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Abstract: Rational participants want to maximize their benefits. The protocol with rational 

participants will be more realistic than the protocol with honest, semi-honest and dishonest 

participants. We research the rational non-hierarchical quantum state sharing in this paper. 

General steps of some known quantum state sharing protocol are summarized. Based on 

these steps, a new rational protocol is proposed. It means that lots of common protocols 

could be modified to rational protocols. Our protocol is widely applicable. Analyses show 

that the proposed protocol is rational and secure. It is also all-win for agents. Furthermore, 

number of deceiving agents is considered to redefine the utilities of agents.  
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1 Introduction 

Secret sharing (SS) is one of the most important topics in cryptography. Unfortunately, 

classical cryptography can usually only achieve provable security or computational 

security. A possible tool to achieve unconditional security is quantum mechanics.  

In 1984, Bennett et al. [Bennett and Brassard (1984)] firstly proposed the concept of 

quantum cryptography, and designed a quantum key distribution (QKD) protocol. In this 

protocol, only single particle state is needed. It is easy to perform the protocol. After that, 

quantum cryptography protocols were widely researched [Jiang, Jiang and Ling (2014); Qu, 

Chen, Zhou et al. (2010); Qu, Wu, Wang et al. (2017); Qu, Chen, Ji et al. (2018)]. QKD 

protocols based on continuous variable were also investigated. In 1995, Huttner et al. 

[Huttner, Imoto, Gisin et al. (1995)] used generalized measurements to design the protocol, 

and considered photon-number-splitting (PNS) attack. Recently, Gong et al. [Gong, Song, 

He et al. (2014)] proposed a QKD protocol based on entanglement properties of two-mode 

squeezed states. The protocol could be utilized to transmit the pre-determined key, which is 

pretty secure and effective and will become a research focus. 

Not only key distribution, SS problem could also be solved by quantum mechanics. In 

1999, Hillery et al. [Hillery, Bužek and Berthiaume (1999)] investigated the quantum 

secret sharing (QSS) protocol based on Greenherger-Horne-Zeilinger (GHZ) state for the 

first time. Two protocols were given to share classical secrets and quantum secrets (i.e., 
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unknown quantum states), respectively. The QSS protocol utilized to share quantum 

secret is also called as quantum state sharing (QSTS) or quantum information splitting 

(QIS) sometimes. Since quantum state is the most important part in quantum information 

processing, sharing quantum state is naturally necessary so that no agent can obtain the 

key secret alone.  

From the view of agents’ authority, QSTS could be divided into two parts: non-

hierarchical QSTS (NQSTS) and hierarchical QSTS (HQSTS). The latter is usually called 

as hierarchical QIS (HQIS). Hillery et al.’s protocol [Hillery, Bužek and Berthiaume 

(1999)] is an NQSTS protocol. In this kind of protocol, all the agents are equal. 

Concretely, they have the same authority to recover the state. Their measurement results 

are equally important. This case is similar to the network system [Lu, Wang and Wang 

(2012); Lv and Wang (2017); Pang, Liu, Zhou et al. (2017); Qu, Keeney, Robitzsch et al. 

(2016)]. In 2010, Wang et al. [Wang, Xia, Wang et al. (2010)] firstly proposed an HQIS 

protocol, in which agents are divided into two grades. Agents in different grades have 

different authorities to recover the state. 

There are two points ignored in common QSTS protocols [Li, Zhang and Peng (2004); 

Deng, Li, Li et al. (2005a); Deng, Li, Li et al. (2005b); Li, Zhou, Li et al. (2006); Li, Deng 

and Zhou (2007); Liu, Liu and Zhang (2008); Muralidharan and Panigrahi (2008); Xiu, 

Dong, Gao et al. (2008); Shi, Huang, Yang et al. (2011); Kang, Chen and Yang (2014); 

Huang (2015); Li, Wang, Zhang et al. (2015); Wang, Wang, Chen et al. (2015); Ramírez, 

Falaye, Sun et al. (2017)]. On one hand, only the agent who recovers the state (here we 

denote him as Bobk) will obtain the secret state. So his role is more important than the 

others’. This role is delegated by authors directly in general. But in fact, it is vital to 

consider the person who recovers the secret state. On the other hand, the others may deviate 

from the protocol. In this case, they may deceive Bobk in order to gain more benefits. 

Rational protocol is a kind of solutions to solve these problems. Halpern et al. [Halpern 

and Teague (2004)] investigated a rational secret sharing protocol in 2006. Random 

numbers are introduced to affect the behaviors of players. The expected rounds of the 

three-party protocol are 35 / . Here,   is the probability of each player cooperating. 

After that, Groce et al. [Groce and Katz (2012)] showed that whenever computing the 

function is a strict Nash equilibrium in the ideal world, then it is possible to construct a 

rational fair protocol computing the function in the real world. In 2016, Wang et al. 

[Wang, Chen, Leung et al. (2016)] investigated the fairness in secure computing 

protocols based on incentives. New utility definitions are given according to incentives 

for rational players.  

In 2015, Maitra et al. [Maitra, Joyee, Paul et al. (2015)] firstly introduced the concept of 

rational agent to QSS (to be exact, NQSTS). A rational protocol to share a known 

quantum state among n agents is investigated. Since the state is known, and can be copied 

by the dealer, all the agents will obtain the secret state at the end of protocol. In 2017, 

another rational NQSTS protocol was proposed by Dou et al. [Dou, Xu, Chen et al. 

(2018)]. This protocol is based on Li et al.’s common multi-party NQSTS protocol [Li, 

Zhou, Li et al. (2006)]. In Dou et al. [Dou, Xu, Chen et al. (2018)], just like most of 

QSTS protocols, the state is supposed to be unknown. Hence, only one agent will obtain 

the state finally. Another difference between protocols in Maitra et al. [Maitra, Joyee, 
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Paul et al. (2015)] and Dou et al. [Dou, Xu, Chen et al. (2018)] is that Byzantine 

assumption holds in the latter protocol, but fail-stop assumption holds in the former one. 

However, steps in Dou et al.’s protocol [Dou, Xu, Chen et al. (2018)] are learned from Li 

et al.’s protocol [Li, Zhou, Li et al. (2006)]. As we mentioned above, there exist 

numerous NQSTS protocols up to now. Different protocols have different ranges of 

application. The rational protocol whose steps are learned from the other QSTS protocols 

should be researched.  

In this paper, we follow the work in Dou et al. [Dou, Xu, Chen et al. (2018)], and 

research the rational NQSTS protocol more deeply. Firstly, we summarize the general 

steps of aforementioned NQSTS protocols. Secondly, corresponding rational protocols 

which are based on these steps are proposed. The common protocols whose steps could 

be summarized as steps in Subsection 2.2 could be utilized in our protocol. The 

modification is simple and easy to be performed. Our protocol is compatible with 

common protocols. The agent who recovers the quantum state is not predetermined, or 

determined by the dealer. In fact, it is elected by all the agents randomly. Thirdly, 

security, utilities, correctness, fairness, Nash equilibrium and Pareto optimality of our 

rational protocol are analyzed in detail. Especially, utilities of agents are redefined. In this 

paper, for any agent, influences of the others’ threat are weighed by the number of 

threateners. If more agents choose to threaten, then Bobk will hold less utility. This is 

more realistic since he needs the help of all the others, and will pay to each of them. This 

also is an improvement from protocol in Dou et al. [Dou, Xu, Chen et al. (2018)].  

The following sections are organized as follow. In Section 2, some preliminaries are 

introduced one by one. After that, a new rational QSTS protocol is given in Section 3. 

Later, analyses of proposed protocols are shown in Section 4. Finally, conclusions are 

given in Section 5. 

2 Preliminaries 

In this section, some preliminaries are given. Notations of our protocols are listed in 

Subsection 2.1. Later, general steps of NQSTS protocols are summarized in Subsection 

2.1. Hereafter, some basic concepts of rational multi-party computation protocols are 

introduced in Subsection 2.3. Finally, a simple random election method is described in 

Subsection 2.4. All of these preliminaries will be employed in the next sections. 

2.1 Notations 

Table 1: The Notations in this paper 

Notation Description 

  Quantum Carrier 

  Secret state 

Alice  The boss/dealer 

Bobj (1 j N  ) Agents 

Bobk The agent who recovers the state 
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2.2 General steps of an NQSTS protocol 

We reread abovementioned common NQSTS protocols, and summarize the general steps 

of an (N+1)-party protocols as follows. Here, eavesdropping checking and some other 

non-core steps are omitted. 

[N-1] Suppose that   is an (aN+a+b)-particle state, the secret   is an a-particle state. 

Alice prepares enough states  , and shares them with agents respectively. Concretely, 

each agent holds a particles, and Alice keeps b particles. 

[N-2] Alice measures   and her b carrier particles in basis 1B . Agents Bobj ( j k ) 

also measure their a particles in basis 2B .  

[N-3] According to above measurement results, Bobk performs corresponding operations 

to recover  . 

2.3 Rational multi-party computation protocol 

Mathematics provides many tools [Dong, Zhang, Zhang et al. (2014)] to solve practical 

problems. In game theory, an n-party game could be denoted by 

1 1 1({ } ,{ } ,{ } )n n n

i i i i i iP A U= = == . iP  is the ith player, his strategy set is iA . One of his strategy 

is ia , so we have i ia A . Let 1 2 ... nA A A A    , then 1 2( , , ..., )na a a Aa =  is a 

strategy vector of game  . Further, iP ’s utility for a  is ( )iU a . If he prefers strategy 

vector a  than a , then we say ( ) ( )i iU U a a . 

In addition, for a given strategy vector 1 2( , , ..., )na a aa = , i−a  could be denoted as 

1 1 1( , ..., , , ..., )i i na a a a− + , then ( )i ia , −
 =a 1 1 1( , ..., , , , ..., )i i i na a a a a− +

 . 

Definition 1 (Strict Nash Equilibrium) [Maitra, Joyee, Paul et al. (2015)]. A strategy 

vector a  in the game   is a strict Nash equilibrium, if we have  ( ) ( )i i i iU a , U−
 a a  for 

each player iP  and his any other strategy a . 

Definition 2 (Pareto Optimality) [Osborne and Rubinstein (1994)]. A strategy vector a  

in the game   is a Pareto optimality if it is impossible to increase the utility of a player 

without decreasing any others. In other word, if ( ) ( )i iU U a a  ( 1 2{ , , ..., }ci i i i , c n ), 

then ( )jU a ( )jU a , j  ( 1 2{ , , ..., }cj i i i ). 

2.4 A simple method to randomly elect one player among N players 

For N players jP (1 j N  ), a simple way to randomly elect a representative is given as 

follows. 

[E-1] All the players jP  (1 j N  ) randomly publish a number jc  ( 0 1jc N  − ) at 

the same time. 

[E-2] The publishing time of each number will be checked one by one. If a number is not 

published on time, the player will be disqualified. The other players will restart the 



 

 

 

Rational Non-Hierarchical Quantum State Sharing Protocol                                  339 

election game. 

[E-3] If all the publishing times are the same, players can compute jN
C c= . Here, 

N denotes summation modulo N. 1CP +  will be the chosen one. 

3 The proposed rational NQSTS protocol 

In this section, a new rational NQSTS protocol is proposed. An (N+1)-party common 

NQSTS protocol could be modified into an N-party rational protocol. The processes are 

given here. Since processes of different participants are described severally in general 

rational protocol, processes of our proposed protocol are also shown according to this way. 

3.1 The dealer’s protocol 

 [D-1] The dealer prepares an r-length bit list, in which only one bit is 1. For 

example,
1

{0...010...0}
p r p

list
− −

= . In the ith round, if 1ilist = , she goes to step [D-2], otherwise 

step [D- 2 ].  

[D-2] Then, the dealer prepares enough (aN+a+b)-particle states  . She shares them 

with all the agents. Each agent holds a particles, and Alice keeps the reminding a+b 

particles. 

[D-3] The dealer measures   and the b carrier particles in basis 1B .  

[D-4] She asks all the N agents Bobj to measure particles in basis 2B . Then, she tells 

agents to publish the measurement results.  

[D-5] She sends the reminding a particles to the elected Bobk via quantum teleportation 

[Rigolin (2005); Zha and Song (2007)]. Alice finishes her work. 

[D- 2 ] The dealer shares arbitrary a Bell states with each agent.  

[D- 3 ] She asks all the N agents Bobj to measure particles and publish the results just like 

in step [D-4].  

[D- 4 ] After that, she measures corresponding particles in her hand, and analyzes all the 

results. Further, she can deduce which agent is deceiving, and publish the ID of deceiving 

agents. Then, she goes to the next round. 

3.2 Bobj’s protocol 

[B-1] In each round, all the agents perform 2B  basis measurement on their a particles, 

and announce the results as the dealer’s claim, respectively. If 1ilist = , they go to step 

[B-2], otherwise, step [B- 2 ]. 

[B-2] They randomly elect one of them using the random election method. The chosen 

one, i.e., Bobk, will recover the state afterwards.  

[B-3] Bobk performs some local operations to recover  . These operations are related 

to all the other agents’ measurement results. The protocol is accomplished. 
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[B- 2 ] Some agents may be informed that they are forbidden to participate in the next   

rounds because they are deceiving. The others go to the next round. 

4 Analysis of proposed NQSTS protocol 

In this section, security, utilities, correctness, fairness, Nash equilibrium and Pareto 

optimality of our rational NQSTS protocol are analyzed one by one. 

4.1 Security 

With the development of computer science, security of data has attracted more and more 

attention. Security of our protocol is analyzed below. 

On one hand, our protocol is based on common NQSTS protocols. Any secure QSTS 

protocol, which can be generalized to protocol in Section 0, can be modified to a rational 

version. On the other hand, comparing our rational protocol with common protocols, the 

only key change is that teleportation is performed between the dealer and Bobk. If a 

secure teleportation protocol is performed here, this process is secure too. 

In conclusion, the security of our rational protocol is equivalent to the original common 

protocol. If the original common protocol is secure, our rational protocol is also secure. 

4.2 Utilities 

As is well known, the agent who recovers the state plays a different role from the helpers. 

His utility is different from the other’s further. Therefore, utilities of Bobk and Bobj 

( j k ) are listed respectively. 

Here, COO represents the strategy Cooperating, which means that the agent will choose to 

cooperate with the others and fulfill the protocol honestly. DEC denotes Deceiving. it 

denotes that the agent will deceive the others. For example, he may report a false 

measurement result. REC denotes Recovering, which means that Bobk will recover the state. 

Discussions about these utilities are given below. (1) Since he will be punished if he does 

not pass the check, we have g fU U . Further, if he doesn’t pass the check in the ith 

round, he will be forbidden to participate in the protocol in the next   rounds. The 

probability of not participating in the sharing is / ( )r i − . So we could suppose that 

/ ( )fU k r i= − −  ( 0k  ). (2) Because getting a true state is naturally better than a false 

one, it is easy to obtain that s eU U . (3) A cooperator is not responsible for deceivers’ 

behaviors, so ps peU U= . For the rest of the paper, no differentiation is made between psU  

and peU . (4) The motivation of agents choosing to threaten is he may benefit more than 

to help, so t psU U . In summary, we know that / ( )g fU U k r i = − − , s eU U  and 

t ps peU U U = . 
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Table 2: Utilities of agents in our rational QSTS protocol 

iList  Role Strategy Outcome Explanation Utility 

0 Any 

agent 

COO Passed He passes the check. 
gU  

0 Any 

agent 

DEC Failed He does not pass the check. 
fU  

1 Bobk REC True state He obtains the true state 

successfully. 
sU  

1 Bobk REC False state He obtains a false state. 
eU  

1 Bobj 

( j k )  

DEC Threatening He threatens that his results are 

wrong. 
tU  

1 
Bobj 

( j k )  
COO Successful 

helping 

He helps Bobk obtain the state 

successfully. 
psU  

1 
Bobj 

( j k )  
COO Unsuccessful 

helping 

He wants to help Bobk, but Bobk 

gets a false state since someone 

else is threatening.  

peU  

  

Table 3: Utilities matrix of agents 

 Bob3 DEC COO 

Bob1 Bob2 
  

DEC DEC (2), (2), (2)A A AU U U  (1), (1), (2)A A BU U U  

COO (1), (2), (1)A B AU U U  (0), (0), (1)A A BU U U  

COO DEC (2), (1), (1)B A AU U U  (1), (0), (1)B A BU U U  

COO (1), (1), (0)B B AU U U  (0), (0), (0)B B BU U U  
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In addition, eU  is employed to describe the utility of Bobk if he is threatened. Since he 

needs the help of all the agents, his utility will be impacted by all the deceiving agents. 

Here, x denotes the number of deceiving agents, except for himself (if he is also 

deceiving). Suppose   is the reduction of Bobk’s utility when one more agent chooses 

deceiving. We further have e sU U x= −  . 

Next, take the three-party QSTS game as an example, utilities matrix of agents in our 

protocol could be described in Tab. 3. 

( )AU x  and ( )BU x  represent the utilities of Bobj (1 j N  ) when he chooses to deceive 

and to cooperate, respectively.  

( ) Pr[ 0]*{Pr[passes the check]* Pr[does not pass the check]* }

Pr[ 1]*{Pr[is not chosen as Bob ]* Pr[is chosen as Bob ]* }

1 1 1
( )

1 1

1 1 1
[ ( )].

1 1

A i g f

i k t k e

f t e

f t s

U x list U U

list U U

r i N
U U U

r i r i N N

r i N
U U U x

r i r i N N

= = +

+ = +

− −
= + +

− + − +

− −
= + + − 

− + − +

  (1) 

( ) Pr[ 0]*{Pr[passes the check]* Pr[does not pass the check]* }

Pr[ 1]*{Pr[is not chosen as Bob ]* Pr[is chosen as Bob ]* }

1 1 1
[ ( )].

1 1

B i g f

i k t k e

g pe s

U x list U U

list U U

r i N
U U U x

r i r i N N

= = +

+ = +

− −
= + + − 

− + − +

  (2) 

Here, in the ith round, 
1

r i

r i

−

− +
 is the probability of 1ilist = . 

1

N
 is the probability of any 

agent chosen to be Bobk. 

4.3 Correctness 

Definition 3 (Correctness) [Dou, Xu, Chen et al. (2018)]. A rational QSTS game   is 

correct if the following holds 

Pr[ ( ,( , )) False state]k j jo a − = a                    (3) 

for each Bobj’s arbitrary strategy { , }ja DEV COO . 

Theorem 1. The correctness of the protocol holds if all the agents are rational. 

Proof. As a rational agent, Bobj (1 j N  ) wants to maximize his benefit. If he is 

chosen as Bobk, he will recover the state faithfully. Otherwise, he will be a helper. In the 

second case, if he helps Bobk loyally, correctness of protocol will be affected. If he wants 

to threaten, he will mislead Bobk at first. But if he has obtained expected benefit, he will 

tell the true measurement result to Bobk. The correctness is also ensured. In one word, the 

correctness of the protocol holds. 
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4.4 Fairness 

Definition 4 (Fairness) [Dou, Xu, Chen et al. (2018)]. A rational QSTS game   is fair if 

the following hold 

1 1Pr[ ( ,( , )) Bob ] Pr[ ( ,( , )) Bob ],j j j k j j j ko a o a− − − =   =a a   (4)   

2 2Pr[ ( ,( , )) True state] Pr[ ( ,( , )) True state]j j j j j jo a o a− − − =   =a a   (5) 

for any Bobj (1 j N  ). Here, the game   is divided into two parts: the random election 

game 1  and the sharing game 2 . 

Theorem 2. There exist some values of   and r that make the protocol achieve fairness. 

Proof. Since each agent chooses a number randomly, entropy of jc  is 2( ) logjH c N= . 

Let the summation of all the other numbers is 
j kN

k j

C c−



= . The condition entropy is 

2( | ) logjHC C C N− = , too. We also know that 2( ) logH C N= . It means that even if N-1 

agents colluded except for Bobj, the value of C is still completely random for them. The 

probability of each agent chosen as Bobk is equal. Therefore, the fairness of game 1   is 

proved. 

As for the game 2 , any agent will not have incentive to deceive if the utility of DEC is 

less than that of COO when the other agents’ strategies are fixed. In other word, the 

inequation ( ) ( )A BU x U x  needs to be satisfied.  

1 1
( ) ( ) ( ) ( )

1 1

1 1
[( ) ( ) ( )]

1

1 1
[ ( ) ( )].

1

A B f g t pe

f g t pe

g t pe

r i N
U x U x U U U U

r i r i N

N
r i U r i U U U

r i N

N
k r i U U U

r i N


− −
− = − + −

− + − +

−
= − − − + −

− +

−
= − − − + −

− +

  (6) 

Since f gU U  and t peU U , the relationship of size between ( )AU x  and ( )BU x  is 

uncertain. But if   and r i−  are big enough, then we have ( ) ( )A BU x U x . Since i is 

alterable, we need to find a big r to ensure that r i−  is big enough. The fairness of 2  

will hold in this case. 

In conclusion, if   and r are big enough, the fairness of our protocol holds. 

4.5 Strict Nash equilibrium 

Theorem 3. There exist some values of   and r that make the protocol achieve fairness. 

Proof. As the designer of a protocol, we hope that strategy vector (COO, COO, COO) 

will be the Nash equilibrium. In this case, an agent will choose to cooperate for other 

agents’ any given strategies. Therefore, the following conditions need to be satisfied: 

( ) ( ).A BU x U x                                                            (7) 
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Likewise, we can find some values of   and r to ensure the Eq. (7). The conditions are 

the same as that in Subsection 4.5. The strict Nash equilibrium of our protocol also holds. 

4.6 Pareto optimality 

Theorem 4. There exist some suitable coefficients   and r so that Pareto optimality is 

achieved. 

Proof. The utilities of strategy vector (COO, COO, COO) are ( (0), (0), (0))B B BU U U . In 

order to make this strategy vector Pareto optimality, we need to ensure the following 

conditions: 

(P1) One of (1), (0)B AU U  is smaller than (0)BU . 

(P2) One of (2), (1)B AU U  is smaller than (0)BU . 

(P3) (2)AU  is smaller than (0)BU . 

On one hand, in the former subsection, we have showed the conditions of ( ) ( )B AU x U x . 

On the other hand, from Eqs. (1) and (2), it’s easy to have  (0) (1) (2)A A AU U U   and 

(0) (1) (2)B B BU U U  . 

Hence, we have (0) ( )B BU U x  and (0) ( )B AU U x . The conditions (P1)-(P3) are also 

hold naturally. 

In summary, the strategy vector (COO, COO, COO) is the Pareto optimality for some 

suitable r and  . Since each agent will choose to cooperate, and (0)BU  is the maximum 

among utilities, all agents will have maximum utility in this case. In other word, they are 

all-win. 

5 Conclusions 

In this work, rational NQSTS protocol was researched. Firstly, lots of NQSTS protocols 

were restudied. General steps of them were summarized further. Secondly, a new rational 

NQSTS protocol was proposed, in which steps are learned from general steps of 

aforementioned protocols. Thirdly, analyses of proposed protocol were given. 

Particularly, utilities of agents are being redefined by the number of deceiving agents. 

The results show that our protocol is rational and secure. Besides that, agents will all win 

in our protocol.  
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