributes. The contact-interest 

strategy also performs well with degree attribute, although other four attributes have the 

inferior performance. Especially, the contact-interest strategy with degree attribute 

outperforms other rivals for the scenario of 40 seeds. Compared with other two strategies, 

the interest-based strategy is not an appropriate choice for data offloading. 

We then explore the determination of the number of seeds. Considering the above-

analyzed comparability of the contact and contact-interest strategies, both of the 

offloading results are displayed from (a)-(b) in Fig. 8. It can be easily found that it is 

competitive for the contact strategy with betweenness attribute and the contact-interest 

strategy. We naturally think that participants in the conference encounter each other more 

frequently. Under this situation, the high amount of cellular can be offloaded by the 

contact-based strategy. 
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Figure 7: Performance comparison of the three proposed strategies with five attributes in 

terms of different number of seeds for infocom2006 dataset  

 

Figure 8: Determination of the number of seeds for the contact and contact-interest 

strategies 

5 Conclusion 

In real world, user mobility generates repeatability in their behaviors, affected by their 

interests or social roles. We therefore have studied the social data offloading based on the 

exploration of social network and individual interests of users. In detail, a threshold 

approach is used for discovering social ties, on which a contact graph is constructed. An 

interest graph is also built on the basis of Gaussian graphical modeling. We then 

construct a contact-interest graph by the combination of interest graph and close-

relationship graph. Depending on different constructed graphs, three strategies are 

proposed to select socially important users as seeds for opportunistically offloading 

overloaded data in cellular network. Experimental results indicate the usefulness of 

considering two factors of social ties and individual interests. Our future work will 

investigate the incentive mechanism with the integration of our proposed strategies in 

attempt to enhance offloading amount of cellular data. 
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