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Abstract: The extreme imbalanced data problem is the core issue in anomaly detection. 

The amount of abnormal data is so small that we cannot get adequate information to 

analyze it. The mainstream methods focus on taking fully advantages of the normal data, 

of which the discrimination method is that the data not belonging to normal data 

distribution is the anomaly. From the view of data science, we concentrate on the 

abnormal data and generate artificial abnormal samples by machine learning method. In 

this kind of technologies, Synthetic Minority Over-sampling Technique and its improved 

algorithms are representative milestones, which generate synthetic examples randomly in 

selected line segments. In our work, we break the limitation of line segment and propose 

an Imbalanced Triangle Synthetic Data method. In theory, our method covers a wider 

range. In experiment with real world data, our method performs better than the SMOTE 

and its meliorations. 
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1 Introduction 

Anomaly detection is to discover the abnormal data patterns not following the normal 

data behavior, in which the abnormal data is also called outlier, stain, inconsistent point 

or novelty depending on the application field. In our paper, we do not make a distinction 

between them. Anomaly detection is widely used in many fields, such as fraud detection 

[Zhang and He (2017); Anderka, Priesterjahn and Priesterjahn (2014)], disease detection 

[Pham, Nguyen, Dutkiewicz et al. (2017); Jansson, Medvedev, Axelson et al. (2015)], 

intrusion detection [Jabez and Axelson (2015); Kim, Lee and Kim (2014)], identification 

system [Huang, Zhu ,Wu et al. (2016); Ibidunmoye and Elmroth (2015)] and fault 

diagnosis [Dong, Liu and Zhang (2017); Purarjomandlangrudi, Ghapanchi and 

Esmalifalak (2014)]. In all these application fields, the abnormal data contains very 

important information. For instance, the fraud behavior of credit card always leads to 
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economic loss. The abnormal data from the Internet in the intrusion detection may imply 

the sensitive information leakage from the attacked host. Hence, it is of great significance 

to improve the effect of anomaly detection. 

There are mainly three kinds of approaches to solve the anomaly detection problems. The 

first one is the statistical model [Kourtis, Xilouris, Gardikis et al. (2017); Harada, 

Yamagata, Mizuno et al. (2017); Han, Jin, Kang et al. (2015)]. This kind of model needs 

to select the measure set describing the subject behaviors. Then build the detecting model 

based on the normal data. Next, choose an evaluation algorithm to calculate the distance 

between the current subject behavior and the detection model. At last, decide whether the 

behavior is an anomaly by some kind of decision-making strategy. This method can learn 

subject behavior adaptively. But if the adaptivity is exploited by the intruders, the 

anomaly may be treated as normal behaviors by the detecting model. The measure set is 

always assumed to be conformed to the Normal Distribution or Poisson Distribution, 

which is not in conformity with the real situation. The second method is the prediction 

model [Pang, Liu, Liao et al. (2015); Andrysiak, Ukasz, Chora et al. (2014); Pallotta, 

Vespe and Bryan (2013)]. In this method, the detected object is usually the time series of 

the events. If there is a big difference between the actual events and the prediction results, 

it shows that there is an anomaly. The low quality time series patterns are gradually 

excluded and the high quality ones are left through layers of screening. It is adaptable to 

the changes in the detected behavior and detects the anomaly that cannot be detected by 

the statistical model. The third approach is the detecting model based on machine 

learning [Kulkarni, Pino, French et al. (2016); Bosman, Liotta, Iacca et al. (2014)]. In 

recent years, these methods become more and more popular. The most significant 

character is to detect the anomaly by the normal data. Without too much hypothesis, the 

methods are widely applied in various areas. In all these approaches, the deep learning 

[Erfani, Rajasegarar, Karunasekera et al. (2016); Li, Wu and Du (2017)] method attracts 

much attention due to its powerful fitting ability. However, the number selection of the 

layers and units is mainly dependent on engineering experience and lack of theoretical 

guidance, which leads to its poor interpretability. The parameters calculation and 

adjustment need amounts of computing resources to support, which limits its universal 

extension. 

For all the methods mentioned above, the relative large number of normal data plays a 

leading role. To get higher anomaly detection rate, complex similarity measure, lots of 

priori knowledge or artificially set thresholds are introduced, by which the false positive 

rate has been raised as well. In our work, we jump out of this way of thinking and turn to 

utilize the limited number of abnormal data. In the angle of data science, anomaly 

detection belongs to the imbalanced data problems. In the imbalanced data problems, the 

technique focusing on minority samples is called over-sampling, in which the Synthetic 

Minority Over-sampling Technique (SMOTE) and its improved algorithms have become 

the present standard. The artificial examples are generated randomly in the selected line 

segment in SMOTE and its meliorations. In this paper, we propose a new generating 

technology, the Imbalanced Triangle Synthetic Data (ITSD) method, breaks through the 

limitation range of the line segment. In our work, the SMOTE and its mainly 

improvements are treated as the baselines. With real world data of different domains, our 

ITSD method performs better than the baselines in both precision and recall. And there is 
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a relatively balanced effect on normal data and abnormal data. 

This paper is organized as follows. Section 2 briefly reviews the related works. 

Imbalanced Triangle Synthetic Data method is specified in Section 3. In Section 4, we 

describe experimental results and analysis in detail. Finally, we make a conclusion in 

Section 5. 

2 Related work 

From the view of imbalanced data problems, the normal data of anomaly detection is 

called the majority samples while the anomaly is the minority sample. In order to balance 

the imbalanced data, there are two basic ideas: one is reducing the number of the majority 

samples; the other is increasing the minority samples. We summarize the relevant works 

from these two aspects. 

From the perspective of majority samples, the extraction of representative samples is the 

main work, called under-sampling [Lu, Li and Chu (2017)]. Two common specific 

methods are Ensemble method [Ren, Cao, Li et al. (2017)] and Cascade method 

[Kotsiantis (2011)]. The former trains N classifiers parallelly to vote the final result. The 

latter one is a serial method, which keeps the incorrectly classified majority samples and 

puts them into the next classifier training. These methods work on the balance of the data, 

but the extraction makes information missing more or less. 

To the minority samples, the expansion of minority samples is the core target, named 

over-sampling. The duplicated samples method is simple, also called the randomly over-

sampling, with which a preliminary attempt still has a certain effect on some data sets. 

The Synthetic Minority Over-sampling Technique (SMOTE) [Chawla, Bowyer, Hall et al. 

(2002); Gutiérrez, Lastra, Benítez et al. (2017)] is a standard of the existing methods, 

which randomly generates artificial examples on a selected line segment. Due to its 

influence, kinds of improvement algorithms emerged in the past years. SMOTE Boost 

[Chawla, Lazarevic, Hall et al. (2003)] integrates SMOTE and boosting together. 

Borderline-SMOTE [Han, Wang and Mao (2005)] divides the minority samples into three 

groups, DANGER, SAFE and NOISE, where different groups have their own generating 

ways. ADASYN [He, Bai, Garcia et al. (2008)] is an important improvement of SMOTE, 

which generates the synthetic examples by the proportion of the majority ratio. SVM-

SMOTE [Nguyen, Cooper and Kamei (2011); Wang, Luo, Huang et al. (2017)] generates 

artificial support vectors by SMOTE and gets good experimental results. Although these 

algorithms have different generating tricks, the core generating method is still the 

selected line segment way. To break through this generating method is our key task. 

Besides, there are some methods focusing on adjusting themselves to adapt the specific 

application requirement. Cost sensitive method [Krawczyk and Skryjomski (2017); Roy 

and Rossi (2017); Li, Zhang, Zhang et al. (2018)] introduces a cost matrix with domain 

knowledge to adjust the imbalanced data weights. In some applications, feature selection 

[Moayedikia, Ong, Boo et al. (2017); Bektas, Ibrikci and Özcan (2017)] helps to improve 

the recognition rate of the minority. One-class classification method [Krawczyk, Woniak 

and Herrera (2015)] tries its best to shrink the boundary of the majority examples without 

considering the minority samples distribution. To a certain type of applications, it may be 

an effective way. But the promotion effects particularly depend on the characteristics of 
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the dataset or domain knowledge. 

In our research, we aim to maximize the use of the existing data, both the majority and 

the minority. We propose an Imbalanced Triangle Synthetic Data method to go beyond 

the existing artificial examples generating method, which has a good universality. 

3 Imbalanced triangle synthetic data method 

In this section, we first introduce the Imbalanced Triangle. Then, on this basis, we 

describe our generating method in detail. The whole process makes the Imbalanced 

Triangle Synthetic Data Method (ITSD). 

3.1 Imbalanced triangle 

In the data space, the majority samples and the minority samples are separated by the 

hyperplane which is called the classification hyperplane in machine learning, as shown in 

Fig. 1(a). From both sides of the hyperplane, we take three data points to form a triangle 

which we name it the Imbalanced Triangle, as shown in Fig. 1(b). 

 

(a) hyperplane          (b) imbalanced triangle 

Figure 1: The imbalanced triangle passing through the hyperplane 

We assume that there are n points on one side of the hyperplane and m points on the other 

side. There are  𝑚 × 𝑛 × (
𝑚+𝑛

2
− 1)  Imbalanced Triangles in all. The abundance of 

quantity brings theoretical advantages to our generating method. The process of proof is 

as follows. 

Proof. Imbalanced Triangle vs. SMOTE line segment in amount 

𝑚 + 𝑛 ≥ 3 To make sure the existence of the triangle. 

𝑛 ≥ 1 are the number of minority samples. 

𝑚 > 𝑛 are the number of majority samples. 

Ntri is the number of Imbalanced Triangles:  𝑚 ×
𝑛×(𝑛−1)

2
+ 𝑛 ×

𝑚×(𝑚−1)

2
. 

Nline is the number of line segments in SMOTE:  
𝑛×(𝑚+𝑛−1)

2
. 

𝑁𝑡𝑟𝑖 − 𝑁𝑙𝑖𝑛𝑒 = 𝑚 ×
𝑛 × (𝑛 − 1)

2
+ 𝑛 ×

𝑚 × (𝑚 − 1)

2
−

𝑛 × (𝑚 + 𝑛 − 1)

2
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=
𝑛

2
× (𝑚 × 𝑛 − 𝑚 + 𝑚 × 𝑚 − 𝑚 − 𝑚 − 𝑛 + 1) 

                        =
𝑛

2
× [(𝑚 − 1) × (𝑚 + 𝑛 − 2) − 1] ≥ 0  (1) 

There is an important character of the Imbalanced Triangle: The Imbalanced Triangle 

must be intersected with the hyperplane and the intersection line is a classification line. In 

another simple word, there must be a classification line in the Imbalanced Triangle. This 

character inspires our generating method: If the synthetic examples are generated in the 

Imbalanced Triangle, we can make all these artificial samples as the minority by 

controlling the classification line. 

In anomaly detection, the data distribution is usually extremely imbalanced (𝑚 >> 𝑛). 

This problem, in our Imbalanced Triangle, is just an advantage. In Imbalanced Triangle, 

the vertexes are the given original data points, the edges are from the SMOTE line 

segments and the whole area corresponds to the space between the majority and the 

minority. The generating method of SMOTE based algorithms selecting only edges 

means to neglect the most space. To maximum the minority data information, we select 

the whole area as the generating space of the synthetic minority examples. From Eq. (1), 

we can infer that if we reduce m in a reasonable range, our Imbalanced Triangle still has 

more numbers than the SMOTE line segments in theory. 

3.2 The ITSD generating method 

The generating method is the core of the over-sampling synthetic technology. We 

compare the present methods and adjust them as the basis of our method. 

𝑥𝑔⃗⃗⃗⃗ = 𝑥𝑖⃗⃗  ⃗ + 𝜆 ∗ (𝑥𝑗⃗⃗  ⃗ − 𝑥𝑖⃗⃗  ⃗)             (2) 

In SMOTE and its improved algorithm, the generation process almost uses Eq. (2). It 

randomly picks up xj, one of the k nearest neighbors of the selected minority sample xi, 

and then generate artificial sample xg with Eq. (2), where λ ∈ (0,1). In simple words, xg 

is selected randomly on the line segment (xi, xj). In SMOTE-borderline2, the parameter λ 

is adjusted (λ ∈ (0,0.5)) to make the generated examples close to the minority sample  xi. 

𝑥𝑔⃗⃗⃗⃗ = 𝑥𝑖⃗⃗  ⃗ + 𝛥 𝑛𝑜𝑖𝑠𝑒⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗             (3) 

In data explanation, we interpret Eq. (2) as adding disturbances or noises, as Eq. (3). 

Obviously, the Δnoise⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   here is the key point of the algorithm design. In other words, Eq. 

(2) is a specific form of Eq. (3). 

In our generating method, to break through the limitation of Eq. (2) and Eq. (3), we 

propose our Imbalanced Triangle formula in Eq. [eq:tri]. First we find the top k nearest 

neighbors of each example in minority class. Then synthetic samples are generated by the 

formula in Eq. (4), where random numbers α, β, τ and ς ∈ (0,1), instead of the SMOTE 

generating method in Eq. (2). Here xg⃗⃗  ⃗ is the generated example, and xi⃗⃗⃗  , xj⃗⃗⃗   and xk⃗⃗⃗⃗  are 

three points in the k nearest neighbors. Especially, xi⃗⃗⃗   is the selected minority example 

itself, and xj⃗⃗⃗   has to be the first majority example in the k neighbors, where xk⃗⃗⃗⃗  is another 

point in the top k. This method generating the synthetic samples in a triangle range 

determined by  xi⃗⃗⃗  , xj⃗⃗⃗   and xk⃗⃗⃗⃗ , where xi⃗⃗⃗   is a fixed vertex and the other two vertexes are 



 

 

 

20   Copyright © 2019 Tech Science Press                   CMC, vol.58, no.1, pp.15-26, 2019 

random points in line segments xixj⃗⃗⃗⃗⃗⃗  ⃗ and xixk⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ . In simple words, there are two steps in our 

generating method: The first one is to select a sub triangle of the Imbalanced Triangle; the 

second step is to generate a random point in the triangle of the first step. To simplify the 

problem, we may set α = 1 and β = 1, which means the range is the whole Imbalanced 

Triangle xi⃗⃗⃗  xj⃗⃗⃗  xk⃗⃗⃗⃗ . 

𝑥𝑔⃗⃗⃗⃗ = [1 + √𝜏(𝛼𝜍 − 𝛽𝜍 − 𝛼)] 𝑥𝑖⃗⃗  ⃗ + (1 − 𝜍)𝛼√𝜏(𝑥𝑗⃗⃗  ⃗) + 𝛽𝜍√𝜏 𝑥𝑘⃗⃗⃗⃗            (4) 

Proof. Derivation Process of Eq. (4) 

Ptriangle
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is a random point in triangle A⃗⃗ B⃗⃗ C⃗ . 

PAD
⃗⃗ ⃗⃗ ⃗⃗   and PAE

⃗⃗ ⃗⃗ ⃗⃗  are random points in line segments AD⃗⃗⃗⃗  ⃗ and AE⃗⃗⃗⃗  ⃗. 

Ptriangle
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = (1 − √τ) A⃗⃗ + (1 − ς)√τ B⃗⃗ + ς√τ C⃗ , τ, ς ∈ (0,1) 

PAD
⃗⃗ ⃗⃗ ⃗⃗  = A⃗⃗ + α(D⃗⃗ − A⃗⃗ ), α ∈ (0,1) 

PAE
⃗⃗ ⃗⃗ ⃗⃗ = A⃗⃗ + β(E⃗⃗ − A⃗⃗ ), β ∈ (0,1) 

Let A⃗⃗ = xi⃗⃗⃗  , D⃗⃗ = xj⃗⃗⃗  , E⃗⃗ = xk⃗⃗⃗⃗  and B⃗⃗ = PAD
⃗⃗ ⃗⃗ ⃗⃗  , C⃗ = PAE

⃗⃗ ⃗⃗ ⃗⃗  

Then Ptriangle
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (xg⃗⃗  ⃗) is calculated as Eq. (4) 

Comparing the classic generative method in SMOTE and its improved algorithms, our 

generative approach is more efficient. All the Imbalanced Triangles cover more areas 

where the minority samples may appear than the line segments in old methods, which 

reflects the characteristics of the minority data distribution better. What is more, the fixed 

minority example vertex and its nearest majority point make a bigger probability of the 

artificial example generating between the hyperplane and the minority samples than the 

pure random way. After obtaining the synthetic samples closing to the data distribution, 

we mix the synthetic examples and the minority samples together as the extended 

abnormal data. According to the specific anomaly detection application requirement, we 

can transform the extremely imbalanced data problems to common imbalanced problems 

or relative balance supervised learning. After this transformation, the anomaly detection 

problem is easy to deal with by a machine learning classification method. In this section, 

we clarify the Imbalanced Triangle Synthetic Data method and analyze its theoretical 

advantages comparing to the existing approaches. Its good performances dealing with 

real world data are shown in the next section. 

4 Experiment and result 

In this section, the empirical analysis of our method is stated. We make comparisons with 

seven baseline approaches, using five real world data sets of different anomaly detection 

fields. 
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4.1 Data sets 

We use five datasets from the UCI open data2 to examine our ideas. German Credit (GM) 

dataset3 is from the fraud detection, which has 1,000 instances and 20 attributes. The 

original data has 700 majority samples and 300 minority samples. We adjust the 

imbalanced rate to 450:50 in the training set. 

Haberman’s Survival (HM) dataset 4 is from the disease detection, which contains 306 

instances and 3 attributes. The original data has 225 majority samples and 81 minority 

samples. We adjust the imbalanced rate to 170:25 in the training set. 

Breast Cancer Wisconsin Original (BCW) dataset5 is also from the disease detection, 

which records 699 instances and 10 attributes. With the missing values removed, the 

original data has 444 majority samples and 239 minority samples. We adjust the 

imbalanced rate to 220:15 in the training set. 

The Pima Indians Diabetes (PID)6 is another dataset from the disease detection, which 

has 768 instances and 8 attributes. The original data has 500 majority samples and 268 

minority samples. We adjust the imbalanced rate to 250:20 in the training set. 

Spambase (SB) dataset7 is from the identification system, which collects 4,601 instances 

and 57 attributes. The original data has 2,788 majority samples and 1,813 minority 

samples. We adjust the imbalanced rate to 1000:25 in the training set. 

4.2 Experimental settings 

We choose seven approaches in our experiment as the baselines: the original imbalanced 

data without preprocessing, random over-sampling (ROS), SMOTE, SMOTE-SVM, 

SMOTE-borderline 1, SMOTE-borderline 2 and ADASYN. 

In anomaly detection evaluation, the anomalies and the normal data should be separated. 

We calculate the f1-scores of the majority and the minority respectively, in order to 

compare the balanced effects of the algorithms for imbalanced data. 

To verify the universality of the algorithms, we select four commonly used classifiers 

with different principles: Decision Tree (DT), Logistic Regression (LR), Support Vector 

Machine (SVM) and Naive Bayes (NB). 

                                                      
2 http://archive.ics.uci.edu/ml/index.php 

3 http://archive.ics.uci.edu/ml/datasets/Statlog+%28German+Credit+Data%29 

4 http://archive.ics.uci.edu/ml/datasets/Haberman%27s+Survival 

5 http://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Original%29 

6 http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes 

7 http://archive.ics.uci.edu/ml/datasets/Spambase 
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(a) GM-minority     (b) GM-majority 

 
(c) HM-minority     (d) HM-majority 

 
(e) BCW-minority     (f) BCW-majority 

 
(g) PID-minority     (h) PID-majority 

 
(i) SB-minority     (j) SB-majority 

Figure 2: The experiment results 
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4.3 Experimental results and discussions 

In order to adapt to the requirements of abnormal detection, we set the training set as 

extremely imbalanced as possible. Using ITSD and the seven baseline methods, we 

respectively evaluate the F1-Scores of the minority examples (anomalies) and the majority 

samples (normal data) with the four classifiers mentioned above. The experiment results are 

shown in Fig. 2. In all the five datasets, our ITSD method and the other seven approaches 

have steady performances in DT and LR. In NB, there is a little reasonable fluctuation. But 

in SVM, the results are unstable and volatile. The performances of the majority are a little 

better than the minority. Due to the contribution of the synthetic data, the gaps are not so 

large as in the original extremely imbalanced data. 

 

Figure 3: Ranking of all the methods 

We sort all the rankings of the methods and the final ranking is shown as Fig. 3. From the 

figure, it can be seen that our ITSD method performs the best in all these approaches. In 

all the five anomaly detection datasets of different domains, the ITSD method achieves 

the best F1-score than the seven baselines. To the four classifiers of different theoretical 

basis, our approach gives the most stable performance. 

5 Conclusion and future work 

In this paper, we propose an Imbalanced Triangle Synthetic Data (ITSD) method to deal 

with the anomaly detection problems and to break through the limitation of the existing line 

segments generating method. We analyze its theoretical advantages in a mathematical way 

and use the experimental results of real world data to verify its empirical effect. 

Experimental results demonstrate that the ITSD method can be applied in multiple 

anomaly detection fields and performs relatively steadily under different classifiers. In 

following work, we aim to study the correlations between the abnormal data and the 

normal samples in the extremely imbalanced anomaly detection problems. 
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