
 

 

 

Copyright © 2019 Tech Science Press                       CMC, vol.58, no.1, pp.79-100, 2019 

CMC. doi:10.32604/cmc.2019.03626                                                                        www.techscience.com/cmc 

 

 

A Novel Multi-Hop Algorithm for Wireless Network with 

Unevenly Distributed Nodes 
 

Yu Liu1, Zhong Yang2, Xiaoyong Yan3, Guangchi Liu4 and Bo Hu5, * 

 

 

Abstract: Node location estimation is not only the promise of the wireless network for 

target recognition, monitoring, tracking and many other applications, but also one of the 

hot topics in wireless network research. In this paper, the localization algorithm for 

wireless network with unevenly distributed nodes is discussed, and a novel multi-hop 

localization algorithm based on Elastic Net is proposed. The proposed approach is 

formulated as a regression problem, which is solved by Elastic Net. Unlike other previous 

localization approaches, the proposed approach overcomes the shortcomings of 

traditional approaches assume that nodes are distributed in regular areas without holes or 

obstacles, therefore has a strong adaptability to the complex deployment environment. 

The proposed approach consists of three steps: the data collection step, mapping model 

building step, and location estimation step. In the data collection step, training 

information among anchor nodes of the given network is collected. In mapping model 

building step, the mapping model among the hop-counts and the Euclidean distances 

between anchor nodes is constructed using Elastic Net. In location estimation step, each 

normal node finds its exact location in a distributed manner. Realistic scenario 

experiments and simulation experiments do exhibit the excellent and robust location 

estimation performance. 
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1 Introduction 

As a new media, wireless network can realize communication between people and object, 

and it has been broadly used. However, the location of people or object in the network is 

the basic information for communication. Current wireless localization technologies 

include GPS-based
 
[Wang, Lu, Wang et al. (2017)], infrared-based [Park, Cho, Kim et al. 

(2014)], Bluetooth-based [Castillo-Cara, Lovón-Melgarejo, Bravo-Rocca et al. (2017)], 
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RFID-based [Zhou and Shi (2009)], WIFI-based and UWB-based [Mazhar, Khan and 

Sällberg (2017)], etc. Among them, GPS-based application is the most mature 

localization application with broadest application, but when there are obstacles, it is very 

difficult to satisfy the application requirement on the aspect of localization precision; the 

infrared ray has short propagation distance, which also tends to be interfered with by 

fluorescent lamp or indoor lighting, and there is certain limitation during localization; 

both the Bluetooth technology and RFID technology apply to indoor localization, but the 

Bluetooth technology has poor stability in complicated environment and system, while 

the RFID technology has short transmission distance, and it does not have the 

communication capacity; during the WIFI localization, the transmitter and receiver can 

only cover an area within 90 m, but it tends to be interfered with by other signals, and its 

locator involves high energy consumption; the UWB localization method can provide 

centimeter-level localization precision, but it is difficult to capture the UWB signal, and it 

also tends to cause significant interference with other signals. With the introduction of 

new wireless networks such as IoT (Internet of Things) and Mesh, wireless nodes can be 

randomly deployed in various types of monitoring environment, and the location 

information can be exchanged through the methods of multi-hop and self-organization. 

The node localization method based on multi-hop and self-organization is called the 

“multi-hop localization” method. The multi-hop localization method can be roughly 

divided into two groups of range-based and range-free methods according to whether it 

requires range finding during the localization process [Yang, Wu and Liu (2014)]. The 

localization precision of range-based method depends on the measuring equipment, so it 

requires high equipment cost, and it is restricted to large-scale application. The range-free 

localization method is a localization technique of cost-effective and less limited for a 

wider range of applications, and it does not require direct measuring between nodes 

during the localization process, so this method has attracted more attention. The range-

free technique generally employs hops to describe the Euclidean distance be-tween nodes, 

and the locations of unknown nodes are estimated with the assistance of trilateration. By 

replacing the multi-hop localization of directly measuring with hops, it tends to be 

affected by node distribution. Under high density and even distribution of nodes, the 

range-free method can provide excellent localization performance; however, when the 

nodes have sparse and uneven distribution, it has very poor localization performance. 

Unfortunately, in an real environment, due to various reasons such as random distribution 

of nodes, obstacles and communication failure of nodes, after the network topology is 

determined, the whole network would present uneven distribution under the influence of 

its own or external factors. Due to uneven distribution of nodes in the network, it would 

generate severe deviation by using hops to describe the Euclidean distance with range-

free localization method [Liu, Zhang and Bu (2016)]. 

Take Fig. 1 as an example, we use dotted line ABd ( A* B*d ) to represent the Euclidean 

distance between nodes A( A* ) and B ( B* ) in the network, and use arrowed straight line 

ABh ( A* B*h )to indicate the approximate length of the shortest path between nodes A( A* )  

and B ( B* ). When the nodes are distributed evenly and densely in the network, we can 

see that AB ABd h , however, when nodes are unevenly distributed or obstacles affect the 
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signal transmission, the nodes are distributed unevenly, which will result in A* B* A* B*d h . 

Therefore, we can intuitively understand that if the nodes in the network are evenly 

distributed, the Euclidean distance between pairs of nodes is proportional to the hop 

count; conversely, the proportional relationship between the Euclidean distance and the 

hop count no longer holds. 

Obstacles

ObstaclesA

B

B*

A*

 

Figure 1: Nodes uneven distribution network 

According to the above analysis, it is not difficult to see that when there are phenomena 

such as lack of distribution and uneven distribution of nodes, the hops between nodes will 

change, which will cause severe error during the estimation process of the shortest path. 

This kind of estimation error of the shortest path is directly related to the orientation of 

the shortest path, and the shortest path which does not pass through the area with uneven 

node distribution will not be affected. The distance estimation of shortest path between 

nodes is the basis of multi-hop localization problem, and only when the distance 

estimation error of shortest path between nodes is small can the localization of unknown 

node be conducted in a relatively accurate way; when the distance estimation error of 

shortest path between nodes is big, the localization precision of unknown node will be 

severely affected. In order to increase the adaptive capacity of range-free multi-hop 

localization method for various types of environment, we propose a range-free 

localization algorithm with high localization precision, which can adapt to various types 

of anisotropic network environment, i.e. Multi-hop Localization through Elastic Net 

(ML-EN). The Elastic Net method [Zou and Hastie (2015)] can be used to effectively 

handle strongly correlated variables, effectively choose variables and estimate related 

parameters, so the ML-EN method can provide higher localization precision and adapt to 

different network environment. 

2 Relation work 

DV-Hop is the best-known range-free multi-hop localization algorithm, which was 

proposed by Niculescu et al. [Niculescu and Nath (2003)] from Rutgers University, and 

this algorithm has been broadly discussed and quoted. The DV-Hop algorithm is built on 

some simple idea and easy to realize. In this algorithm, the distance from the unknown 
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nodes to the anchor nodes are represented by the product of the per hop distance and the 

hops, and finally, the trilateration is used to estimate location of unknown nodes. The 

distance estimation method of DV-Hop algorithm has strict requirements on the 

distribution of nodes, which results in poor adaptability. According to the problem of 

uneven distribution of nodes, Shang et al. [Shang, Shi and Ahmed (2004)] proposed a 

method to use only four nearest anchor nodes from the unknown nodes to locate the 

unknown node (for convenience of discussion, we call this algorithm the “Nearest-4 

algorithm”). The Nearest-4 algorithm believes that the fewer hops between nodes, the 

less affected by the uneven distribution of nodes. However, some unknown nodes may 

have few anchor nodes at close range and have to choose anchor nodes at a longer 

distance. In addition, the mechanism of selecting the most nearest four anchor nodes as 

reference nodes will also exclude some anchor nodes that are far away but have better 

distance estimation, thereby reducing the localization accuracy of unknown nodes. 

Shahzad et al. [Shahzad, Sheltami and Shakshuki (2017)] proposed the DV-maxHop 

method based on the Multi-objective Optimization method. The algorithm found that the 

value of MaxHop in the range of 5 to 15, gives satisfactory results. Recently, Zhao et al. 

[Zhao, Su and Shao (2018)] proposed the LWLR-DV-hop method based on the Nearest-4 

algorithm. In this algorithm, three anchor nodes nearest to the unknown node are chosen 

as the reference nodes, and the local weighted least square method is used to further 

weaken the deviation between hops and Euclidean distance conversion. 

In recent years, various improved DV-hop algorithms have been continuously proposed, 

but these improved methods still use the average hop distance from the unknown node to 

the anchor node to estimate the distance, and this kind of distance estimation method has 

the defects of poor model interpretability and poor adaptation to the nodes distribution. 

According to the defects of the DV-hop algorithm and its improved methods, the Hou 

research team at UIUC proposed the PDM algorithm [Lim and Hou (2009)]. The PDM 

algorithm directly adopts the skeleton between reference nodes to build the mapping 

model between hops and Euclidean distance, and the least square method is used to 

obtain the optimal linear conversion between hops and Euclidean distance. In essence, 

PDM is used to estimate the distance between nodes based on the hop-by-hop 

transmission characteristic of wireless network data, so there tends to be correlation 

between the hop matrix vectors during the estimation process. Take Fig. 2 as an example 

assume A  is the source node and B  is the destination node, and because it needs to pass 

through nodes 1 2 3 4 5 6X , X , X , X , X , X      from A  to B , there is also close correlation 

between the hop matrix vectors between nodes. When there is correlation between the 

hop matrix vectors, it needs to be penalized during the estimation process (i.e. 

regularization). Based on this problem, in the PDM algorithm, the TSVD regularization 

method [Hansen (1987)] is adopted during construction of the mapping model between 

hops and Euclidean distance. 
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Figure 2: Node communication model in multi-hop networks 

Compared with many previous DV-hop and its improved algorithm, the PDM method 

can more accurately capture the relation between hops and Euclidean distance, and 

effectively dig the node distribution and correlation information hidden behind data, so it 

can effectively improve the multi-hop localization performance. However, the PDM 

method has ignored the magnitude order conversion problem between hops and 

Euclidean distance, so it tends to cause fluctuation in localization performance of 

algorithm under different node densities and node communication radiuses. In addition, 

the regularization method adopted by the PDM method is essentially a method with 

empirical risk minimization, so the final localization performance of the PDM depends 

on the distribution of anchor nodes in the network. When there are a small number of 

anchor nodes, this method can only guarantee the localization precision of nodes near the 

anchor nodes. Inspired by the PDM method, Lee et al. [Lee, Chung and Kim (2013)] 

proposed two range-free multi-hop localization algorithms based on support vector 

regression, which are LSVR and MSVR respectively. By introducing the kernel function, 

these two algorithms adopt nonlinear mapping method to transform the localization 

problem to kernel regression problem. The support vector regression is a method with 

minimum structural risk, so the LSVR and MSVR methods are still able to provide great 

localization performance with a small amount of reference nodes. However, according to 

the bias–variance tradeoff theory of statistics and machine learning, it tends to cause the 

over-fitting problem when there a large number of model parameters. During actual 

application, the LSVR and MSVR algorithms are significantly affected by the over-fitting 

problem, and it might have poorer localization performance than some early PDM 

methods under certain scenarios. Take Fig. 3 as an example, Fig. 3(a) shows a classic 

network with uneven node distribution, there are 300 nodes in the network, and 36 of 

them are anchor nodes. Fig. 3(b) shows the results obtained with the LSVR localization 

method, where the circle represents the estimated location of the unknown node, the 

straight line connects the real coordinates of the unknown node and its estimated 

coordinates, and the longer the straight line, the greater the localization error. Obviously, 

LSVR is affected by the over-fitting problem, and the unknown node’s estimated location 

tends to be a curve. 
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(a) (b) 

Figure 3: (a) Node distribution, (b) localization result 

Later, in 2016, Yan et al. [Yan, Song and Liu et al. (2015)] used the ridge regression (RR) 

to replace the multi-parameter SVR method and proposed the LRR localization algorithm, 

and the localization precision of algorithm has been significantly improved. The model 

built with RR is stable, it improves the prediction precision by reducing the estimation 

variance, but it has increased the estimation bias. In other words, the RR is a continuous 

method, which has reduced the regression coefficient without simply abandoning any 

variable. Because ridge regression fails to reduce any regression coefficient to 0, there are 

too many variables in the built model, and the model has poor interpretability. Again, 

take Fig. 4 as an example, assume A  is the source node and ,B C  are the destination 

nodes. According to the neighborhood in Fig. 4, we can see that →A B  and →A C  only 

have common path on the two nodes of 
1 2X , X . Therefore, →A B and →A C  are only 

correlated at 
1 2→ →A X X , and it is obviously unreasonable to impose penalty on the 

two paths of 
2 3 4→ → →X X X B  and 

2 3 4

* *→ → →X X X C  with no correlation. 
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*
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4X
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Figure 4: Multiple communication path model in multi-hop networks 
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In 1996, Tibshirani [Tibshirani (1996)] proposed a landmark new variable selection 

method-LASSO. Different from the idea of traditional variable selection method, this 

method uses the absolute value function of model coefficient as penalty to compress the 

regression coefficient of model, so that some coefficients with smaller absolute value 

won’t be directly compressed to 0, which can not only realize selection of significant 

variable, but also provide corresponding coefficient estimate. Although the LASSO 

method has some great properties, and it has been broadly used, some of its defects are 

also reflected in actual application. For example, the LASSO method does not have 

group's effect, which results in poor accuracy and effects. In addition, the LASSO 

method does not distinguish between various decomposition coefficients, it provides 

compression with the same degree, and this will cause over compression of some 

coefficients, which will further affect the estimation accuracy. In order to address these 

problems, in 2005, Zou et al.  [Zou and Hastie (2015)] proposed the Elastic Net method. 

This method has combined the merits of both RR and LASSO, which has not only kept 

the stability of RR, but also possessed the characteristic of variable selection, and as a 

result, the estimation accuracy can be effectively improved. 

3 Network model and localization problem description 

Assume N  nodes  1 2 NX , X , ,X  are distributed in a network. Without loss of generality, 

let the first ( )M M N  nodes of set  to represent the anchor nodes whose locations are 

known, and the rest N M−  nodes are unknown nodes. Each of these N  nodes correspond 

to a definite location and a neighbor node set in the network. Therefore, this network can 

be abstracted to an undirected graph ( )G V , E=   in the network, in which, the vertex set is 

 1 2V , , ,N=  , and the edge set is E . When and only when node i  and node j  are 

neighbors in undirected graph G  will ( )i, j E . Assume the true location of each anchor 

node is represented by ix ,  1 2i , , ,M  ; the true location of node to be estimated is 

represented by jx , and  1 2j M ,M , ,N + + . If any node iX  is connected to node jX , 

their measurement information can be measured, i.e. the minimum hops, which can be 

represented by ( )  0 1 2i j ijp X , X p , , ,=   . The minimum hop vector of node jX  and other 

connected nodes in the network is  
T

1 2i i i iNp , p , , p=  p , and the minimum hop matrix 

between nodes in the whole network is  1 2 N, , ,=  P p p p  where the hop count matrix 

between anchor nodes is  1 2 M, , ,=P p p p . The localization problem can also be 

abstracted to the process to estimate the location jx  of unknown node jX  under the 

constraint of ix  and ijp . The constraint condition can be abstracted to a mapping 

function ( ) ( ): i j i jf p X , X d X , X→  , ( )ij ijf p d=  exists for the unknown node, and we 

expect the estimated location of node jx̂  to be as close to jx  as possible. In it, 

( )i j ijd X , X d=  represents the Euclidean distance between nodes, and it has the 
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following definition: 

( ) ( )

1

22

1

p

i j ij ik jk

k

d X , X d
=

 
= = − 

 
 x x  (1) 

If node 
jX  is not connected to node iX , then 

ijd = . Because the location of anchor 

node is known, the distance vector between anchor node iX  and the rest anchor nodes in 

the network is  
T

1 2i i i iMd , d , ,d=  d , in which, 0iid = . The distance matrix between anchor 

nodes in the whole network is  1 2 M, , ,=   D d d d . 

4 Node location estimation 

The basic idea of multi-hop localization based on the Elastic Net is to transform 

localization to regression prediction problem by building the mapping relation between 

hops and Euclidean distance. The ML-EN algorithm consists of three steps (as shown in 

Fig. 5): First of all, measure the hops and Euclidean distance information between anchor 

nodes; then, build the mapping model between hops and Euclidean distance through EN; 

finally, estimate the coordinate of unknown node by the multilateration method. 

1-D distance

estimation

2-D location

estimation

Location estimationData collection

Elastic Net

Building model

Localization Problem
 

Figure 5: The framework of proposed algorithm 

The details of above three steps are discussed in the following subsections. 

4.1 Measurement step 

First of all, after the program starts, any anchor node  1 2iX ,i , , , M    will broadcast a 

HELLO packet to other nodes in the network. After the program has run for a while, the 

anchor node can obtain the shortest hops from it to other nodes. Then, the anchor node iX  

will send an INFO packet to other anchor nodes in the network, and the packet contains 

the information of its own location ix  and the shortest hops ip  to other nodes. In this way, 

any anchor node in the network can build a global shortest hop matrix P  between anchor 

nodes and a distance matrix D  between anchor nodes. 

4.2 Model building step 

Through data collection during the measurement stage, any anchor node 

 1 2iX ,i , , , M    can collect M  hops-Euclidean distance data pairs ( )k i ,k, d p , which 
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can connect the anchor node iX  with the rest anchor nodes in the network. Assume the 

constraint condition for localization is a mapping function f , 

( ) T

i k i k i i ,kf e d= + =p p  (2) 

In which, i  is the distance estimation model. In order to prevent inconsistent order of 

magnitudes during the conversion between hops and Euclidean distance with the change of 

network scale and node communication radius, we have conducted standardized processing 

to data pair ( )k i ,k, d h . For the whole network, Formula 2 can be transformed to: 

i i i= +d P e  (3) 

In order to obtain optimal distance estimation model, Elastic Net can be used for 

estimation, and the objective function of EN is: 

( )
2 2

1 2 2 1 1i i i i i, ,   = − + +L d P     (4) 

In which, 
2 2

1

p

i ij

j


=

= , 
1

1

p

i ij

j


=

= , and 1  and 2  are two non-negative penalty 

parameters. Make ( )1 1 2   = + , 1 2  = + , and Formula 4 can be rewritten as: 

( ) 2 2

1
1i i i i i

ˆ arg min    = − + − +
 

d P     (5) 

In which,  )0,   is the penalty coefficient; ( ) 2

1 1

1
p p

ij ij

j j

   
= =

+ −   can be called the 

Elastic Net penalty; ( ) 2

1 1

1
p p

ij ij

j j

   
= =

+ −   is the convex combination of LASSO 

penalty and Elastic Net penalty. When 0 = , Formula 5 turns to simple ridge regression; 

when 1 = , Formula 5 turns to LASSO regression. 

In order to obtain the optimal estimation for Formula 5, i.e. the optimal hops-Euclidean 

distance conversion model, we can use data pair ( )k i ,k,dh  and the penalty coefficients 1  

and 2  to build a new training dataset ( )i,P d : 

( ) ( )
1 2

1

1

1
0

i

i, ,


−    
= +    

    

P d
P d

I
 (6) 

The optimal conversion model i  between hops and Euclidean distance from anchor 

node  1 2iX ,i , , , M    to other nodes in the area can be expressed as: 

( ) 2

2 1 1

1

1

1

* *

i i i i

*

i i

ˆ arg min

ˆ

 



 = − + +

 = +

  

 

d P
 (7) 

At this moment, the Least Angel Regression [Efron, Hastie, Johnstone et al. (2004)] and 
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AIC criterion [Akaike (2011)] can be used to obtain the optimal conversion model 
î . 

According to the Elastic Net, in the optimal solution 
î  obtained from Formula (7), some 

penalty coefficients for nodes with weak correlation will be compressed to 0, so that the 

hops-Euclidean distance conversion model will have sparsity. 

4.3 Location estimation step 

Through model building step, any unknown node  1kX ,k M , ,N +  receives M  hops-

Euclidean distance conversion models and shortest hops vectors  1 1 M M
ˆ ˆ, , , , p p  from 

the anchor nodes. Let 

T

1k k , k ,M
ˆ d , ,d=   d  (8) 

be the estimated distance vector representing the estimated distance between the 

unknown node kX  and M anchor nodes. The estimated distance vector 
kd̂  can be 

determined by 
T

T T

1 1k k , k ,M k M k ,
ˆ ˆˆ ˆ ˆd d = =
 

d p p   (9) 

After the estimates of the distances 
kd̂ to the anchor nodes are evaluated, multilateration 

is performed to localize the location of the node kX . 

5 Performance analysis 

In this section, through experiments in various environments, the performance of multi-

hop localization algorithm based on the EN algorithm will be analyzed and evaluated. 

First of all, a group of experiments were conducted in the actual environment (as shown 

in Fig. 6). In the actual environment, the experiments were conducted in an indoor 

corridor, and its scope was around 30 5 m  . We deployed 20 wireless nodes in the 

corridor, and the node chip is CC2530 produced by TI Company. 

Because this paper is dedicated to addressing the influence of uneven node distribution 

on the localization performance, we will not focus on such factors as the node 

communication cost, node lifecycle and information delivery method. In the experiment, 

the influence of the indices of node distribution, proportion of anchor nodes and node 

density on the localization precision was mainly investigated. 

Sometimes, it is difficult to set these parameters. Therefore, in this section, we will still 

evaluate the performance of localization algorithm through software simulation. 
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(a) (b) (c) 

Figure 6: (a) Wireless node; (b) Node distribution scenario; (c) Network topology with 

20 nodes 

We use the root mean square (RMS) as the criterion for localization precision, and RMS 

can be expressed as: 

( ) ( )( )2 2

1

1
tN

i i i i
t i

ˆ ˆRMS x x y y
N

=

= − + −  (10) 

where ˆ ˆ( , )i ix y  is the estimated coordinate of unknown node  1iX ,i M , ,N + , and 

),( ii yx  is the real coordinate of unknown node iX . 

We also compare our method with seven previous methods: (1) the classic DV-hop 

algorithm proposed in Niculescu et al. [Niculescu and Nath (2003)]; (2) Nearest-4 

proposed in Shang et al. [Shang, Shi and Ahmed (2004)]; (3) DV-Maxhop proposed in 

Shahzad et al. [Shahzad, Sheltami and Shakshuki (2017)]; (4) LWLR-DV-hop proposed 

in Zhao et al. [Zhao, Su and Shao (2018)]; (5) PDM proposed in Lim et al. [Lim and Hou 

(2009)]; (6) LSVR proposed in Lee et al. [Lee, Chung and Kim (2013)]; and (7) LRR 

proposed in Yan et al. [Yan, Song, Liu et al. (2015)]. 

5.1 Localization experiment in real scene 

During the multi-hop localization, the hops between two nodes can be determined by 

setting the threshold value of signal attenuation. Therefore, it requires obtaining the 

relation between signal attenuation value RSSI and the distance. In order to obtain the 

relation between RSSI and the distance, for the scenario as shown in Fig. 6, we 

repeatedly collected communication among 20 nodes for 120 times. Considering that in 

the actual environment, the signal reflection, scattering or shielding will generate 

interference with the signal value collected by receiving node, we adopt the Log-normal 

Shadowing model [Yang, Wu and Liu (2014)] to depict how the signal intensity will 

change with the change of distance. 
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( ) ( )0 0
0

P 10 logr
dd P d X

d   = − + 
 

 (11) 

In which, ( )Pr d  represents the received signal strength at distance d  and ( )0 0P d  

represents the received signal strength at some reference distance 0d (usually set 

0 1d m= ),   represents the path-loss exponent, and X   represents a log-normal random 

variable with standard deviation   that accounts for fading effects. Therefore, after 

knowing the path loss exponent, the receiving node can measure its distance from the 

signal source according to the strength of received signal. 

After collecting 120 times of data, we adopt the method in Literature [Yan and Qian 

(2013)] to clean the signal data, and after eliminating outlier signal values caused by the 

environmental factors, the mean value of signals collected in multiple times is used. In 

the environment as shown in Fig. 6, at a distance of 1 m, the mean value of RSSI 

obtained through multiple measurements is -31.55 dBm. 

Up until now, we have obtained the signal and distance distribution diagram in the area of 

Fig. 6 (as shown in Fig. 7). 

 

Figure 7: RSSI vs Distance plots for the 20 node deployment indoor 

According to Formula 11, we can obtain the distance prediction formula, 

1 1 2.254

0 0

Pr Prˆ
( ) 31.55

d
P d

− −
   

= =   
−  

 (12) 

In this group of experiments, the node communication radius is set at 4.5 m; nodes 4,6, 

10,12,13 and 15 in the network are chosen as the anchor nodes, and the rest 14 nodes are 

nodes to be localized. The Matlab software was used for computation of the ML-EN 

algorithm proposed in this paper and other 7 similar algorithms, and the final localization 

result can be obtained (as shown in Fig. 7). According to Fig. 8, we can see that the DV-

Maxhop algorithm has close estimation precision as the DV-hop algorithm. This is 

because of the restriction of deployment space, which has resulted in failure of hops 

selection in the DV-Maxhop algorithm, and the DV-Maxhop algorithm will degrade to 
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the DV-hop algorithm. The Nearest-4 algorithm and LWLR-DV-hop algorithm are two 

algorithms with similar theoretical basis, but due to restriction of the number of selectable 

anchor nodes and the topologic quality of anchor nodes, their localization precisions are 

lower than that of the DV-hop method. Fig. 8(h) shows the ML-EN method proposed in 

this paper, it has high localization precision, and the RMS value is 4.5595. The average 

localization precision (RMS) of ML-EN method is 58.1%, 68.2%, 61.1%, 39.3%,4.2% 

and 6.4% higher than the localization precisions of Nearest-4, DV-Maxhop, LWLR-DV-

hop, PDM, LSVR and LRR methods respectively. 

For localization in the actual environment, we also employ the Cumulative Distribution 

Function (CDF) to analyze the accumulative distribution of errors of nodes to be 

localized. We can find when using ML-EN, the localization performance is effectively 

improved, e.g. more than 80% nodes are localized with RMS is less than 4 m in the real-

world environment. 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

  

(g) (h) 

Figure 8: Results of location estimation in realistic scenarios. (a) DV-hop, RMS=9.9152; 

(b) Nearest-4, RMS=12.0545;(c) DV-Maxhop, RMS=9.9152; (d) LWLR-DV-hop, 

RMS=11.4967; (e) PDM, RMS=7.5795; (f) LSVR, RMS=5.0697; (g) LRR, RMS=5.0385 

(h) ML-EN, RMS=4.5595 
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Figure 9: The CDF of the estimation errors in realistic scenarios 

5.2 Simulation experiment 

In this section, the performance of localization algorithm based on Elastic Net will be 

analyzed and evaluated through simulation experiment. The experiment analyzes the 

distribution of nodes in the network, the proportion of anchor nodes, and the density of 

nodes. The specific parameters of the network are shown in Tab. 1. 

Table 1: Network parameters 

Total number 

of nodes 

Anchor 

node ratio 

Node  

distribution 

Communication 

radius 

300 80%~16% 

In the area of 300*300, the nodes 

are distributed into G-shaped, S-

shaped and Z-shape 

35~55 

5.2.1 The uneven distribution of nodes 

Experiments adopt the distribution of letter-shaped nodes to simulate the uneven 

distribution of nodes. Tab. 2 describes the node distribution and localization results of 

ML-EN and similar algorithms when the node communication radius is 40 and the anchor 

nodes account for 12% of total nodes. The first line in Tab. 2 shows the node distribution. 

The localization results are described with 3-D stem plot, the stem height represents the 

absolute error of estimation, and the higher the height is, the bigger the localization error. 
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Table 2: Localization results with different nodes distribution 
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M
L

-E
N

 

   

R
M

S
 

21.7998 23.5812 21.0761 

According to the localization result in Tab. 2, we can see that in a network with uneven 

node distribution, because DV-hop and its improved methods use fixed hops-Euclidean 

distance conversion coefficient, it results in error during the conversion between hops and 

Euclidean distance; although the PDM method can solve the error generated during 

conversion from hops to physical distance, however, due to restriction by problems such 

as conversion of magnitude order and minimum empirical risk, the improvement of 

localization performance is very limited; the LSVR method is restricted by the over-

fitting problem, which causes its localization precision to be higher than that of the PDM 

method; although the LRR method has higher localization precision than previous 

methods, the improvement in precision is limited due to fixed ridge parameter, The ML-

EN method proposed in this paper has considered various factors constraining the 

localization precision, so it can provide higher localization precision. 

5.2.2 Anchor node ratio 

Another factor that affects the estimation accuracy of the nodes is the ratio of anchor 

nodes. In order to reduce the one-sidedness of the experimental results, we conducted 100 

simulations for each node distribution network. Considering that the boxplot will not be 

affected by outliers, and it can describe the discrete distribution of data in a relatively 

stable way, in this group of experiments, we use boxplot to describe the localization 

results of multiple simulation experiments under different proportions of anchor nodes 

(8%~16%). 

In Fig. 10, the experimental results show that the DV-hop method does not apply to the 

localization in anisotropic network. In the G-shape network and S-shape network, its 

RMS values are both higher than 100; in the Z-shape network, its RMS value is between 

70 and 120, which also presents fluctuations with the increase of anchor nodes. The 

Nearest-4, DV-Maxhop, LRR methods and the ML-EN method proposed by us all have 

higher localization precision than the DV-hop method, and the precision presents gradual 

decline with the increase of anchor nodes. The ML-EN method proposed in this paper has 

the lowest RMS values in all three networks with uneven distributed nodes: in the G-

shape network, the average estimation accuracy of ML-EN method is 83.85%, 67.33%, 

57.26%, 51.9%, 35.53%, 43.98% and 24.95% higher than that of the DV-hop, Nearest-4, 

DV-Maxhop, LWLR-DV-hop, PDM, LSVR and LRR methods respectively; in the S-

shape network, the average estimation accuracy of ML-EN method is 83.26%, 65.51%, 

59.7%, 51.05%, 34.64%, 44.51 % and 22.12% higher than that of the LRR method; in the 
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Z-shape network, the average estimation accuracy of ML-EN method is 77.86%, 62.42%, 

57%, 48.01%, 32.1%, 40.04% and 18.97% higher than that of the Nearest-4 and LRR 

methods respectively. 

   

(a) G-shaped node distribution                      (b) S-shaped node distribution 

 

(c) Z-shaped node distribution 

Figure 10: Simulation results of the different algorithms with different number of 

anchors 

5.2.3 Node density 

In this section, we also evaluate the effect of node density on positioning errors. The 

number of nodes’ average neighbors 

2

tN R

A



=  is usually used to represent the node 

density, where A  is the size of the node deployment area, R  is the node communication 

radius, and tN  is the number of localizable nodes. In order to change the density of nodes 

in the network, we adopt the way to adjust the communication radius of the node in the 

experiment. When the node communication radius changes in the [35, 55] range, in the 

G-shaped network, the variation range of   is 2.16 to 4.19; in the S-shape area, the 
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variation range of   is 2.25 to 3.81; in the Z-shaped area, the variation range of   is 

2.38 to 4.53. Fig. 11 shows the effects with different R  on the localization performance. 

In theory, with the increase of node communication radius, the number of neighbors 

would increase accordingly, and the per-hop-distance of nodes is closer to the actual 

distance. However, this is not the case in reality. As described in the literature [Lee and 

Kim (2011)], in the multi-hop network, the node distribution conforms to the Poisson 

distribution, and the increase of communication radius will not increase the estimation 

accuracy, but results in fluctuation. According to Fig. 11, we can find that although the 

estimation accuracy presents fluctuation with the change of communication radius R, no 

matter how the communication radius R changes, the proposed method in this paper is 

always superior to the DV-hop, Nearest-4, DV-Maxhop, LWLR-DV-hop, PDM, LSVR 

and LRR methods. 

 

       (a) G-shaped node distribution                    (b) S-shaped node distribution 

 

(c) Z-shaped node distribution 

Figure 11: Simulation results of uneven node distribution with different radio range 
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6 Conclusions 

A novel multi-hop algorithm for wireless network with unevenly distributed nodes is 

proposed in this paper. The proposed approach is based on the elastic net, which is a 

regularization method with good interpretability and stability. In the proposed meth-od, 

each unknown node estimates its location using the mapping model by elastic net 

constructed with anchor nodes. In this mapping model, the location of the unknown node 

is estimated by the information related to the minimum hops of the unknown node to all 

of the anchor nodes. The proposed approach is applicable to the scenarios where nodes 

are unevenly distributed. The experiment demonstrated the superior performance of the 

proposed approach compared to previous multi-hop localization methods in a variety of 

different distribution environments. 

 

Acknowledgement: The paper is sponsored by the Natural Science Foundation of the 

Jiangsu Higher Education Institutions of China (15KJB520009, 16KJD520004), China 

Postdoctoral Science Foundation (2016M601861), Jiangsu Postdoctoral Science 

Foundation (1701049A), and the Open Project Program of Jiangsu Key Laboratory of 

Remote Measurement and Control (YCCK201603). 

References 

Akaike, H. (2011): Akaike’s information criterion. International Encyclopedia of 

Statistical Science, pp. 25-29. 

Castillo-Cara, M.; Lovón-Melgarejo, J.; Bravo-Rocca, G.; Orozco-Barbosa, L.; 

García-Varea, I. (2017): An empirical study of the transmission power setting for 

bluetooth-based indoor localization mechanisms. Sensors, vol. 17, pp. 1-22. 

Efron, B.; Hastie, T.; Johnstone, I.; Tibshirani, R. (2004): Least angle regression. 

Annals of Statistics, vol. 32, no. 2, pp. 407-499. 

Hansen, P. C. (1987): The truncated SVD as a method for regularization. BIT Numerical 

Mathematics, vol. 27, no. 4, pp. 534-553. 

Lee, J.; Chung, W.; Kim, E. (2013): A new kernelized approach to wireless sensor 

network localization. Information Sciences, vol. 243, pp. 20-38. 

Lee, S.; Kim, K. (2011): Determination of communication range for range-free multi-

hop localization in wireless sensor networks. Computer Communications and Networks, 

pp. 1-4. 

Lim, H.; Hou, J. C. (2009): Distributed localization for anisotropic sensor networks. 

ACM Transactions on Sensor Networks, vol. 5, no. 2, pp. 1-26. 

Liu, X.; Zhang, S. G.; Bu, K. (2016): A locality-based range-free localization algorithm 

for anisotropic wireless sensor networks. Telecommunication Systems, vol. 62, no. 1, pp. 

3-13. 

Mazhar, F.; Khan, M. G.; Sällberg, B. (2017): Precise indoor positioning using UWB: a 

review of methods, algorithms and implementations. Wireless Personal Communications, 

vol. 97, no. 3, pp. 4467-4491. 

Niculescu, D.; Nath, B. (2003): DV based positioning in Ad Hoc networks. 

http://xueshu.baidu.com/s?wd=author%3A%28Robert%20Tibshirani%29%20&tn=SE_baiduxueshu_c1gjeupa&ie=utf-8&sc_f_para=sc_hilight%3Dperson


 

 

 

100   Copyright © 2019 Tech Science Press               CMC, vol.58, no.1, pp.79-100, 2019 

Telecommunication Systems, vol. 22, no. 1-4, pp. 267-280. 

Park, S.; Cho, I. M.; Kim, S. S.; Kim, S. M. (2014): A portable mid-range local-ization 

system using infrared LEDs for visually impaired people. Infrared Physics and 

Technology, vol. 67, pp. 583-589. 

Shahzad, F.; Sheltami, T. R.; Shakshuki, E. M. (2017): DV-maxHop: a fast and ac-

curate range-free localization algorithm for anisotropic wireless networks. IEEE 

Transactions on Mobile Computing, vol. 16, no. 9, pp. 2494-2505. 

Shang, Y.; Shi, H. C.; Ahmed, A. A. (2004): Performance study of localization methods 

for ad-hoc sensor networks. IEEE International Conference on Mobile Ad-Hoc and 

Sensor Systems, pp. 184-193.  

Tibshirani, R. (1996): Regression shrinkage and selection via the Lasso. Journal of the 

Royal Statistical Society. Series B, vol. 58, no. 1, pp. 267-288. 

Wang, W. Y.; Lu, D.; Wang, L.; Jia, Q. Q. (2017): Adaptive interference mitigation in 

GNSS. https://www.springer.com/gb/book/9789811055706. 

Yan, X. Y.; Qian, H. Y. (2013): A selective beacon node 3D location estimation based 

on RSSI for wireless sensor network. Information Technology Journal, vol. 12, no. 2, pp. 

50-60. 

Yan, X. Y.; Song, A. G.; Liu, Y.; Gu, X. Y. (2015): An efficient tolerant-anisotropic 

localization for large-scale wireless sensor network. Seventh International Symposium on 

Parallel Architectures, Algorithms and Programming, pp. 41-44. 

Yang, Z.; Wu, C. S.; Liu, Y. H.; (2014): Location-Based Computing: Localization and 

Localizability of Wireless Networks. Tsinghua University Press, China. 

Zhao, W.; Su, S. B.; Shao, F. (2018): Improved DV-Hop algorithm using locally 

weighted Lin-ear regression in anisotropic wireless sensor network. Wireless Personal 

Communications, vol. 98, no. 4, pp. 3335-3353. 

Zhou, J. Y.; Shi, J. (2009): RFID localization algorithms and applications-a review. 

Journal of Intelligent Manufacturing, vol. 20, pp. 695-707. 

Zou, H.; Hastie, T. (2015): Regularization and variable selection via the elastic net. 

Journal of the Royal Statistical Society. Series B, vol. 67, no. 2, pp. 301-320. 

https://www.springer.com/gb/book/9789811055706

