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Abstract: Continuous response of range query on steaming data provides useful 

information for many practical applications as well as the risk of privacy disclosure. The 

existing research on differential privacy streaming data publication mostly pay close 

attention to boosting query accuracy, but pay less attention to query efficiency, and 

ignore the effect of timeliness on data weight. In this paper, we propose an effective 

algorithm of differential privacy streaming data publication under exponential decay 

mode. Firstly, by introducing the Fenwick tree to divide and reorganize data items in the 

stream, we achieve a constant time complexity for inserting a new item and getting the 

prefix sum. Meanwhile, we achieve time complicity linear to the number of data item for 

building a tree. After that, we use the advantage of matrix mechanism to deal with 

relevant queries and reduce the global sensitivity. In addition, we choose proper diagonal 

matrix further improve the range query accuracy. Finally, considering about exponential 

decay, every data item is weighted by the decay factor. By putting the Fenwick tree and 

matrix optimization together, we present complete algorithm for differentiate private 

real-time streaming data publication. The experiment is designed to compare the 

algorithm in this paper with similar algorithms for streaming data release in exponential 

decay. Experimental results show that the algorithm in this paper effectively improve the 

query efficiency while ensuring the quality of the query. 

 

Keywords: Differential privacy, streaming data publication, exponential decay, matrix 

mechanism, sliding window. 

 

1 Introduction 

Currently, the rapid development of big data and the Internet of things (IoT) makes data 

easier to be collected, and leads to a serious concern about information security [Yang 

and Soboroff (2015)]. Specially, many applications require continuous statistical release 

of streaming data, such as real-time statistics of the sales amount on shopping sites, 

real-time statistics of high frequency phrases for search engines. In these applications, the 

release data is the accumulated value of streaming data in a certain sense. Statistical 

publication of streaming data not only brings information to people's life, but also brings 
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the risk of privacy disclosure [Fung, Wang, Chen et al. (2010)]. Differential privacy 

[Dwork (2006); Zhou, Li and Tao (2009); Xiong, Zhu and Wang (2014); Zhang and 

Meng (2014)] is recognized as a robust privacy protection model. In view of the privacy 

protection of streaming data publication, there are many related studies based on 

differential privacy model. There is a lot of related research [Dwork, Naor, Pitassi et al. 

(2010); Chan, Shi and Song (2010); Cao, Xiao, Ghinita et al. (2013); Zhang and Meng 

(2016); Bolot, Fawaz, Muthukrishnan et al. (2013)] for privacy protection of streaming 

data release is based on differential privacy model.  

Dwork et al. [Dwork, Naor, Pitassi et al. (2010)] put forward a study of differential privacy 

under continual observation. It continuously releases the count value of single stream data 

from start to current time by piece-wise counting. Chan et al. [Chan, Shi and Song (2010)] 

improved the query accuracy and algorithm efficiency by binary tree. Zhang et al. [Zhang 

and Meng (2016)] realized the publication of count values in each sliding window with 

partitioning-based method.  

There are two problems in existing correlation studies: 1. All of the above studies assume 

that the data items at all times are of the same importance. But in practical applications, it 

tends to pay more attention to the statistical release of recent data and low attention to 

historical data because the statistical monitoring of recent events has a stronger relevance 

to its purpose. To solve this problem, a usually method is to make the data item with weight 

which is inversely proportional to the distance from the data to the current time. Under 

exponential decay mode, Cao et al. [Cao, Xiao, Ghinita et al. (2013)] proposed differential 

privacy streaming data publishing algorithm with interval tree structure which is failure to 

make full use of the correlation between queries in continuous statistical publishing to 

further improve the accuracy of data release. 2. Authors in Dwork et al. [Dwork, Naor, 

Pitassi et al. (2010); Chan, Shi and Song (2010); Cao, Xiao, Ghinita et al. (2013); Zhang 

and Meng (2016); Bolot, Fawaz, Muthukrishnan et al. (2013)] mainly focused on how to 

improve the query precision of streaming data. However, here is a higher demand for the 

query efficiency of data release in many practical applications. 

In this paper, we present a differential privacy real-time release algorithm for streaming 

data in exponential decay mode. This algorithm effectively improves the query efficiency 

on the premise of guaranteeing the quality of the streaming data.  

The main works of this paper are as follows: 

(1) Point at continuous statistical release of streaming data under exponential decay mode, 

we propose an algorithm to improve efficiency of range query with Fenwick tree. 

(2) Furthermore, matrix mechanism is used to explore the relevance between queries. 

Algorithms for strategy matrix construction and diagonal matrix construction are proposed 

according to the characteristics of the load matrix under exponential decay mode. The 

matrix optimization method is used to further improve the query accuracy and efficiency. 

(3) We present complete algorithm of streaming data range query response under 

exponential decay. Experimental results show that the algorithm is effective and feasible.  

The organizational structure of the rest of this paper is as follows: The second section gives 

a brief introduction of the relevant concepts. The third section describes our approach and 

provides theoretical analysis. Section 3.1 proposes a fast range query algorithm based on 
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Fenwick tree. How to introduce the matrix mechanism to improve the release accuracy is 

explained in Section 3.2. Experimental results and analyses are presented in Section 4, and 

Section 5 is the conclusion.  

2 Background 

2.1 Differential privacy 

Differential privacy [Dwork (2006)] has gradually emerged as the standard notion of 

privacy in data analysis. Informally, an algorithm is differential private if it is insensitive to 

small changes in the input. The formal definition of “small changes” is as follows:  

Definition 1 (Neighboring data sets): Given two data sets D and D’, if they are differing on 

at most one element： 

1)'()'( =−− DDDD                                                       (1) 

Then we call them a pair of neighboring data sets.  

Definition 2 (ε-differential privacy): Algorithm A is ε-differential private if for any 

neighboring data sets D and D’, and any subset of outputs S⊆Range(A), the following 

holds: 

))'(Pr())(Pr( ODAeODA                                              (2) 

where the probability is taken over the randomness of the A. The smaller the ε, the stronger 

the private protection is. 

2.2 Range Query in Sliding Window under Exponential Decay 

Definition 3 (Sliding window): Arrange items in a streaming data according to their time 

stamp. The sliding window, with a fixed length W, always keeps the newest W th items, 

while discarding old ones.  

Definition 4 (Range query in sliding window): Range query is to accumulate all items in a 

continuous interval in sliding window. Formally, for a data stream S = {D1, D2, ..., Dn}, and 

the current time is t. The answer of the range query q [l, r] (t-W ≤ l≤ r ≤ t) is: 
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Definition 5 (Range query under exponential decay): Based on definition 4, we add the 

weight coefficient e-λx to each data item, where p=e-λ is called the decay factor which is 

fixed beforehand, the variable x represents the distance between the item’s time stamp and 

t. The above formula is adjusted to: 
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Exponential decay associates longer items with smaller impact on final result. 
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2.3 Matrix mechanism  

Given a workload of linear range queries, the matrix mechanism [Li, Hay, Rastogi et al. 

(2010); Yuan, Zhang, Winslett et al. (2012)] uses an alternative set of queries, named the 

strategy, which are answered privately by a standard mechanism. Answers to the workload 

are then derived from the strategy queries, which bringing a higher accuracy.  

Definition 6 (Matrix mechanism): Decompose the workload matrix W into two matrices B 

and L. We call L the strategy matrix, which actually making a basis transformation on 

original data. Then noise is added to the result of transformation, and the disturbing result 

is converted to the final query result through matrix B. The formula form is as follows:  

))/((),( LLapLXBXWA NL +=                                           (5) 

Where ∆L is the global sensitivity of L, defined as: 
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Derived from formula (5) and formula (6), the estimation error of matrix mechanism is:  
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3 Real-time private streaming data publication under exponential decay 

3.1 Real-time range query based on Fenwick tree 

As proposed in Chan et al. [Chan, Shi and Song (2010)], one can use interval tree as the 

data structure to arrange streaming data in the sliding window, which improves the time 

efficiency of data release. Specifically, full binary tree architecture was used in Chan et al. 

[Chan, Shi and Song (2010)], and its structure is shown in Fig. 1. Assume the size of 

sliding window is W, and t represents the current moment. As shown in Fig. 1, there are 

two binary trees that each has its part included in sliding window. Gray nodes were slid out 

of the window and will never be concerned again in later process, while striped ones are 

about to be included. Once first node of the new tree has been included, the whole binary 

tree will be built beforehand. Nodes in the new tree will be activated one after another in 

pace with their sliding into the window.  

 

Figure 1: Building interval tree under sliding window 
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Using the full binary tree, we can answer any range query in the sliding window. However, 

as Fig. 2 suggested, all of the right sons (gray nodes) in the tree are unnecessary for this job, 

because we can obtain their value by their father nodes. By removing them, the number of 

remain nodes is equal to the size of sliding window, i.e. W. And we can still add every 

emerging data item in a constant time. After this simplification, the remained structure is 

called Fenwick tree [Fenwick (1994)].  

... t+2t+1tt-1t-2t -w+1...

...

......

... ......

W

TimeDt-w+1 Dt
 

Figure 2: The gray nodes are redundant 

Fenwick tree is such a data structure that supports query and modify operation with a 

O(log2(N)) time complexity. For a given r, the prefix sum in range [1, r] can be figure out 

quickly. We use Sum(r) to represent the prefix sum, i.e. Sum(r)=D1+D2+...+Dr (we neglect 

the exponential decay temporarily).  

In the calculating process, Fenwick tree has generated intermediate variables Si(i∈[1,r]), 

given by the following formula: 
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Dj is the j-th data item, and lowbit(x) means the lowest “1” in the binary form of x. For 

example, when x=12, we have (12)10=(1100)2. The lowest “1” is in the third position, so 

lowbit (12)=(0100)2= (4)10. We can get lowbit(x) easily by bitwise operation: lowbit(x)=x 

& (-x). Fenwick tree then use these intermediate variables Si to get the prefix sum: 
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When considering about exponential decay, every data item should be weighted by the 

decay factor px. So the prefix sum becomes:  
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Correspondingly, formula (8) and formula (9) are also adjusted to formula (11) and 

formula (12) as follows:  
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Fig. 3 shows the structure of Fenwick tree under exponential decay. 
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Figure 3: Fenwick tree under exponential decay 

In Fig. 3, the size of sliding window, i.e. W, is 5, so we choose the tree’s height to be 3. 

Nodes which have already slid out of the window will never be used again, so we can 

recycle them to save memory. And once after the latest node of old tree has been processed, 

the next data item will cause the building process of a new tree with preset height.   

Then we give the detail about how the Fenwick tree works: 

Firstly, we number activated nodes according to their time stamp. Then the white nodes in 

Fig. 4 form two Fenwick trees. One contains nodes ①~④, while nodes ⑤~⑦ stored in 

another. The value of node ① is the data item at time t1, ②’s value is the sum of t1 and t2, 

and ④  is sum of [t1, t4]. (When considering about exponential decay, all the value 

mentioned above should be associated with their decay weight. For simplicity, we omit the 

statement about it. You can see Fig. 3 and algorithm 1 to get a better understanding).  
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Figure 4: Details about Fenwick tree 
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Briefly, father’s value is the sum of all its sons (We call node y is the father of node x, if x + 

lowbit(x) = y). And we just need one add operation for each node, because its father is 

unique. Let us take node ④ for example: It is only father of nodes ② and ③. So after 

calculating node ②, we can immediately add it to node ④, with O(1) time cost. Therefore, 

we achieve time complicity linear to the number of data item for building a tree.  

Then we can use such a tree structure to get the prefix sum. For example, Sum(1)=t1 is the 

value stored in node ①, Sum(2)=t1+t2 is the value in node ②, and Sum(3)=t1+t2+t3 is the 

sum of nodes ② and ③. As for Sum(5)=t1+...+t5, because it is split into two trees, we 

need to sum up nodes ④ and ⑤. We can further simplify this process. For example, since 

we has already get the prefix Sum(6)=⑥+④, we can get Sum(7)=⑦+⑥+④ by sum up 

Sum(6) and node ⑦. By this way, we achieve O(1) time complicity for inserting a single 

new node.  

When W was given, the tree’s height is then determined, written H. Based on formula (9), 

the global sensitivity is also H. Therefore, by adding Laplace noise with scale H/ε to each 

node in the tree, our algorithm satisfies ε-differential privacy.   

In summary, the algorithm for inserting new data item into Fenwick tree is described in 

algorithm 1: 

 Algorithm 1: Insert new data item into Fenwick tree 

Input： S: Fenwick tree, H: tree’s height, ε: privacy budget, p: decay factor 

x: data item of current moment 

Output：Updated Fenwick tree 

1. Updating values of current node and its father:  

L=2H-1; id=(i-1) % L+1; 

S[id]=S[id]+x; 

if (id + lowbit[id]<=L) 

S[id + lowbit[id]] = S[id +lowbit[id]] + S[id]*plowbit[id]; 

2. Add Laplace noise to responding node: S[id]=S[id]+Lap(H/ε); 

3. Calculate the prefix sum for current moment:  

Sum[id]=Sum[id-lowbit(id)] * plowbit[id]+S[id]; 

4. Return the updated Fenwick tree; 

3.2 Accuracy optimization using matrix mechanism 

To answer a range query, we may need to combine some nodes’ values generated in last 

section. For example, in Fig. 4, we have to answer the range query [2, 5] by [1, 4]+[4,5]-[1, 2]. 

It causes the accumulation of noise, and then the loss of accuracy. In Section 3.1, we have 

generated intermediate variables Si by Fenwick tree. This process can be written as a form 

of a matrix timing a vector. When the size of tree is 7, the matrix and vector is as follows:  
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Where L is the strategy matrix, D is the original data set, and S is a vector combined by all 

intermediate variables Si. That is to say, we transform the original data set into the 

intermediate variables vector, perturb it using Laplace noise, and finally restore it for 

answering the queries. This process is corresponding to formula (11) and Fig. 3. 

Correspondingly, when given a certain Fenwick tree, we can restore it to the prefix sums 

that we need, using formula (12). We follow the example above, giving the matrix form for 

this restoring process:  
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Where W is the load matrix. In our setting of continual range query response, its form is as 

follows:  
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In conclusion, the prefix vector can be written as matrix form WD=BLD, where W=BL.  

After changing the tree into a matrix form, our method is actually a specific decomposition 

strategy of matrix mechanism. The matrix mechanism, in general, is to design an optimal 

decomposition strategy to decompose the workload W to improve accuracy. However, we 

aim to design a sub-optimal decomposing way, whose error is slightly greater than the 

optimal one. But we can figure out it quickly following Section 3.1’s result. According to 

Yuan et al. [Yuan, Zhang, Winslett et al. (2012)], the mean square error of our method is:  
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Let N be the size of matrix, concluded from formula (8), the number of nonzero elements in 

each row of reduction matrix B is not greater than log2(N), and total number of nonzero 

elements in B is not larger than N·log2(N). Since the only possible value of nonzero 

elements in B is 1, we have trace(BTB)≤N·log2(N). By formula (2) to formula (7), the global 

sensitivity of L, i.e. ∆L, is equal to the tree’s height H=log2(N). The total error of all N 

times query is errorL(W)=O(N·log2
3(N)). Averaging to each query, the mean error is 

O(log2
3(N)),  

According to Cai et al. [Cai, Wu and Wang (2016)], there exist a diagonal matrix ∧ 

which changes W=BL to W=B∧∧-1L, and formula (15) is adjusted to:  
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By choosing a proper ∧, we can further improve the accuracy. Wu et al. [Wu, Ge, Zhang 

et al. (2017)] gives the technical details. We show it in Algorithm 2, The key factor δi is 

given by following formulas: 
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Under our setting of sliding window, since the window’s size is fixed, we can consider this 

calculation as a preprocessing part. We store the diagonal values beforehand, and invoke 

them directly during the publishing, avoiding time waste.  

Algorithm 2: GetLambda (calculate k-th element λk in the diagonal of ∧ ) 

Input：Upper time limit T, index k, decay factor p 

Output:  λk  

1. Initialize λk to 1, calculate key coefficients 1~log2(T)+1 

2. kt←k, m←log2(T)+1, div←2m-1; 

3. while div! =kt 

 if divkt   then tkk   ; 

 if divkt   then  −kt kt div ; 

1,2/ − mmdivdiv ; 

 wend 

4. ptkk /)1(  − ; 

5. return k

 From above analysis, we come to the conclusion that: Though this accuracy optimize 

method is deduced based on matrix mechanism, there is no need to explicitly calculate the 

matrices. We can simply adjust algorithm 1 by adding the coefficients from the diagonal 

matrix. The improved Fenwick tree building algorithm is as follows:  
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Algorithm 3 (Improved) Insert new data item in Fenwick tree 

Input：Fenwick tree S, Tree’s height H, privacy budget ε, decay factor p 

and data item of current moment x 

Output：Updated Fenwick tree 

1. Updating values of current node and its father:  

L=2H-1; id=(i-1) %L+1; 

S[id]=S[id]+x; 

if (id +lowbit[id]<=L) 

S [id +lowbit[id]] = S [id +lowbit[id]] +S[id]*plowbit[id]; 

2. Add Laplace noise to responding node: 

S[id]=S[id]+Lap(H/ε) / getLambda (L, id); 

3. Calculate the prefix sum for current moment:  

Sum[id]=Sum[id-lowbit(id)] *plowbit[id]+S[id]; 

4. Return the updated Fenwick tree; 

Putting the Fenwick tree and matrix optimization together, we present our complete 

method in algorithm 4:   

Algorithm 4: Real-time publishing algorithm for range query in sliding 

window under exponential decay (RTP_DMM) 

Input：the origin data steam, the size of sliding window W 

Output: the answer of each query 

1. Initialize the height of tree according to W; Initialize the Fenwick tree S 

and the prefix sum array Sum (sized L=2n-1); Call algorithm 2 to get the 

diagonal element. 

2. Invoke algorithm 3 to insert new data item, delete the node in Sum which 

have already slide out, and recycle its memory.  

3. Let i represent the current time-stamp 

if(i%L==0) jump to Step 4. 

else jump to Step 5. 

4. Clear S, create a new array Sum while keeping the old one.  

5. Use prefix sums in Sum to respond range queries. Jump to Step 2. 

4 Experiments 

We compare our method, named RTP_DMM, with two similar works in terms of 

efficiency and accuracy: The EX algorithm proposed in Zhang et al. [Zhang and Meng 

(2016)] using interval tree; and the LP algorithm proposed by Dwork, which directly 

calculate the weighted answers and perturb it. We set different privacy budget parameters 
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as 1.0, 0.1 and 0.01. To exclude randomness, each experiment was run 30 times to get the 

average. 

4.1 Data sets and environment  

We use the Search Logs and NetTrace in Hay et al. [Hay, Rastogi, Miklau et al. (2010)], 

along with WorldCup98 in Kellaris et al. [Kellaris, Papadopoulos, Xiao et al. (2014)] as 

our testing data sets. Search Logs collects the number of searches for the keyword 

“Obama” from 2004.01 to 2009.08. The NetTrace data sets contain the number of packet 

requests to a IP segment during a specific period. WorldCup98 records the visits to the 

World Cup official website during 1998.04 to 1998.07. Their scales are shown in Tab. 1. 

Table 1: Scales of data sets 

Data Set Search Logs NetTrace WorldCup98 

Size 35768 65536 7518579 

We use the mean square error to measure the query accuracy of the published data, which is 

shown as follows:  
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Qerror
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Where |Q| is the number of queries, D is the original data set, D’ is the distributed data set 

and q represents a query. 

The experimental environment is: Intel Core i5 4570 3.2 GHz, with 8 GB memory, and we 

use C++ under Windows 7.  

4.2 Comparison and analysis of query efficiency 

4.2.1 The effect of different query numbers on efficiency 

In this experiment, we set different query numbers at each moment to compare the query 

efficiency of three algorithms. Because the query efficiency on small data set does not 

change significantly, the experiment only uses WorldCup98, and the size of the query 

range is set to 32768. The size of sliding window is fixed to 65536 and the decay factor p is 

0.9995. 

Different query time of different algorithm is shown in Fig. 5. As the number of queries 

increases, difference between several algorithms in the running time becomes more 

obvious. This is because when the number of queries is small, the main influence factor of 

the efficiency is the cost of model construction. When queries increase, the time spent in 

the query occupies the dominant position.  

Compare with LP and RTP_DMM, the query time of EX increases most rapidly. This is 

because EX constructs an interval tree to achieve arbitrary range query within the sliding 

window. Although it reduces the number of nodes involved in a single query, it has to 

traverse the tree’s height. So the time complexity for a single query is O(log2W), which is 

log-linear to the size of the sliding window. So the query efficiency is low. RTP_DMM 
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uses the prefix sum to obtain an arbitrary range of query results within O(1) time. LP also 

realizes constant time complexity. However, because of the large number of nodes 

involved in the calculation, its accuracy is terrible. Compared with LP, RTP_DMM needs 

more complex calculations to reduce the error which brings a larger constant. Therefore, as 

the number of queries increases, its running time is slightly larger than LP. 

Figure 5: Efficiency at different query frequency 

4.2.2 The effect of sliding window size on query efficiency 

Then we set different sliding window sizes for further comparison. We still only use the 

WorldCup98 for the same reason. The size is set to 215, 216, ..., 221, respectively. Range size 

is set to be half of the window’s size, so that this size increases with the window, and the 

query frequency is set to be once per time.  

In Fig. 6, we observe that as the size of the sliding window increases, the RTP_DMM and 

LP are less affected than EX. The reason behind it is that the sliding window’s size only 

affects RTP_DMM’s space complexity and preprocessing time. For LP, the query 

efficiency is independent of the window size. However, as for EX, the time complexity is 

O(log2W) which is log-linear to window size. So the curve of LP and RTP_DMM are 

below EX’s. Both LP and RTP_DMM achieve O(1) time complexity, so they have close 

performance in our experiment.  
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Figure 6: Efficiency under different sliding window sizes (WorldCup98) 

4.3 Comparison of query accuracy 

We use all three data sets to compare query accuracy between algorithms. Since the scale 

of Search Logs and NetTrace is small, the length of sliding window is set as the whole data 

set. As for WorldCup98, Setting the sliding window size to 65536 is suit for further 

comparison. 

4.3.1 Compare accuracy for random range queries 

We generate one range query of random size within the sliding window at each moment. 

Under exponential decay, small decay factor will make the decay speed too fast. So we fixed 

the decay factor p to 0.9995. The experimental comparison results are shown in Figs. 7-9. 

It can be seen from Figs. 7-9 that RTP_DMM reaches significant higher accuracy than LP 

and EX. This is because RTP_DMM converts range queries into matrix representations, 

and applies diagonal matrix optimization to improve accuracy. For all three algorithms, the 

query error increases as the privacy budget decreases. It is because we need larger scale of 

Laplace noise with smaller privacy budget.  
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Figure 7: Comparison of query accuracy (Search Logs) 

 

Figure 8: Comparison of query accuracy (NetTrace) 

 

Figure 9: Comparison of query accuracy (WorldCup98) 

4.3.2 Accuracy with different decay factors 

In this experiment, we compare different decay factors to analyze their influence on the 

query error. We take the decay factors as 0.9991, 0.9992, ..., 0.9999 respectively.  

As the comparison results in Figs. 10-12, the query error is positively correlated with the 

decay factor, this is because the increase of the decay factor will change the global 

sensitivity and thus affect the scale of added noise. The EX algorithm calculates the limit of 

noise scale according to the preset decay factor. Therefore, when the decay factor is close 

to 1, the average square error caused by the EX algorithm become large. As for the LP 

algorithm, when the decay factor is small, the weight of the long time nodes tends to be 

zero which leads to smaller error. 
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Figure 10: Accuracy with different decay factors (Search Logs) 

  

Figure 11: Accuracy with different decay factors (NetTrace) 
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Figure 12: Accuracy with different decay factors (WorldCup98) 

Based on the above experiments, it can be concluded that the algorithm RTP_DMM is 

scalable for different applications with various decay factors and privacy budget. It can 

reduce query error, and achieve real-time publishing under the sliding window. 

5 Conclusion 

In this paper, we propose an efficient method for real-time differential privacy streaming 

data publishing under exponential decay. It answers any range query within the sliding 

window in O(1) time. We further convert the model to a matrix form, using matrix 

mechanism to optimize the accuracy. Comparison experiments with similar methods show 

that our RTP_MM guarantees the query accuracy while achieving higher time efficiency. 

In future studies, it is worth investigation to adapt our method to practical applications with 

other decay modes. 
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