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Abstract: The signal processing problem has become increasingly complex and demand 

high acquisition system, this paper proposes a new method to reconstruct the structure 

phased array structural health monitoring signal. The method is derived from the 

compressive sensing theory and the signal is reconstructed by using the basis pursuit 

algorithm to process the ultrasonic phased array signals. According to the principles of 

the compressive sensing and signal processing method, non-sparse ultrasonic signals are 

converted to sparse signals by using sparse transform. The sparse coefficients are 

obtained by sparse decomposition of the original signal, and then the observation matrix 

is constructed according to the corresponding sparse coefficients. Finally, the original 

signal is reconstructed by using basis pursuit algorithm, and error analysis is carried on. 

Experimental research analysis shows that the signal reconstruction method can reduce 

the signal complexity and required the space efficiently. 

 

Keywords: Basis pursuit algorithm, compressive sensing, phased array, signal 

reconstruction. 

1 Introduction 

Structural Health Monitoring (SHM) technology is an important application of the 

intelligent material structure practical enginee+96ring [Cao, Thaker, Oseng et al. (2015); 

Andrea, Pietro, Marco et al. (2016)]. The data acquisition and processing system is an 

important part of the structural health monitoring. Many scholars internationally have 

implemented different signal processing methods in structural health monitoring, such as 

model analysis [Bassoli, Forghieri and Vincenzi (2017)], system identification [Nagarajaiah 

(2107)], wavelet transform, optimization calculation [Li (2015)] and so on. However, the 
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majority of research findings are based on the simplified structure and carried out in a 

controllable laboratory environment. Research has been very successful at the real 

collected sensor signals which contains various signals. In general, due to the 

environment noise and the complex properties of composites, the extraction of the 

damaged characteristic signal is very difficult. In a real-time and on-line monitoring 

operation a large amount of data can be generated, which increases the complexity of 

data processing. Thus choosing a suitable method of signal processing is particularly 

important. Signal processing based on compressive sensing technology has been applied 

in many disciplines and engineering fields [Jin, Yang, Chen et al. (2014); Liu (2012)]. 

For example, in the analysis of signal channel bandwidth in wireless communication, the 

data is sampled in a compressed sampling manner [Haupt, Bajwa, Raz et al. (2010)]. In 

image processing, Rice University used compressive sensing technology to develop a 

new “single pixel camera” [Duarte, Davenport, Takhar et al. (2008)]. In the late 1990s, A. 

Abbate [Abbate, Frenkel and Das (1995)] proposed a new type of signal processing 

device, and the ultrasonic signal processing is not limited to the analysis of amplitude, 

phase and frequency domain. It can provide a powerful guarantee for the qualitative and 

quantitative analysis of the echo signal. This article proposes a method to realize the 

structural health monitoring of composite materials using ultrasonic phased array 

technology. The ultrasonic phased array detection technology uses different shapes of 

multi array elements to generate and receive ultrasonic beam [Sun, Zhang, Qian et al. 

(2013); Sun and Ji (2015)]. Where, the phased array transducer contains a plurality of 

piezoelectric elements in a certain way, where each piezoelectric element can 

independently transmit and receive ultrasonic signals [Liu (2012)]. This method consists 

of 3 steps: Firstly it proposes the sparse signal using discrete cosine transform; secondly 

designs a phased array signal acconding to the observation matrix; finally reconstructs the 

signal based on basis pursuit. The reconstruction uses the compressive sensing theory to 

process the data acquisition and signal compression at the same time, which greatly 

reduces the computational complexity and reduces the complexity of the data signal 

processing and saves the storage space. 

The paper is organized as follows: Section 1 introduces the research status of structural 

health monitoring based on compressive sensing; Section 2 explains the principles of 

compressive sensing and sparse signal processing methods; Section 3 uses experimental 

verification signal reconstruction methods to reduce signal complexity and save space 

complexity degree of effect. 

2 Compressive sensing fundamentals 

Compressive Sensing (CS), which is derived from the traditional signal sampling theory, 

is a new sampling and recovery theory for sparse signal [Friedland, Li and Schonfeld 

(2014)]. The sparse representation of signal, the design of observation matrix and the 

reconstruction of signal are introduced in Yu et al. [Yu, Li, Wang et al. (2012)]. If the 

original signal is sparse in the time domain or a certain transformation base, the signal 

can be collected at low sampling rate, and then achieve high probability reconstruction 

with compressive sensing technology. Compared to other sampling methods, this method 

can effectively reduce the complexity of the data, and has a wider range of superiority 

and universality [Donoho (2006)]. The whole signal processing is shown in Fig. 1. 
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Figure 1: Signal processing of compressive sensing 

2.1 Sparse representation 

In the structural health monitoring signal acquisition process, the signal obtained through 

the piezoelectric array has continuous amplitude. The number of non-zero values in the 

sparse coefficient vector can be reduced by selecting the appropriate sparse transform base, 

and a sparse representation of the phased array signal can be obtained. In the process of 

sparse representation, the signal is projected onto an orthogonal base. If the obtained 

transformation vector satisfies the characteristics of sparsity, it can be used as a sparse 

representation of the original signal, which is the prior condition of the compressive 

sensing. That is to say if a signal satisfies certain conditions, the sparse representation of the 

signal can be obtained by selecting one transformation base. In general, the commonly used 

transform bases are: Fourier Transform, Discrete Cosine Transform, Wavelet Basis [Song, 

Guo and Zhu (2014)], Curvelet Basis [Shahidi, Tang and Ma (2013)], and so on. At 

present, in addition to the traditional Fourier Analysis, the advanced signal processing 

methods are widely used in the study, such as Wavelet Analysis [Soni, Jain and Roshan 

(2013)], HHT analysis method [Petrov (2016)], and so on. 

Discrete Cosine Transform (DCT) is an orthogonal transformation method, which has the 

best correlation, and is often considered as a quasi-optimal transformation, moreover, it is 

also often used to lossy data compression of signals or image [Bayer and Cintra (2017)]. 

As the widely use of the special integrated circuit, the discrete cosine transform is 

constantly strengthened. 

Discrete Fourier Transform (DFT) is a discrete form of Fourier transform in time domain 

and frequency domain. The time domain sampling of signal is transformed into its DFT 

frequency domain sampling [West, Harwell and McCall (2017)]. 

Principal Component Analysis (PCA) can be used to deal with the data of high dimension, 

noise and high correlation by projecting the data into the low dimensional space and the 

most possible features of the original data [Singh, Sharma and Dandapat (2016)]. 

In compressive sensing, many complex signals in real life can expressed in a more 

concise way, or can be more succinctly expressed under some orthogonal basis 

transforms. This indicates that these complex signals are sparse under some orthogonal 

bases. In many cases, there is only a small amount of useful information in the high-

dimensional signal, and therefore, the key to obtain a sparse representation is to remove 

the redundant degree of signal [Zhu (2014); Gleichman and Eldar (2011)]. That is, by 

compressing the signal, the sparse representation of the signal can be obtained. 

Suppose NR  is a set of real numbers space, any signal in this space can be expressed by a 

linear combination of a plurality of 1N   dimensional matrix vector 
1{ }N

i i =
. Assume that 

these basis vectors are orthogonal. N N -dimensional sparse matrix transform base can 
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be seen as based on i column, that is 1 2[ , , , ]N   = . Therefore any one of a limited 

length of one-dimensional discrete signal Nx R  can be expressed as: 

1

N

i i

i

x 
=

==                                                                                                                 (1) 

where   is the sparse coefficient vector. If most of the elements of   are zero, the one 

dimensional discrete time signal Nx R  is sparse. At this time, the sparse coefficients are 

satisfied: 

T x=  or , T

i i ix x  = =                                                                                            (2)
 

where the signal x is the expression in time domain, <·> is the inner product, T is 

transpose of a vector, the sparse coefficient   represents the form of x by the sparse 

transform . 

Set the signal 1 2{ , , }Nx x x x=  

1/

1

p
N

p

ip
i

x x
=

 
=  
 
                                                                                                                (3) 

where 
p

x  is the pl - norm of x. 

For any real number, when p
k  , if 0 2p  , Nk 0 , the vector   is considered 

to be k  sparse in sparse transform base  [Jiang (2015)]. 

2.2 Projection observation 

The sparse coefficients can be obtained after sparse decomposition of the original signal, 

according to the sparse coefficients [Feng, Zhang and Liu (2016)]. Thus we can construct 

the observation matrix which is not related to the transform of the signal. A projection 

observation vector yi is obtained by the inner product of the projection matrix which 

contains a M  row vectors 
1{ }N

i =
 and the spares coefficient vector  , where the 

dimensions of the projection vectors is M . 

,i iy =                                                                                                                           (4) 

Set the projection observation vector ( )Myyyy ,,, 21 = , 

TY x x= = =                                                                                                          (5) 

In Eq. (5), the solution of  is an undetermined problem. However, because of the 

sparsity Mk  , the problem can be solved, and the original signal can be restored with 

high probability. 

The matrix  for projection transformation needs to be irrelevant to the sparse 

transformations matrix   and to satisfy the finite equidistant principle. It is found that 

the Gauss random observation matrix has the characteristics that it is not related to the 

majority of the fixed orthogonal bases, and meet the compressive sensing requirement. 

Therefore, the Gauss matrix can be worked as the projection observation matrix. 
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2.3 Signal reconstruction 

Signal reconstruction process uses the known M -dimensional projection observation 

vector to accurately reconstruct the N -dimensional original signal x , where the 

MN  . Candes has proved that the signal reconstruction can be realized by solving 

the minimum 0l -norm [Zhu (2014)] problem. It means the solution of the undetermined 

equation TY x x= = =  can be replaced by solving the minimum 0l -norm.  

0
min  . .s t TY x= =                                                                                              (6)

 

where s.t. means the constraint. Eq. (6) is the solution of a Linear Programming (LP) 

problem, which is a convex optimization problem [Li (2015)]. If the reconstruction error 

is taken into account, the Eq. (7) can be converted to the minimum 1l -norm problem:  

1
min  . .s t

2
Y −                                                                                                   (7)

 

In the process of signal reconstruction, the most important task is to find the sparse 

solution to meet Eq. (7). In order to solve this problem, there are two approaches can be 

considered, which are convex optimization and greedy algorithm [Xia, Wang, Sun et al. 
(2015)]. The convex optimization algorithm obtains the sparsest mainly by increasing the 

constraint. Its norm bound form is expressed as: 

min , . .
p

s t y =                                                                                                  (8) 

Where p R ， ( )
1

Np p

ip
i

 
=

= . 

Literature shows that the (0 1)pl p   has a good application in the sparse representation 

[Zhang, Xu, Li et al. (2016)]. Commonly used algorithms are basis pursuit algorithm 

based on the linear programming and the gradient projection sparse reconstruction 

algorithm. The greedy algorithm is to use matching pursuit algorithm, combined with the 

local optimization approach to find the non-zero coefficient. On this basis, the orthogonal 

matching pursuit method is developed [Needell and Vershynin (2010)]. 

Basis Pursuit (BP) algorithm [Xiao, Zhao and Li (2013)], which is represented in the 

form of norm sparsity signal, namely by means of minimizing the number of signal norm 

sparse representation problem into a constrained extremum problems, thereby the 

problem is transformed into a linear programming problem. 

In the reconstruction algorithm, the minimum 1l  norm and minimum 0l  norm have 

equivalence, and can be interchangeable under certain conditions. Then the Eq. (8) is 

converted to an optimization problem under the minimum 1l -norm: 

1

min . .
l

s t y


 =                                                                                                      (9)
 

Because the number of observations is far less than the length of the signal, it is difficult 

to solve a set of undetermined equations in the signal reconstruction process. The 

undetermined equation has infinitely many solutions, the solution process is difficult to 

achieve. However, since the signal passes through the sparse transformation, the issue 
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can be resolved. Restricted Isometry Property (RIP) is also a theoretical guarantee for the 

solution of the observation matrix. The basis pursuit algorithm is based on the above 

principle to reconstruct the original signal. 

3 Experimental verification 

In this study, a sensor linear array which consists of 8 piezoelectric sensors is arranged in 

a 800 mm×800 mm×3 mm plate. The diameter and the thickness of the piezoelectric 

sensors are 8 mm and 0.48 mm, respectively. The distance between two adjacent 

piezoelectric sensors is 12 mm.  

We use the phased array to scan the aluminum plate structure and obtain 8×7×181 groups data, 

here we select one group to process the data, which is emitted by the No. 0 array element and 

received by the No. 1 array element in the 90 degree direction; other angles take the same 

approach. The time domain waveform of the data obtained from the group is shown in Fig. 2. 

 

Figure 2: Original signals in the time domain waveform 

3.1 Sparse representation based on discrete cosine transforms 

Let X be a time series of length N , )}1(,),1(),0({ −= NXXXX  , ZN . The one-

dimensional DCT transform )(kY  and its inverse transform )n(X  are presented in Eq. 

(10) and Eq. (11): 

1

0

(2 1)
( ) ( )cos

2

N

k

n

n k
Y k a X n

N

−

=

+
=                                                                                         (10) 

1

0

(2 1)
( ) ( )cos

2

N

k

k

n k
X n a Y k

N

−

=

+
=                                                                                        (11) 

where 0,1, , 1n N= − ; ( )Y k  is one-dimensional DCT transformed component, ka  is the 

one-dimensional DCT transform coefficient, the expression of ka  is shown in the Eq. (12): 







=
=

)0(/2

)0(/1
a

kN

kN
k

                                                                                                  (12) 
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According to the Eq. (10), )0(Y  is the maximum constant after one-dimensional DCT 

transform. According to the Eq. (11), after removing the constant, the shape of the signal 

does not change, only a certain phase shift occurs, which can prove that the DC 

component )0(Y  is not suitable for a signal characteristics. Then, in the process of 

selecting the AC component, the AC component with larger amplitude is chosen as the 

characteristic of the signal.  

DCT is used to process the waveforms received by the 0-array-element to receive No. 1 

array element in 90 degree direction. Fig. 3 shown in the sparse representation of the 

original signal is obtained, In Fig. 3, the value of most sparse coefficients of the signal after 

DCT is equal to zero or close to zero, which is consistent with the nature of sparse signal. 

 

Figure 3: DCT sparse coefficients of the original signal 

3.2 Design the observation matrix for the phased array signals 

For the processing of ultrasonic signals, the Gauss random matrix is multiplied with the 

sparse coefficient of the signal, and the observation vector of the signal can be obtained. 

Let   is M N  matrix and its general term is: 

1
( , ) iji j h

M
 =                                                                                                                 (13)

 

 

Figure 4: Signal obtained by Gaussian measurement 
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Each element in the matrix ijh  is independent of each other, and is subject to a mean of 0 

and variance M1/ Gaussian distribution. Studies show that the matrix cannot associated 

with most sparse orthogonal matrix [Wen, Zhang, Wong et al. (2014)], and the number of 

measurements value is relatively small. For the original data with length N  and sparse 

degree K , only the log( / )M cK N K  measurements have a high possibility to restore the 

original signal. Where c  is a very small constant value. In our example, the ultrasonic data 

length N is 1024, the projection observation of the signal uses the number of observed 

values 400. The resulting pattern is shown in Fig. 4. 

3.3 Signal reconstruction based on the basis pursuit 

We use BP algorithm to minimize the number of signal norm sparse representation 

problem into a constrained extremum problem, thereby the problem is transformed into a 

linear programming problem. 

 

(a) Reconstruction of the original signal 

 

(b) The partial enlargement of the reconstructed signal 

Figure 5: The reconstruction of basis pursuit 

Enlarged in Fig.(b) 
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According to the basis pursuit to deal with the phased array signal, you can get the results 

as shown in Fig. 5. Fig. 5(a) shows the reconstruction of the original signal and Fig. 5(b) 

shows the reconstruction of BP algorithm. 

3.4 Signal reconstruction error analysis 

Fig. 5 shows the corresponding reconstructed signal obtained by using the basis pursuit 

algorithm. Tab. 1 shows the effectiveness of the reconstruction algorithm. In Tab. 1, the 

absolute error of V is expressed as: 

0 1V V V = −                                                                                                                     (14) 

Where, 0V  is the amplitude of the maximum point of the reconstructed signal; 
1V  is the 

amplitude of the original phased array signal. The relative error of   is present in Eq. (15). 

1/ *100%V V =                                                                                                              (15)
 

Table 1: Reconstruction error 

Algorithm name BP algorithm 

VV /  0.0985 

%/  0.284 

Table 2: The error comparison 

Orthogonal 

Transformation 
PCA DCT DFT 

Absolute error/V 0.1871 0.8943 21.0229 

Relative error/% 0.39 1.88 1.27 

Tab. 2 shows the error comparison of some common transform base. It can be seen from 

the experimental error analysis that the BP algorithm used in this paper has low error. 

4 Conclusion 

This paper studies phased array signal reconstruction for structural health monitoring 

using the basis pursuit algorithm. The proposed method consists of three steps: Signal 

sparse representation, observation matrix design, signal reconstruction. Finally making 

error analysis of reconstructed signal. The signal from a sensor liner array on an 

aluminum plat is used as a study case to demonstrate how this approach effectively saves 

storage space and reduce the data complexity. The experimental also process its 

superiority in signal processing method by comparison to other commonly used 

algorithm such as PCA, DCT and DFT. 
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