

Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

CMC. doi:10.32604/cmc.2019.03744 www.techscience.com/cmc

Differentially Private Real-Time Streaming Data Publication

Based on Sliding Window Under Exponential Decay

Lan Sun1, Chen Ge1, Xin Huang1, Yingjie Wu1, * and Yan Gao2

Abstract: Continuous response of range query on steaming data provides useful

information for many practical applications as well as the risk of privacy disclosure. The

existing research on differential privacy streaming data publication mostly pay close

attention to boosting query accuracy, but pay less attention to query efficiency, and

ignore the effect of timeliness on data weight. In this paper, we propose an effective

algorithm of differential privacy streaming data publication under exponential decay

mode. Firstly, by introducing the Fenwick tree to divide and reorganize data items in the

stream, we achieve a constant time complexity for inserting a new item and getting the

prefix sum. Meanwhile, we achieve time complicity linear to the number of data item for

building a tree. After that, we use the advantage of matrix mechanism to deal with

relevant queries and reduce the global sensitivity. In addition, we choose proper diagonal

matrix further improve the range query accuracy. Finally, considering about exponential

decay, every data item is weighted by the decay factor. By putting the Fenwick tree and

matrix optimization together, we present complete algorithm for differentiate private

real-time streaming data publication. The experiment is designed to compare the

algorithm in this paper with similar algorithms for streaming data release in exponential

decay. Experimental results show that the algorithm in this paper effectively improve the

query efficiency while ensuring the quality of the query.

Keywords: Differential privacy, streaming data publication, exponential decay, matrix

mechanism, sliding window.

1 Introduction

Currently, the rapid development of big data and the Internet of things (IoT) makes data

easier to be collected, and leads to a serious concern about information security [Yang

and Soboroff (2015)]. Specially, many applications require continuous statistical release

of streaming data, such as real-time statistics of the sales amount on shopping sites,

real-time statistics of high frequency phrases for search engines. In these applications, the

release data is the accumulated value of streaming data in a certain sense. Statistical

publication of streaming data not only brings information to people's life, but also brings

1 College of Mathematics and Computer Science, Fuzhou University, Xue Yuan Road, No. 2, Fuzhou, 350116,

China.

2 Amazon, 410 Terry Avenue North, Seattle, Washington, 98109, USA.

* Corresponding Author: Yingjie Wu. Email: yjwu@fzu.edu.cn.

62 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

the risk of privacy disclosure [Fung, Wang, Chen et al. (2010)]. Differential privacy

[Dwork (2006); Zhou, Li and Tao (2009); Xiong, Zhu and Wang (2014); Zhang and

Meng (2014)] is recognized as a robust privacy protection model. In view of the privacy

protection of streaming data publication, there are many related studies based on

differential privacy model. There is a lot of related research [Dwork, Naor, Pitassi et al.

(2010); Chan, Shi and Song (2010); Cao, Xiao, Ghinita et al. (2013); Zhang and Meng

(2016); Bolot, Fawaz, Muthukrishnan et al. (2013)] for privacy protection of streaming

data release is based on differential privacy model.

Dwork et al. [Dwork, Naor, Pitassi et al. (2010)] put forward a study of differential privacy

under continual observation. It continuously releases the count value of single stream data

from start to current time by piece-wise counting. Chan et al. [Chan, Shi and Song (2010)]

improved the query accuracy and algorithm efficiency by binary tree. Zhang et al. [Zhang

and Meng (2016)] realized the publication of count values in each sliding window with

partitioning-based method.

There are two problems in existing correlation studies: 1. All of the above studies assume

that the data items at all times are of the same importance. But in practical applications, it

tends to pay more attention to the statistical release of recent data and low attention to

historical data because the statistical monitoring of recent events has a stronger relevance

to its purpose. To solve this problem, a usually method is to make the data item with weight

which is inversely proportional to the distance from the data to the current time. Under

exponential decay mode, Cao et al. [Cao, Xiao, Ghinita et al. (2013)] proposed differential

privacy streaming data publishing algorithm with interval tree structure which is failure to

make full use of the correlation between queries in continuous statistical publishing to

further improve the accuracy of data release. 2. Authors in Dwork et al. [Dwork, Naor,

Pitassi et al. (2010); Chan, Shi and Song (2010); Cao, Xiao, Ghinita et al. (2013); Zhang

and Meng (2016); Bolot, Fawaz, Muthukrishnan et al. (2013)] mainly focused on how to

improve the query precision of streaming data. However, here is a higher demand for the

query efficiency of data release in many practical applications.

In this paper, we present a differential privacy real-time release algorithm for streaming

data in exponential decay mode. This algorithm effectively improves the query efficiency

on the premise of guaranteeing the quality of the streaming data.

The main works of this paper are as follows:

(1) Point at continuous statistical release of streaming data under exponential decay mode,

we propose an algorithm to improve efficiency of range query with Fenwick tree.

(2) Furthermore, matrix mechanism is used to explore the relevance between queries.

Algorithms for strategy matrix construction and diagonal matrix construction are proposed

according to the characteristics of the load matrix under exponential decay mode. The

matrix optimization method is used to further improve the query accuracy and efficiency.

(3) We present complete algorithm of streaming data range query response under

exponential decay. Experimental results show that the algorithm is effective and feasible.

The organizational structure of the rest of this paper is as follows: The second section gives

a brief introduction of the relevant concepts. The third section describes our approach and

provides theoretical analysis. Section 3.1 proposes a fast range query algorithm based on

Differentially Private Real-Time Streaming Data Publication 63

Fenwick tree. How to introduce the matrix mechanism to improve the release accuracy is

explained in Section 3.2. Experimental results and analyses are presented in Section 4, and

Section 5 is the conclusion.

2 Background

2.1 Differential privacy

Differential privacy [Dwork (2006)] has gradually emerged as the standard notion of

privacy in data analysis. Informally, an algorithm is differential private if it is insensitive to

small changes in the input. The formal definition of “small changes” is as follows:

Definition 1 (Neighboring data sets): Given two data sets D and D’, if they are differing on

at most one element：

1)'()'(=−− DDDD (1)

Then we call them a pair of neighboring data sets.

Definition 2 (ε-differential privacy): Algorithm A is ε-differential private if for any

neighboring data sets D and D’, and any subset of outputs S⊆Range(A), the following

holds:

))'(Pr())(Pr(ODAeODA (2)

where the probability is taken over the randomness of the A. The smaller the ε, the stronger

the private protection is.

2.2 Range Query in Sliding Window under Exponential Decay

Definition 3 (Sliding window): Arrange items in a streaming data according to their time

stamp. The sliding window, with a fixed length W, always keeps the newest W th items,

while discarding old ones.

Definition 4 (Range query in sliding window): Range query is to accumulate all items in a

continuous interval in sliding window. Formally, for a data stream S = {D1, D2, ..., Dn}, and

the current time is t. The answer of the range query q [l, r] (t-W ≤ l≤ r ≤ t) is:

=

=
q

q

r

li

iqq Drlresult),((3)

Definition 5 (Range query under exponential decay): Based on definition 4, we add the

weight coefficient e-λx to each data item, where p=e-λ is called the decay factor which is

fixed beforehand, the variable x represents the distance between the item’s time stamp and

t. The above formula is adjusted to:

=

−−=
q

q

r

li

i

it

qq Derlresult ||),(
 (4)

Exponential decay associates longer items with smaller impact on final result.

64 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

2.3 Matrix mechanism

Given a workload of linear range queries, the matrix mechanism [Li, Hay, Rastogi et al.

(2010); Yuan, Zhang, Winslett et al. (2012)] uses an alternative set of queries, named the

strategy, which are answered privately by a standard mechanism. Answers to the workload

are then derived from the strategy queries, which bringing a higher accuracy.

Definition 6 (Matrix mechanism): Decompose the workload matrix W into two matrices B

and L. We call L the strategy matrix, which actually making a basis transformation on

original data. Then noise is added to the result of transformation, and the disturbing result

is converted to the final query result through matrix B. The formula form is as follows:

))/((),(LLapLXBXWA NL += (5)

Where ∆L is the global sensitivity of L, defined as:

)'(),(max
',

DLDLL
DD

= (6)

Derived from formula (5) and formula (6), the estimation error of matrix mechanism is:

L
T

L BBtraceWerror 2

2
)(

2
)(

=

 (7)

3 Real-time private streaming data publication under exponential decay

3.1 Real-time range query based on Fenwick tree

As proposed in Chan et al. [Chan, Shi and Song (2010)], one can use interval tree as the

data structure to arrange streaming data in the sliding window, which improves the time

efficiency of data release. Specifically, full binary tree architecture was used in Chan et al.

[Chan, Shi and Song (2010)], and its structure is shown in Fig. 1. Assume the size of

sliding window is W, and t represents the current moment. As shown in Fig. 1, there are

two binary trees that each has its part included in sliding window. Gray nodes were slid out

of the window and will never be concerned again in later process, while striped ones are

about to be included. Once first node of the new tree has been included, the whole binary

tree will be built beforehand. Nodes in the new tree will be activated one after another in

pace with their sliding into the window.

Figure 1: Building interval tree under sliding window

Differentially Private Real-Time Streaming Data Publication 65

Using the full binary tree, we can answer any range query in the sliding window. However,

as Fig. 2 suggested, all of the right sons (gray nodes) in the tree are unnecessary for this job,

because we can obtain their value by their father nodes. By removing them, the number of

remain nodes is equal to the size of sliding window, i.e. W. And we can still add every

emerging data item in a constant time. After this simplification, the remained structure is

called Fenwick tree [Fenwick (1994)].

... t+2t+1tt-1t-2t -w+1...

...

......

...

W

TimeDt-w+1 Dt

Figure 2: The gray nodes are redundant

Fenwick tree is such a data structure that supports query and modify operation with a

O(log2(N)) time complexity. For a given r, the prefix sum in range [1, r] can be figure out

quickly. We use Sum(r) to represent the prefix sum, i.e. Sum(r)=D1+D2+...+Dr (we neglect

the exponential decay temporarily).

In the calculating process, Fenwick tree has generated intermediate variables Si(i∈[1,r]),

given by the following formula:

],1[,
1)(

riDS
i

ilowbitij

ji =
+−=

 (8)

Dj is the j-th data item, and lowbit(x) means the lowest “1” in the binary form of x. For

example, when x=12, we have (12)10=(1100)2. The lowest “1” is in the third position, so

lowbit (12)=(0100)2= (4)10. We can get lowbit(x) easily by bitwise operation: lowbit(x)=x

& (-x). Fenwick tree then use these intermediate variables Si to get the prefix sum:

=

−=
)(log

))((log

mod

2

2

)(
r

rlowbiti

irrSrSum (9)

When considering about exponential decay, every data item should be weighted by the

decay factor px. So the prefix sum becomes:

=

−=
r

j

j

jr DprSum
1

)((10)

Correspondingly, formula (8) and formula (9) are also adjusted to formula (11) and

formula (12) as follows:

66 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

],1[,
1)(

riDpS
i

ilowbitij

j

ji

i =
+−=

−
 (11)

irr

ir
r

rlowbiti

SprSum mod

mod
)(log

))((log

2

2

)(−
=

= (12)

Fig. 3 shows the structure of Fenwick tree under exponential decay.

n3 n4n2n1

P*n1+n2

W

Time

P*n3+n4 P*n1+n2

n5 n6 n7 n8

P*n1+n2

P3n1+p2n2+pn
3+n4 P3n5+p2n6+pn7+n8

Figure 3: Fenwick tree under exponential decay

In Fig. 3, the size of sliding window, i.e. W, is 5, so we choose the tree’s height to be 3.

Nodes which have already slid out of the window will never be used again, so we can

recycle them to save memory. And once after the latest node of old tree has been processed,

the next data item will cause the building process of a new tree with preset height.

Then we give the detail about how the Fenwick tree works:

Firstly, we number activated nodes according to their time stamp. Then the white nodes in

Fig. 4 form two Fenwick trees. One contains nodes ①~④, while nodes ⑤~⑦ stored in

another. The value of node ① is the data item at time t1, ②’s value is the sum of t1 and t2,

and ④ is sum of [t1, t4]. (When considering about exponential decay, all the value

mentioned above should be associated with their decay weight. For simplicity, we omit the

statement about it. You can see Fig. 3 and algorithm 1 to get a better understanding).

5 …67⑤231

4

...11

... ...11

W=5

Time

①

②

③

④

⑥

⑦4

t1 t2 t3 t4 t5 t6 t7

Figure 4: Details about Fenwick tree

Differentially Private Real-Time Streaming Data Publication 67

Briefly, father’s value is the sum of all its sons (We call node y is the father of node x, if x +

lowbit(x) = y). And we just need one add operation for each node, because its father is

unique. Let us take node ④ for example: It is only father of nodes ② and ③. So after

calculating node ②, we can immediately add it to node ④, with O(1) time cost. Therefore,

we achieve time complicity linear to the number of data item for building a tree.

Then we can use such a tree structure to get the prefix sum. For example, Sum(1)=t1 is the

value stored in node ①, Sum(2)=t1+t2 is the value in node ②, and Sum(3)=t1+t2+t3 is the

sum of nodes ② and ③. As for Sum(5)=t1+...+t5, because it is split into two trees, we

need to sum up nodes ④ and ⑤. We can further simplify this process. For example, since

we has already get the prefix Sum(6)=⑥+④, we can get Sum(7)=⑦+⑥+④ by sum up

Sum(6) and node ⑦. By this way, we achieve O(1) time complicity for inserting a single

new node.

When W was given, the tree’s height is then determined, written H. Based on formula (9),

the global sensitivity is also H. Therefore, by adding Laplace noise with scale H/ε to each

node in the tree, our algorithm satisfies ε-differential privacy.

In summary, the algorithm for inserting new data item into Fenwick tree is described in

algorithm 1:

 Algorithm 1: Insert new data item into Fenwick tree

Input： S: Fenwick tree, H: tree’s height, ε: privacy budget, p: decay factor

x: data item of current moment

Output：Updated Fenwick tree

1. Updating values of current node and its father:

L=2H-1; id=(i-1) % L+1;

S[id]=S[id]+x;

if (id + lowbit[id]<=L)

S[id + lowbit[id]] = S[id +lowbit[id]] + S[id]*plowbit[id];

2. Add Laplace noise to responding node: S[id]=S[id]+Lap(H/ε);

3. Calculate the prefix sum for current moment:

Sum[id]=Sum[id-lowbit(id)] * plowbit[id]+S[id];

4. Return the updated Fenwick tree;

3.2 Accuracy optimization using matrix mechanism

To answer a range query, we may need to combine some nodes’ values generated in last

section. For example, in Fig. 4, we have to answer the range query [2, 5] by [1, 4]+[4,5]-[1, 2].

It causes the accumulation of noise, and then the loss of accuracy. In Section 3.1, we have

generated intermediate variables Si by Fenwick tree. This process can be written as a form

of a matrix timing a vector. When the size of tree is 7, the matrix and vector is as follows:

68 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

==

6

7

4

2

5

3

1

1

1

1

1

1

1

1

23

p

ppp

p

DLS
 (13)

Where L is the strategy matrix, D is the original data set, and S is a vector combined by all

intermediate variables Si. That is to say, we transform the original data set into the

intermediate variables vector, perturb it using Laplace noise, and finally restore it for

answering the queries. This process is corresponding to formula (11) and Fig. 3.

Correspondingly, when given a certain Fenwick tree, we can restore it to the prefix sums

that we need, using formula (12). We follow the example above, giving the matrix form for

this restoring process:

==

6

11

4

11

5

4

1

1

1

1

1

1

1

1

3

2

pp

p

p

p

SBWD
 (14)

Where W is the load matrix. In our setting of continual range query response, its form is as

follows:

=

1

01

001

2 pp

p
W

 (15)

In conclusion, the prefix vector can be written as matrix form WD=BLD, where W=BL.

After changing the tree into a matrix form, our method is actually a specific decomposition

strategy of matrix mechanism. The matrix mechanism, in general, is to design an optimal

decomposition strategy to decompose the workload W to improve accuracy. However, we

aim to design a sub-optimal decomposing way, whose error is slightly greater than the

optimal one. But we can figure out it quickly following Section 3.1’s result. According to

Yuan et al. [Yuan, Zhang, Winslett et al. (2012)], the mean square error of our method is:

2

2
)(

2
)(L

T

L BBtraceWerror =

 (16)

Differentially Private Real-Time Streaming Data Publication 69

Let N be the size of matrix, concluded from formula (8), the number of nonzero elements in

each row of reduction matrix B is not greater than log2(N), and total number of nonzero

elements in B is not larger than N·log2(N). Since the only possible value of nonzero

elements in B is 1, we have trace(BTB)≤N·log2(N). By formula (2) to formula (7), the global

sensitivity of L, i.e. ∆L, is equal to the tree’s height H=log2(N). The total error of all N

times query is errorL(W)=O(N·log2
3(N)). Averaging to each query, the mean error is

O(log2
3(N)),

According to Cai et al. [Cai, Wu and Wang (2016)], there exist a diagonal matrix ∧

which changes W=BL to W=B∧∧-1L, and formula (15) is adjusted to:

211

2
)(

2
)(L

T
L BBtraceWerror

−− =

 (17)

By choosing a proper ∧, we can further improve the accuracy. Wu et al. [Wu, Ge, Zhang

et al. (2017)] gives the technical details. We show it in Algorithm 2, The key factor δi is

given by following formulas:

3 23

3

2 perr

err

m

m

m

m

+
= (18)

+

=
=

−

− 1,)2(

1,1
33 13

1 merr

m
err m

m

m (19)

Under our setting of sliding window, since the window’s size is fixed, we can consider this

calculation as a preprocessing part. We store the diagonal values beforehand, and invoke

them directly during the publishing, avoiding time waste.

Algorithm 2: GetLambda (calculate k-th element λk in the diagonal of ∧)

Input：Upper time limit T, index k, decay factor p

Output: λk

1. Initialize λk to 1, calculate key coefficients 1~log2(T)+1

2. kt←k, m←log2(T)+1, div←2m-1;

3. while div! =kt

 if divkt then tkk ;

 if divkt then −kt kt div ;

1,2/ − mmdivdiv ;

 wend

4. ptkk /)1(− ;

5. return k

 From above analysis, we come to the conclusion that: Though this accuracy optimize

method is deduced based on matrix mechanism, there is no need to explicitly calculate the

matrices. We can simply adjust algorithm 1 by adding the coefficients from the diagonal

matrix. The improved Fenwick tree building algorithm is as follows:

70 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

Algorithm 3 (Improved) Insert new data item in Fenwick tree

Input：Fenwick tree S, Tree’s height H, privacy budget ε, decay factor p

and data item of current moment x

Output：Updated Fenwick tree

1. Updating values of current node and its father:

L=2H-1; id=(i-1) %L+1;

S[id]=S[id]+x;

if (id +lowbit[id]<=L)

S [id +lowbit[id]] = S [id +lowbit[id]] +S[id]*plowbit[id];

2. Add Laplace noise to responding node:

S[id]=S[id]+Lap(H/ε) / getLambda (L, id);

3. Calculate the prefix sum for current moment:

Sum[id]=Sum[id-lowbit(id)] *plowbit[id]+S[id];

4. Return the updated Fenwick tree;

Putting the Fenwick tree and matrix optimization together, we present our complete

method in algorithm 4:

Algorithm 4: Real-time publishing algorithm for range query in sliding

window under exponential decay (RTP_DMM)

Input：the origin data steam, the size of sliding window W

Output: the answer of each query

1. Initialize the height of tree according to W; Initialize the Fenwick tree S

and the prefix sum array Sum (sized L=2n-1); Call algorithm 2 to get the

diagonal element.

2. Invoke algorithm 3 to insert new data item, delete the node in Sum which

have already slide out, and recycle its memory.

3. Let i represent the current time-stamp

if(i%L==0) jump to Step 4.

else jump to Step 5.

4. Clear S, create a new array Sum while keeping the old one.

5. Use prefix sums in Sum to respond range queries. Jump to Step 2.

4 Experiments

We compare our method, named RTP_DMM, with two similar works in terms of

efficiency and accuracy: The EX algorithm proposed in Zhang et al. [Zhang and Meng

(2016)] using interval tree; and the LP algorithm proposed by Dwork, which directly

calculate the weighted answers and perturb it. We set different privacy budget parameters

Differentially Private Real-Time Streaming Data Publication 71

as 1.0, 0.1 and 0.01. To exclude randomness, each experiment was run 30 times to get the

average.

4.1 Data sets and environment

We use the Search Logs and NetTrace in Hay et al. [Hay, Rastogi, Miklau et al. (2010)],

along with WorldCup98 in Kellaris et al. [Kellaris, Papadopoulos, Xiao et al. (2014)] as

our testing data sets. Search Logs collects the number of searches for the keyword

“Obama” from 2004.01 to 2009.08. The NetTrace data sets contain the number of packet

requests to a IP segment during a specific period. WorldCup98 records the visits to the

World Cup official website during 1998.04 to 1998.07. Their scales are shown in Tab. 1.

Table 1: Scales of data sets

Data Set Search Logs NetTrace WorldCup98

Size 35768 65536 7518579

We use the mean square error to measure the query accuracy of the published data, which is

shown as follows:

Q

DqDq

Qerror
Qq

−

=

2))'()((

)((20)

Where |Q| is the number of queries, D is the original data set, D’ is the distributed data set

and q represents a query.

The experimental environment is: Intel Core i5 4570 3.2 GHz, with 8 GB memory, and we

use C++ under Windows 7.

4.2 Comparison and analysis of query efficiency

4.2.1 The effect of different query numbers on efficiency

In this experiment, we set different query numbers at each moment to compare the query

efficiency of three algorithms. Because the query efficiency on small data set does not

change significantly, the experiment only uses WorldCup98, and the size of the query

range is set to 32768. The size of sliding window is fixed to 65536 and the decay factor p is

0.9995.

Different query time of different algorithm is shown in Fig. 5. As the number of queries

increases, difference between several algorithms in the running time becomes more

obvious. This is because when the number of queries is small, the main influence factor of

the efficiency is the cost of model construction. When queries increase, the time spent in

the query occupies the dominant position.

Compare with LP and RTP_DMM, the query time of EX increases most rapidly. This is

because EX constructs an interval tree to achieve arbitrary range query within the sliding

window. Although it reduces the number of nodes involved in a single query, it has to

traverse the tree’s height. So the time complexity for a single query is O(log2W), which is

log-linear to the size of the sliding window. So the query efficiency is low. RTP_DMM

72 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

uses the prefix sum to obtain an arbitrary range of query results within O(1) time. LP also

realizes constant time complexity. However, because of the large number of nodes

involved in the calculation, its accuracy is terrible. Compared with LP, RTP_DMM needs

more complex calculations to reduce the error which brings a larger constant. Therefore, as

the number of queries increases, its running time is slightly larger than LP.

Figure 5: Efficiency at different query frequency

4.2.2 The effect of sliding window size on query efficiency

Then we set different sliding window sizes for further comparison. We still only use the

WorldCup98 for the same reason. The size is set to 215, 216, ..., 221, respectively. Range size

is set to be half of the window’s size, so that this size increases with the window, and the

query frequency is set to be once per time.

In Fig. 6, we observe that as the size of the sliding window increases, the RTP_DMM and

LP are less affected than EX. The reason behind it is that the sliding window’s size only

affects RTP_DMM’s space complexity and preprocessing time. For LP, the query

efficiency is independent of the window size. However, as for EX, the time complexity is

O(log2W) which is log-linear to window size. So the curve of LP and RTP_DMM are

below EX’s. Both LP and RTP_DMM achieve O(1) time complexity, so they have close

performance in our experiment.

Differentially Private Real-Time Streaming Data Publication 73

Figure 6: Efficiency under different sliding window sizes (WorldCup98)

4.3 Comparison of query accuracy

We use all three data sets to compare query accuracy between algorithms. Since the scale

of Search Logs and NetTrace is small, the length of sliding window is set as the whole data

set. As for WorldCup98, Setting the sliding window size to 65536 is suit for further

comparison.

4.3.1 Compare accuracy for random range queries

We generate one range query of random size within the sliding window at each moment.

Under exponential decay, small decay factor will make the decay speed too fast. So we fixed

the decay factor p to 0.9995. The experimental comparison results are shown in Figs. 7-9.

It can be seen from Figs. 7-9 that RTP_DMM reaches significant higher accuracy than LP

and EX. This is because RTP_DMM converts range queries into matrix representations,

and applies diagonal matrix optimization to improve accuracy. For all three algorithms, the

query error increases as the privacy budget decreases. It is because we need larger scale of

Laplace noise with smaller privacy budget.

74 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

Figure 7: Comparison of query accuracy (Search Logs)

Figure 8: Comparison of query accuracy (NetTrace)

Figure 9: Comparison of query accuracy (WorldCup98)

4.3.2 Accuracy with different decay factors

In this experiment, we compare different decay factors to analyze their influence on the

query error. We take the decay factors as 0.9991, 0.9992, ..., 0.9999 respectively.

As the comparison results in Figs. 10-12, the query error is positively correlated with the

decay factor, this is because the increase of the decay factor will change the global

sensitivity and thus affect the scale of added noise. The EX algorithm calculates the limit of

noise scale according to the preset decay factor. Therefore, when the decay factor is close

to 1, the average square error caused by the EX algorithm become large. As for the LP

algorithm, when the decay factor is small, the weight of the long time nodes tends to be

zero which leads to smaller error.

Differentially Private Real-Time Streaming Data Publication 75

Figure 10: Accuracy with different decay factors (Search Logs)

Figure 11: Accuracy with different decay factors (NetTrace)

76 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

Figure 12: Accuracy with different decay factors (WorldCup98)

Based on the above experiments, it can be concluded that the algorithm RTP_DMM is

scalable for different applications with various decay factors and privacy budget. It can

reduce query error, and achieve real-time publishing under the sliding window.

5 Conclusion

In this paper, we propose an efficient method for real-time differential privacy streaming

data publishing under exponential decay. It answers any range query within the sliding

window in O(1) time. We further convert the model to a matrix form, using matrix

mechanism to optimize the accuracy. Comparison experiments with similar methods show

that our RTP_MM guarantees the query accuracy while achieving higher time efficiency.

In future studies, it is worth investigation to adapt our method to practical applications with

other decay modes.

Acknowledgement: This work is supported, in part, by the National Natural Science

Foundation of China under grant numbers 61300026; in part, by the Natural Science

Foundation of Fujian Province under grant numbers 2017J01754 and 2018J01797.

References

Bolot, J.; Fawaz, N.; Muthukrishnan, S.; Nikolov, A.; Taft, N. (2013): Private decayed

predicate sums on streams. Proceedings of the 16th International Conference on Database

Theory, pp. 284-295.

Differentially Private Real-Time Streaming Data Publication 77

Cai, J. P.; Wu, Y. J.; Wang, X. D. (2016): Method based on matrix mechanism for

differential privacy continual data release. Journal of Frontiers of Computer Science &

Technology, vol. 10, no. 4, pp. 481-494.

Cao, J.; Xiao, Q.; Ghinita, G.; Li, N.; Bertino, E. et al. (2013): Efficient and accurate

strategies for differentially-private sliding window queries. Proceedings of the 16th

International Conference on EDBT/ICDT, pp. 191-202.

Chan, T. H.; Shi, E.; Song, D. (2010): Private and continual release of

statistics. Proceedings of the 37th International Colloquium on Automata, Languages, and

Programming, vol. 14, no. 3, pp. 405-417.

Dwork, C. (2006): Differential privacy. Proceedings of the 33rd International Colloquium

on Automata, Languages and Programming, vol. 26, no. 2, pp. 1-12.

Dwork, C.; Naor, M.; Pitassi, T.; Rothblum, G. N. (2010): Differential privacy under

continual observation. Proceedings of the 42nd ACM Symposium on Theory of Computing,

pp. 715-724.

Fenwick, P. M. (1994): A new data structure for cumulative frequency tables. Software

Practice & Experience, vol. 24, no. 3, pp. 327-336.

Fung, B. C. M.; Wang, K.; Chen, R.; Yu, P. S. (2010): Privacy-preserving data publishing:

a survey of recent developments. ACM Computing Surveys, vol. 42, no. 4, pp. 1-53.

Hay, M.; Rastogi, V.; Miklau, G.; Dan, S. (2010): Boosting the accuracy of differentially

private histograms through consistency. Proceedings of the 36th International Conference

on VLDB, vol. 3, no. 1-2, pp. 1021-1032.

Kellaris, G.; Papadopoulos, S.; Xiao, X.; Papadias, D. (2014): Differentially private

event sequences over infinite streams. Proceedings of the 40th International Conference

on VLDB, vol. 7, no. 12, pp. 1155-1166.

Li, C.; Hay, M.; Rastogi, V.; Miklau, G.; Mcgregor, A. (2010): Optimizing linear

counting queries under differential privacy. Proceedings of the 29th ACM

Sigmod-Sigact-Sigart Symposium on Principles of Database Systems, vol. 24, pp. 123-134.

Wu, Y. J.; Ge, C.; Zhang, L. Q.; Sun, L. (2017): An algorithm for differential privacy

streaming data publication based on matrix mechanism under exponential decay mode.

Scientia Sinica, vol. 47, no. 11, pp. 1493-1509.

Xiong, P.; Zhu, T. Q.; Wang, X. F. (2014): A survey on differential privacy and

applications. Chinese Journal of Computers, vol. 37, no. 1, pp. 101-122.

Yang, H.; Soboroff, L. (2015): Privacy-preserving IR 2015: When information retrieval

meets privacy and security. Proceedings of the 38th International ACM SIGIR

Conference on Research and Development in Information Retrieval, pp. 1157-1158.

Yuan, G.; Zhang, Z.; Winslett, M.; Yang, Y.; Yang, Y. et al. (2012): Low-rank

mechanism: optimizing batch queries under differential privacy. Proceedings of the 38th

International Conference on VLDB, vol. 5, no. 11, pp. 1352-1363.

Zhang, X. J.; Meng, X. F. (2014): Differential privacy in data publication and analysis.

Chinese Journal of Computers, vol. 37, no. 4, pp. 927-949.

78 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.61-78, 2019

Zhang, X. J.; Meng, X. F. (2016): Stream histogram publication method with differential

privacy. Chinese Journal of Computers, vol. 27, pp. 381-393.

Zhou, S. G.; Li, F.; Tao, Y. F. (2009): Privacy preservation in database applications: a

survey. Chinese Journal of Computers, vol. 32, no. 5, pp. 847-861.

