
Estimating the Number of Posts in Sina Weibo
Kai Dong1, 2,∗, Taolin Guo1, Xiaolin Fang1, Zhen Ling1 and Haibo Ye3

Abstract: Sina Weibo, an online social network site, has gained popularity but lost it in
recent years. Now we are still curious on the number of posts in Sina Weibo in its golden
age. Besides checking this number in Sina’s operating results, we aim to estimate and ver-
ify this number through measurement by using statistical techniques. Existing approaches
on measurement always rely on the supported streaming application programming inter-
face (API) which provides proportional sampling. However no such API is available for
Sina Weibo. Instead, Sina provides a public timeline API which provides non-proportional
sampling but always returns a (nearly) fixed number of s amples. In this paper, we present
a novel method utilizing this API and estimate the number of posts in Sina Weibo in its
golden age.

Keywords: Sina Weibo, popularity, number of posts, public timeline API.

1 Introduction
Online social network is an emerging trend over the past decade which offer the basic
functionalities like friends listing, private messaging, information releasing [Heidemann,
Klier and Probst (2012)]. With these features, mainstream social applications each has a
large user base. Relying on an existing social network services to provide third party login
and various other social networking application programming interfaces (API), the variety
of mobile applications is now extremely rich, e.g. game, business, work, etc.
The popularity of a social network is important for the application developers, advertisers,
or service providers, to make decisions on whether or not to establish business relationship
with this social network service. Moreover, the popularity is also important for users of a
mobile application, since the choice of third party user register/login with one certain social
network may also mean inconvenience or unavailability of social activities in other social
networks.
In this paper, we target at analyzing the popularity of the Sina Weibo (“weibo” is a Chinease

1 School of Computer Science and Engineering, Southeast University, Nanjing, 211189, China.
2 State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China.
3 College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics,
 Nanjing, 210016, China.
∗ Corresponding Author: Kai Dong. Email: dk@seu.edu.cn.

CMC. doi:10.32604/cmc.2019.03903 www.techscience.com/cmc

Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

word meaning “micro-blog”), which is one of the most popular online social network (OS-
N) site in the mainland of China and some other regions all over the world. Sina Weibo has
experienced an explosion in popularity after its birth in 2009, but also soon lost popularity
like many other Internet products and services from 2013 or 2014.However the story is still
going on. With the wave of large-screen smartphones, Sina Weibo is now experiencing a
steady development in popularity since 2017. This arises our interest in estimating and an-
alyzing the number of posts in Sina Weibo, especially in its golden age in 2014. According
to the 2017 full-year operating result of Sina Weibo, the number of monthly active users
of Sina Weibo is 392 million (93% of which are mobile users), and the number of daily
active users is 172 million. We can obtain the numbers of active users in different years by
checking Sina Weibo’s operating results (which is always rising even when Weibo lost its
popularity after 2014, e.g. the monthly active users of Sina Weibo in 2015 is 175 million,
which grew 36 percent year-on-year).
However, the real popularity of an OSN site is determined not only by the number of active
users, but also by “the number of posts” (i.e. how active the “active users” are). The number
of posts is rarely published by Sina, so we aim to estimate this number by using statistical
techniques.
To perform measurement and analysis on an OSN, a large scale data set is critical. Using
web crawlers and calling public APIs are the two most common ways to get a large scale of
data in OSNs. According to the gradually improved security mechanisms and techniques
employed by OSNs, it is always more difficult and more expensive to continuously crawl
large scales of data from OSNs. As a result, most recent studies rely on public APIs which
are officially supported, e.g. Lehmann et al. [Lehmann, Gonçalves, Ramasco et al. (2012)]
evaluate hashtag popularity by using Twitter’s rest API, Xu et al. [Xu, Zhang, Wu et al.
(2012)] examine the abuse of online social networks and Thomas et al. [Thomas, Grier,
Song et al. (2011)] analyze user posting behavior by using Twitter’s streaming API. Sina
Weibo also provides such APIs, i.e. the public timeline API which returns several posts
after being called.
The data returned by calling such APIs is always a real-time sampling of the global data of
the whole OSN. However, the difficulty in estimating the number of posts depends on the
semantics of the API used. Some of these APIs can provide proportional sampling of global
data (e.g. Twitter’s streaming API). the measurement on the number of posts is trivial since
the global number of posts can be calculated by multiplying the number of returned posts
with the fixed proportion. Another form of the APIs can only provide “non-proportional
sampling” of global data but always returns a (nearly) fixed number of samples (e.g. Sina
Weibo’s timeline API). Estimating the number of posts by using this kind of APIs is quite
challenging, sine the global number of all posts and the number of returned posts seem to
be irrelevant to each other.
In this paper, we propose a novel method to estimate the number of posts by using non-
proportional sampling APIs. This work is based on a large-scale data set which contains
667 million Sina Weibo posts obtained by using the Sina Weibo’s timeline API. By ana-

198 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 199

lyzing this dataset, we observe that there are 9 Sina Weibo test accounts, each of which is
releasing posts at their own speed. Intuitively, we can compute the total number of posts
released by Sina Weibo test accounts, and we can also count the number of posts released
by Sina Weibo test accounts in the data set. This means that we can analyze the real-time
sampling proportion by analyzing the sampling proportion of Sina Weibo test accounts, for
each time when the Sina Weibo’s timeline API is called, and at last we can estimate the
global number of all posts by scaling up the number of returned posts.
This analysis is non-trivial since we still have to deal with statistic errors caused by ran-
domness in sampling. This is because the number of returned posts (i.e. the number of
samples) is always moving up and down near the expectation. Further more, the number
of posts released by Sina Weibo test accounts is too small in comparing with the global
number of all posts, so the distance between the real number of returned posts and the ex-
pectation can greatly influence the final estimation. To address this problem, we average
the sampling proportion in each hour to minimize the statistic error. Our final estimation
results show that there are about 1 billion posts per month in Sina Weibo in its golden age
from September 2013 to June 2014.
The rest of this paper is organized as follows: Section 2 introduces the data set we used,
and Section 3 presents our analysis on the regular patterns of Sina Weibo’s timeline API.
In Section 4, we study the global sampling proportion of Sina Weibo’s timeline API, and
in Section 5, we estimate the global number of all posts in Sina Weibo. The related work
is surveyed in Section 6, and our conclusion to this paper goes in Section 7.

2 Data set
This paper utilizes data from a Sina Weibo real-time post data set which was obtained from
Datatang (the biggest data sharing site in China). In this section, we detail a few statistical
information about this data set.
The data set contains sampled posts released from September 2013 to June 2014. This data
set is collected by calling Sina Weibo’s timeline API periodically, and all duplicate posts
are removed. This data set contains about 667 million Sina Weibo posts, and each post is
composed of post ID, created time, text, source, longitude, latitude, user ID, re-post count,
comment count, location, followers count, fans count, posts count, released time, verified
time, friends count, collected time and user name.
We count the number of posts recorded in data set by day. The details are as shown in
Fig. 1, about 1 million posts per day are collected from September 1 to December 29 in
2013, and this number is suddenly increased to about 3 million since December 30, 2013.
In addition, no data is collected on September 19 to 22 in 2013 and on January 20, 2014.
So the data we used is not perfect, and this increases difficulty in our work.
In the following, we study the sampling rules of Sina Weibo timeline API from this data
set. Firstly, we show the distribution of the number of samples for each time this API
was called. Secondly, we study the duplicate samples between/among multiple times when
calling this API. Lastly, we analyze the stability issues of the sampling procedure.

0 1 2 3 4
x 10

6

date

number of posts
09/01/13

10/01/13

11/01/13

12/01/13

01/01/14

02/01/14

03/01/14

04/01/14

05/01/14

06/01/14

07/01/14

Figure 1: The number of posts in data set within different days

2.1 The number of samples

The Sina Weibo timeline API is in essence a routine which performs sampling on the real
time posts, and returns the sampled results to its caller. It is necessary to examine the
number of posts (samples) for each time when this API was called to study the sampling
ability.
We notice that, various samples can have a same time-stamp. This means that these samples
are returned from the same time calling the API. According to this feature, we count the
number of posts returned from each time calling the API by month. The distribution of the
numbers of returned samples is as illustrated in Fig. 2. For most times when calling the
API, the number of returned samples is between 190 and 200. The peak of the distribution
shows that the number is most probably around 195 to 197. This number is a little bit
different from the officially published number of 200 according to the Sina Weibo API
documents.
Although the proportion is small when the number of returned samples ranges from 1 to
190, this situation really exists. It is difficult for us to verify why the number of returned
samples can be so different. We guess that this is caused by some predefined limitations
in the sampling procedure. Fig. 3 illustrates as an example all the posts collected between
02:20:30 to 02:31:00, September 1, 2013. The time stamps of the collected posts appear
repeatedly in pairs, and the time interval between each pair is 1 s.

200 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 201

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
0

1

2

3

4

5x 10
4

number of posts

nu
m

be
r

of
 c

al
l t

im
es

2013/09
2013/10
2013/11
2013/12
2014/01
2014/02
2014/03
2014/04
2014/05
2014/06

Figure 2: The distribution of the number of collected posts by calling Sina Weibo timeline
API once

More importantly, the total number of posts in each pair is near to 200. As a result, we treat
the pair of the collected time stamps instead of a single one, to indicate that the Sina Weibo
timeline API was called for one time.

2.2 Duplicate samples

Each time when Sina Weibo timeline API is called, it will return at most 200 posts, which
are sampled from Sina Weibo real time posts. It is inevitable that there are duplicate sam-
ples among multiple times calling the API within a very short period of time. In most
cases, the duplicate posts are useless to online social networks analysis. Due to this reason,
the data set does not maintain the duplicate posts, and it only maintains what we called
the unique posts, i.e. the posts have never been previously sampled before. As a result, it
turns out that the number of recorded posts in our data set is often smaller than is should
be. Fig. 4 illustrates the monthly average number of unique posts returned by calling the
Sina Weibo timeline API. The general value of this number is about 160 to 180, which is
smaller than 200. We should notice that the value in 2014 are less than that in 2013. The
reason is that, since the calling frequency in 2013 is lower than that in 2014 (as illustrated
in Fig. 1), the number of duplicate posts (which have been deleted in the data set) in 2013
is also smaller that in 2014.
To further understand the reasons of duplicate samples, we details how the posts in the data
set are collected from 00:10:00 to 00:20:00, 1 September 2013, as illustrated in Fig. 5. By
calling the Sina Weibo timeline API once, it will generate about 190 to 200 Sina Weibo
posts in a short time period (in the past minutes). However, the time periods with multiple
times calling the API can overlap, resulting in duplicate samples. As shown in this figure,
several sampling time periods have overlaps from 00:10:00 to 00:20:00 on September 1,
2013.Take three time periods labeled as 00:14:02, 00:14:20, and 00:14:38 as examples,
each of the time period relates to a different time calling the API, the released time of the
posts returned are concentrated from 00:13:50 to 00:13:57.

0 50

100

150

200

collected tim
e

number of posts

02:20:30

02:21:00

02:21:30

02:22:00

02:22:30

02:23:00

02:23:30

02:24:00

02:24:30

02:25:00

02:25:30

02:26:00

02:26:30

02:27:00

02:27:30

02:28:00

02:28:30

02:29:00

02:29:30

02:30:00

02:30:30

02:31:00

Figure 3: Number of posts collected from 02:20:00 to 02:30:00, September 1, 2013

0 50

100

150

200

date

average number of posts per call

09/01/13

10/01/13

11/01/13

12/01/13

01/01/14

02/01/14

03/01/14

04/01/14

05/01/14

06/01/14

07/01/14

Figure 4: The average number of unique posts returned by calling Sina Weibo timeline API
once

202 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 203

0 20 40 60 80

100

120

released tim
e

number of posts

00:10:00

00:10:30

00:11:00

00:11:30

00:12:00

00:12:30

00:13:00

00:13:30

00:14:00

00:14:30

00:15:00

00:15:30

00:16:00

00:16:30

00:17:00

00:17:30

00:18:00

00:18:30

00:19:00

00:19:30

00:20:00

00:10:28(195)
00:11:03(192)

00:11:20(196)

00:11:38(191)

00:11:56(196) 00:12:14(181)

00:12:32(189)

00:12:50(193)
00:13:08(193)

00:13:26(197)
00:13:44(191)

00:14:02(194)

00:14:20(107)
00:14:38(166)

00:14:56(190)

00:15:14(195)

00:15:32(196)

00:15:50(189)

00:16:08(188)
00:16:26(191)

00:16:44(195)

00:17:02(190)

00:17:20(194)

00:17:56(197)

00:18:14(193)
00:18:32(147)

00:18:50(197)
00:19:08(197)

00:19:26(197)

00:19:44(192)
00:20:02(196)

00:20:20(189)

Figure 5: The distribution of the number of unique posts from 00:10:00 to 00:20:00,
September 1, 2013

For the first calling (in the first time period), there are 194 posts returned at 00:14:02 and
all of them are unique posts and are recorded in the data set. It is a relatively large number
since there was no time period overlapping, means that there is no duplicate posts. For
the second calling, some posts returned at 00:14:20 but only 107 posts are unique and are
recorded. It is a relatively small number since duplicate posts exists.

2.3 Sampling stability

Unlike proportional sampling APIs which have a fixed proportion. Sina Weibo’s timeline
API is a non-proportional sampling API, or in another word, the sampling proportion is
dynamic and is determined by the number of posts returned by calling this API which is
known and (nearly) fixed, and the total number of posts in Sina Weibo which is unknown
and is also our goal.
We define the sampling proportion in calling Sina Weibo timeline API as

r = c/t (1)

where r is the sampling proportion, t is the total number of posts released within the period
of time, from the time stamp of the first sampled post returned by calling the API to that
of the last one, and c is the number of posts returned by calling the API. We have already
shown that the value of c does not change much. Now, we discuss the value of t.
It is obvious that a post can be sampled by calling Sina Weibo timeline API, only if it has

been released by its owner some time before. For a given sampled post, we define the time
interval as the period of time from when it is released to when it is collected. In Section
2.1, we show that the numbers of posts returned by calling timeline API are similar. So we
can deduce that, the longer the time interval is, the more posts will be released in this time
period, which means that a larger t and also a smaller r (since c is nearly constant).

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.5

1

1.5

2

2.5x 10
6

time interval

fr
eq

ue
nc

y

2013/09
2013/10
2013/11
2013/12
2014/01
2014/02
2014/03
2014/04
2014/05
2014/06

Figure 6: The numbers of callings with various lengths of time intervals

Fig. 6 illustrates the distribution of the number of times when calling the API, to various
lengths of time intervals in which the posts can be sampled. Only a few callings return
posts with a short time interval, i.e. 0-5 s. The number of callings which return posts with a
time interval with length of 5-10 s has a significant rise. For most callings, the time interval
is between 10-60 s, and only few callings have a time interval longer than 70 s.
We now can compute the rate of change of the sampling proportion (which we defined
as the sampling stability), but still we do not know the exact sampling proportion for any
given calling of the API.

3 Sampling proportion
To compute the sampling proportion, we have to find a subset of posts satisfying the fol-
lowing requirements:

1. The size of this subset is known;

2. Part of this subset is contained in the data set.

Fortunately, we finally find such a subset, which consists of posts released by official test
accounts of Sina Weibo. In this section, we introduce how we find this subset and how
we compute the sampling proportion of Sina Weibo’s timeline API. We start by introduce
the Sina Weibo test accounts. Then, we analyze the sampling proportion of Sina Weibo
timeline API by using the posts released by test accounts.

204 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 205

3.1 Sina Weibo test accounts

Here we show how we compute the sampling proportion of the timeline API. We obtain 9
Sina Weibo official test accounts, the posts of which have the same format,

command_IP address_timestamp.

In this paper we name these posts “signals”. For example, openapi_report1 releases a
post

UPDAT E_10.75.0.130_1414394581.25905,

means that openapi_report1 sends a signal, i.e. a command request UPDAT E to
10.75.0.130 at time 1414394581.25905. Since timestamp is useless in distinguishing
signals, we use only command and IP _address to refer these signals.
To study the regular patterns of Sina Weibo test accounts and their released posts (i.e.
signals), we analyze the timestamp of these signals. By computing the interval between
two adjacent releasing of each kind of signals, we find that the signals are released at one
of three possible frequencies, i.e. once per minute, three times per minute and six times per
minute. These signals satisfying:

• The total number of signals are known;

• Some signals are included in our data set;

• Signals have the same sampling proportion with ordinary posts.

So the number of posts released by test accounts can be calculated, and they can be treated
as a particular subset to analyze the global sampling proportion of Sina Weibo’s timeline
API.
However, a test account may add or delete a certain kind of signals at some point. In
this way, we will calculate a false sampling proportion of Sina Weibo’s timeline API. It
is necessary to analyze the stability of releasing signals for each test accounts. Our rule
defines whether a kind of signals are stable by using probabilistic methods. For the signals
with the lowest releasing frequency, i.e. once per minute, we have

r = (1− p)1440, (2)

where r is the probability that it is collected in our data set within 1 day (24hours/day ×
60minutes/hour = 1440minutes/day), p is the sampling proportion of our data set, we
first suppose p is 0.01, (in fact, the sampling proportion is greater than 1%, so we will get
a larger value with compare to real probability), and the value of r is about 5.2e− 07, this
is really a small value, and we assume a kind of signal is unstable if there is no such signal
is obtained in data set within any time period lasts one day.
For each kind of signals released by test accounts, there are four attributes need to be
considered. We list them as follows:

• Whether it is collected by our crawler;

• Whether it is collected in our data set;

• Whether it is assumed to be stable;

• The releasing frequency.

We show some of this detail information in Tab. 1.
To ensure estimation accuracy, we choose those signals which last over a month to compose
a particular subset. We count the number of posts per minute in this subset by months, and
the results are shown in Tab. 2.

4 Number of posts
In this section, we detail how we estimate the number of posts in Sina Weibo. We first
detail our intuitive method, and show the preliminary estimation results. Then we analyze
the problem in this intuitive method and refine the results by average sampling probabilities.

4.1 Intuitive method

The key idea of our method is scale-up, which was verified effectiveness to estimate the
size of networks. This method is based on the assumption that there is a particular subset
and the size of this subset is known to estimator. To put formally, let m be the size of a
known special subset M of some larger set C, c be the size of C, t be the size of a known
data set T , and e be the size of the special subset E which is included in T , we have,

c = m ∗ t/e. (3)

Here, c can be the number of posts in Sina Weibo which is what we want to estimate. In
this case m is the number of signals released by test accounts, e is the number of signals
which are collected in our dataset, and t is the size of our data set.

4.2 Dealing with dynamic sampling proportions

However the expectation of the number of posts of an OSN is greatly different at different
time due to user activities. For example, there are much more posts in daytime than in
nighttime since most users fall asleep at night. To solve this problem, we divide our data
set into several sub-period (by hours), and simplify this problem by supposing that the
sampling proportion is similar within a same hour. So the number of posts in each
month can be calculated as follows,

c =

n∑
i=1

23∑
j=0

cij =

n∑
i=1

23∑
j=0

m ∗ tij/eij (4)

206 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 207

Table 1: Details in signals released by Sina Weibo official test accounts. The column with
heading (C.) indicates whether a kind of signal is collected by our crawler; the column with
heading (D.) indicates whether it is collected in our data set; the column with heading (S.)
indicates whether it is assumed to be stable; and the column with heading (F.) indicates the
releasing frequency, i.e. the number of posts per minute

Accounts signals C. D. S. F. signals C. D. S. F.

openapi_
report1

UPDATE_10.75.0.143
UPDATE_10.75.0.144
UPDATE_10.75.0.130
UPDATE_10.73.14.93
UPDATE_10.75.28.252
UPDATE_10.73.32.207
UPDATE_10.73.32.212
UPDATE_10.73.32.213
UPDATE_10.73.32.210
UPDATE_10.73.32.189
UPDATE_10.73.32.145
UPDATE_180.149.135.230
UPDATE_123.125.106.226
UPLOAD_..._10.75.0.143
UPLOAD_..._10.75.0.144
UPLOAD_..._10.73.32.145
UPLOAD_..._10.73.32.210

∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
×
∨
∨
∨

∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨

∨
∨
∨
∨
∨
∨
∨
∨
∨
×
×
×
×
∨
∨
×

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

UPLOAD_..._10.73.32.189
UPLOAD_..._10.73.32.207
UPLOAD_..._10.75.28.252
UPLOAD_..._180.149.135.230
UPDATE_..._123.125.106.226
REPORT1_..._10.75.0.143
REPORT1_..._10.75.0.144
REPORT1_..._10.73.32.145
REPORT1_..._10.73.32.210
REPORT1_..._10.73.32.207
REPORT1_..._C10.73.32.189
REPORT1_..._10.75.28.252
REPORT1_..._180.149.135.230
REPORT1_..._123.125.106.226
REPORT2_..._180.149.135.224
REPORT2_..._123.125.106.196

∨
∨
∨
∨
∨
×
∨
∨
∨
∨
∨
∨
∨
∨
×
∨
∨

∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨
∨

∨
×
∨
×
×
×
∨
∨
∨
∨
∨
×
×
×
×
∨
∨

1
1
1
1
1
1
1
1
1
1
1
1
6
6
1
1

openapi_
report2

UPDATE_10.75.0.145
UPDATE_10.75.0.134

∨
∨
∨
∨
∨
∨

1
1

REPORT1_..._180.149.135.224
REPORT1_..._180.149.135.224

∨
∨
∨
∨
×
×

1
1

openapi_
report3 UPDATE_10.75.0.8 ∨ ∨ ∨ 1 JIANKONG (means “monitor”) ∨ ∨ ∨ 3

openapi_
report5 UPDATE_10.75.0.146 ∨ ∨ ∨ 1

openapi_
report7 UPDATE_10.75.0.138 ∨ ∨ ∨ 1

openapi_
report8 REPORT1_..._180.149.135.224 ∨ ∨ × 1 REPORT1_..._180.149.135.224 ∨ ∨ × 1

openapi_
report9

UPDATE_10.75.0.20
UPDATE_10.73.33.248
UPDATE_10.73.32.245
UPDATE_10.73.14.232
UPDATE_180.149.135.176

∨
∨
∨
∨
×

∨
∨
∨
∨
∨

∨
∨
∨
∨
×

1
1
1
1
1

UPDATE_180.149.135.230
UPLOAD_..._180.149.135.176
UPLOAD_..._180.149.135.230
REPORT1_..._180.149.135.176
REPORT1_..._180.149.135.230

×
×
×
×
×

∨
∨
∨
∨
∨

×
×
×
×
×

1
1
1
6
6

openapi_
listen1

UPDATE_10.75.0.251
UPDATE_180.149.135.176
UPDATE_123.125.106.226
UPDATE_223.179.190.199
UPDATE_221.179.193.227
UPLOAD_..._180.149.135.176

∨
∨
×
×
×
∨

∨
∨
∨
∨
∨
∨

×
×
×
×
×
×

1
1
1
1
1
1

UPLOAD_..._223.179.193.227
REPORT1_..._180.149.135.176
REPORT1_..._135.125.106.226
REPORT1_..._221.179.190.199
REPORT1_..._221.179.193.227

×
∨
×
×
×

∨
∨
∨
∨
∨

×
∨
×
×
×

1
6
1
1
6

openapi_
listen3

UPDATE_10.75.0.10
UPDATE_123.125.106.226
UPLOAD_..._123.125.106.226

∨
∨
∨

∨
∨
∨

∨
×
×

1
1
1

REPORT1_..._123.125.106.226
REPORT1_..._123.125.106.196
REPORT1_..._123.125.106.196

∨
∨
∨

∨
∨
∨

×
∨
∨

1
1
1

Where c is the number of posts, cij is the number of posts in the j-th hour of the i-th day,
m is the number of signals the test accounts should release within an hour, tij and eij are
respectively the number of posts and the number of signals released by the test accounts in
the j-th hour of the i-day which are collected in our data set, n is the number of days of a
month. Using this equation, we show our preliminary results in Tab. 3.

Table 2: The number of posts in the particular subset per minute
Month Number of

Posts
Sep 2013 57
Oct 2013 48
Nov 2013 50
Dec 2013 50
Jan 2014 57
Feb 2014 60
Mar 2014 60
Apr 2014 60
May 2014 52
Jun 2014 57

Table 3: The (preliminary) number of posts estimated by Eq. 4
Month the Number of Posts

Sep 2013 2,112 million
Oct 2013 1,394 million
Nov 2013 1,724 million
Dec 2013 2,384 million
Jan 2014 1,299 million
Feb 2013 1,041 million
Mar 2014 1,350 million
Apr 2014 1,610 million
May 2014 2,140 million
Jun 2014 1,283 million

4.3 Dealing with errors caused by samplings

The number of samples can move up and down around expectation due to the heart of
randomness, and the distance between the real value and the expectation can cause deadly
errors when the sampling proportion is small. As shown in Tab. 2, the size of our particular
subset is between 48-60 posts per minute, which are 2880-3600 posts in an hour, it is too
small in compare with the global number of all posts in Sina Weibo within an hour. So the
randomness in sampling will greatly influence the accuracy of our estimation. However
the average of multiple samples should be close to expectation. So the error caused by
sampling can be minimized, by supposing that the sampling proportion is similar within
different sub-periods which are in a same hour of different days. Here, we use the averaged
sampling proportion in an hour of different days to estimate the number of posts in Sina

208 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 209

Weibo. Our refined method can be formalized as follows,

c = d ∗
n∑

i=0

ci = d ∗ (m ∗
n∑

i=0

ti/ei) (5)

Where c is the number of posts we want to estimate, ci is the average number of posts in
the i-th hour, m is the number of signals the test accounts should release within an hour,
ei is the averaged number of posts in our data set in the i-th hour, and ti is the averaged
number of posts in the i-th hour in our data set, d is the number of days in a month.

Table 4: The number of posts estimated by Eq. (5)
Month the Number of Posts

Sep 2013 785 million
Oct 2013 994 million
Nov 2013 974 million
Dec 2013 950 million
Jan 2014 830 million
Feb 2014 722 million
Mar 2014 890 million
Apr 2014 1,160 million
May 2014 1,440 million
Jun 2014 1,100 million

4.4 Bound analysis

We now give an insight into our results. We divide our post data set by hour into several
subsets and estimate the number of posts in each hour and then add them together. So the
determinant of our method is the accuracy of estimation in each hour.

4.4.1 Upper bound

We can treat the signals released by test accounts as a sample of posts of Sina Weibo.
Let e1, e2, ..., en be the value of expectations of the numbers of samples for the hours we
estimate in the i-th day. For the regular patterns of Sina Weibo users, e1, e2, ... , en can be
similar, so we set the expectation to be e approximately. Let the real numbers of samples
in the hours we estimate in the i-th day be e+ σ1, e+ σ1, ..., e+ σn, where σi is a variable
which describes the error caused by randomness. We have that, for the i-th day, if σi > 0,
the estimation c will be less than the real number of posts, and vice versa.
Without loss of generality, we can assume that σi follows normal distribution. So we can
deduce that,

cu + co > 2c (6)

where c = m× t/e is the expectation, cu = m× t/(e− ‖σ‖) > c indicates an underesti-
mation, and co = m× t/(e+ ‖σ‖) < c indicates an overestimation.

Based on this formula, we can have following relationship between our estimation results
and the real number of posts in Sina Weibo.

c1 + c2 + ...+ cn > n× c (7)

Where ci is the estimated number of posts in the i-th hour. This means that the result shown
in Tab. 3 is the upper bound of the number of posts in Sina Weibo.
We are now using an example to illustrate why the result shown in Tab. 3 is the upper
bound. Within an hour, the number of posts being sampled is very large, say 10000 is the
expectation; however the number of signals being sampled is very small, say 2 is the expec-
tation. As a result, whether a signal is being sampled can greatly influence the estimation.
Let us assume 1 signal may be sampled or missed, i.e. in a real hour, 1 signals or 3 signals
may be sampled. We have 10000/1 + 10000/3 > 10000/2 × 2. So the result shown in
Tab. 3 is the upper bound, and the error can be large.

4.4.2 Lower bound

We now analyze the estimation results shown in Tab. 4. We assume the number of posts
in the same hour of different days to be exactly equal. However this assumption must have
errors. Let the average number of samples be e, considering the sampling proportion of
different days, the real exceptions in these hours can be represented as e+δ1, e+δ2, ..., e+
δn.
Let the number of signals released by test accounts be e+ δ, we can also deduce that,

cu′ + co′ > 2c′ (8)

where c′, cp′ and cn′ are m × t/e,m × t/(e + ‖δ‖) and m × t/(e − ‖δ‖), indicating our
estimated value, and the real numbers which indicate an underestimation and an overesti-
mation, respectively. Also, we have

c1′ + c2′ + ...+ cn′ > n× c′ (9)

where ci′ is the real number of posts in the i-th hour. This means that the result shown in
Tab. 4 is the lower bound of the number of posts in Sina Weibo.
We are now using the previous example to illustrate why the result shown in Tab. 4 is a
refined version. We make an additional assumption that the number of posts in a same hour
of different days within a month is close to each other. So we can combine the same hours
of different days together. If a month have 30 days, we have the total number of posts being
sampled in these 30 h is expected to be 30 × 10000 = 300000, and the total number of
signals being sampled is expected to be 30 × 2 = 60. Again we assume 1 signal may be
sampled or missed. We have 300000/59 + 300000/61 > 300000/60× 2, and we can find
that the error this time is much smaller.
Now we explain why the result shown in Tab. 4 is a lower bound. We first ignore influence
caused by randomness in sampling due to this kind of error in Tab. 4 is minimized and very
small. Then we should take into consider the difference between same hours of different
days. This distance could be very large, as a result, δi can mainly caused by this distance

210 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 211

(not the randomness in sampling). As the result, the left part in Formula 8 is more describ-
ing the real number, and the right part is only an estimation based on a wrong assumption
(that the numbers of posts within a same hour of different days are equal). In a word, the
result shown in Tab. 4 is the lower bound, and the error is small.

5 Related work
There is little past work on analyzing the number of posts in an OSN, and most social
sampling work is related to estimate the size of it. Three methods are commonly used to
measure the size of a network.
The first is scale-up, which is based on the assumption that there is a particular subset and
the size of this particular is known to estimators; The second is summation, which uses
relation types to estimate network size instead of countable subset, since in many cases,
it is difficult to obtain a countable particular s ubset. McCarty et al. [McCarty, Killworth,
Bernard et al. (2001)] compared this two methods for estimating the size of personal net-
works, and they found that both methods are valid and reliable. The third is graph traversal,
the heart of which is a summation method based on the relationships between nodes or on
the topology of the OSN.
There is a rich literature on the third method. Cooper et al. [Cooper, Radzik and Siantos
(2014)] present a general framework to estimate network properties, e.g. the total number
of edges/links, number of vertices/nodes and number of connected triads of vertices (trian-
gles) in graphs, by using random walks. Sinnott et al. [Sinnott and Wang (2017)] analyze
the number of individuals in a given area based on geotagged Twitter data. Çem et al. [Çem
and Saraç (2016)] estimate the average degree and network size of graphs under a limited
data access model called the random neighbor access model. Kimura et al. [Kimura and
Tsugawa (2016)] target to estimate the influence of social media users, by investigating the
effects of node sampling on the influence i ndices. Gjoka et al. [Gjoka, Kurant, Butts et al.
(2010)] compared four popular crawling techniques, and they found that compared to tra-
ditional algorithms, such as Breadth-First-Search and Random walk, Metropolis-Hasting
random walk and a re-weighted random walk performed well. Recent years, graph traver-
sal is frequently used to evaluate social networks properties, such as possible malicious
incidents [Haralabopoulos and Anagnostopoulos (2014)] and underlying network structure
[Papagelis, Das and Koudas (2013)]. And researchers tried to estimate the size of social
networks by this way, Katzir et al. [Katzir, Liberty and Somekh (2011)] and Hardiman
et al. [Hardiman and Katzir (2013)] abstracted social networks as undirected graphs and
then they using random node sampling to graphs, lastly, they estimate the size of social
networks by counting the number of collisions or non-unique nodes.
The work proposed by Fu et al. [Fu and Chau (2013)] is most related to our method in
this paper, however, the target of their approach is to estimate the number of users in an
OSN and this paper aims to estimate the number of posts. Another related research is in
which Hardiman et al. [Hardiman and Katzir (2013)] abstracted social networks as undi-
rected graphs and then use random node sampling on the graphs, and finally can estimate

the size of social networks by counting the number of collisions or non-unique nodes. This
method is also used to evaluate OSN properties, such as possible malicious incidents [Har-
alabopoulos and Anagnostopoulos (2014)] and underlying network structure [Papagelis,
Das and Koudas (2013)].

6 Conclusion
This paper presents a novel method to estimate the number of posts in Sina Weibo by
using data obtained from a public timeline API and public posts released by official test
accounts. This API returns sampling results of real-time posts, however the sampling is
non-proportional and the number of returned posts is (nearly) fixed. This brings interesting
challenges in estimating the number of posts in compare with scenarios when a proportional
sampling API is available.
We believe this method is valuable due to two reasons. The first reason is that the legendary
history of Sina Weibo which rapidly gained popularity but soon lost it and finally is now
developing steadily, has attracted attention of both industry and academia. The second rea-
son is that this method can theoretically compute an upper bound and a lower bound on
estimating the number of posts, which can serve as a contrast to the official operating result
of Sina Weibo.

Conflicts of interest: The authors declare no conflict of interest.

Acknowledgement: This work was supported in part by the National Natural Science
Foundation of China under Grants 61602111, 61502099, 61502100, 61532013 and by
the Jiangsu Provincial Natural Science Foundation of China under Grants BK20150628,
BK20150637, and by the Jiangsu Provincial Scientific and Technological Achievements
Transfer Fund, and by the Jiangsu Provincial Key Laboratory of Network and Information
Security under Grant BM2003201, and by the Key Laboratory of Computer Network and
Information Integration of Ministry of Education of China under Grant 93K-9, and by the
Collaborative Innovation Center of Novel Software Technology and Industrialization.

References
Çem, E.; Saraç, K. (2016): Estimation of structural properties of online social networks
at the extreme. Computer Networks, vol. 108, pp. 323-344.

Cooper, C.; Radzik, T.; Siantos, Y. (2014): Estimating network parameters using random
walks. Social Network Analysis and Mining, vol. 4, no. 1, pp. 1-19.

Fu, K. W.; Chau, M. (2013): Reality check for the chinese microblog space: A random
sampling approach. PloS one, vol. 8, no. 3.

Gjoka, M.; Kurant, M.; Butts, C. T.; Markopoulou, A. (2010): Walking in facebook: A
case study of unbiased sampling of osns. IEEE Infocom, pp. 1-9.

212 Copyright © 2019 Tech Science Press CMC, vol.58, no.1, pp.197-213, 2019

Estimating the Number of Posts in Sina Weibo 213

Haralabopoulos, G.; Anagnostopoulos, I. (2014): Real time enhanced random sampling
of online social networks. Journal of Network and Computer Applications, vol. 41, pp.
126-134.
Hardiman, S. J.; Katzir, L. (2013): Estimating clustering coefficients and size of social
networks via random walk. Proceedings of the 22nd International Conference on World
Wide Web, pp. 539-550.
Heidemann, J.; Klier, M.; Probst, F. (2012): Online social networks: A survey of a global
phenomenon. Computer Networks, vol. 56, no. 18, pp. 3866-3878.
Katzir, L.; Liberty, E.; Somekh, O. (2011): Estimating sizes of social networks via biased
sampling. Proceedings of the 20th International Conference on World Wide Web, pp.
597-606.
Kimura, K.; Tsugawa, S. (2016): Estimating influence of social media users from sam-
pled social networks. Advances in Social Networks Analysis and Mining, pp. 1302-1308.
Lehmann, J.; Gonçalves, B.; Ramasco, J. J.; Cattuto, C. (2012): Dynamical classes of
collective attention in twitter. Proceedings of the 21st International Conference on World
Wide Web, pp. 251-260.
McCarty, C.; Killworth, P. D.; Bernard, H. R.; Johnsen, E. C.; Shelley, G. A. (2001):
Comparing two methods for estimating network size. Human Organization, vol. 60, no. 1,
pp. 28-39.
Papagelis, M.; Das, G.; Koudas, N. (2013): Sampling online social networks. IEEE
Transactions on Knowledge and Data Engineering, vol. 25, no. 3, pp. 662-676.
Sinnott, R. O.; Wang, W. (2017): Estimating micro-populations through social media
analytics. Social Network Analysis & Mining, vol. 7, no. 1, pp. 13.
Thomas, K.; Grier, C.; Song, D.; Paxson, V. (2011): Suspended accounts in retrospect:
An analysis of twitter spam. Proceedings of the 2011 ACM SIGCOMM Conference on
Internet Measurement Conference, pp. 243-258.
Xu, Z.; Zhang, Y.; Wu, Y.; Yang, Q. (2012): Modeling user posting behavior on social
media. Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 545-554.

